Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1579-2023
https://doi.org/10.5194/acp-23-1579-2023
Research article
 | 
27 Jan 2023
Research article |  | 27 Jan 2023

Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite

Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter

Related authors

Ice nucleation by smectites: the role of the edges
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023,https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Measurement report: The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 1: Correlation between soils and airborne samples
Nikou Hamzehpour, Claudia Marcolli, Sara Pashai, Kristian Klumpp, and Thomas Peter
Atmos. Chem. Phys., 22, 14905–14930, https://doi.org/10.5194/acp-22-14905-2022,https://doi.org/10.5194/acp-22-14905-2022, 2022
Short summary
The Urmia playa as a source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity
Nikou Hamzehpour, Claudia Marcolli, Kristian Klumpp, Debora Thöny, and Thomas Peter
Atmos. Chem. Phys., 22, 14931–14956, https://doi.org/10.5194/acp-22-14931-2022,https://doi.org/10.5194/acp-22-14931-2022, 2022
Short summary
The impact of (bio-)organic substances on the ice nucleation activity of the K-feldspar microcline in aqueous solutions
Kristian Klumpp, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 22, 3655–3673, https://doi.org/10.5194/acp-22-3655-2022,https://doi.org/10.5194/acp-22-3655-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Soot aerosols from commercial aviation engines are poor ice-nucleating particles at cirrus cloud temperatures
Baptiste Testa, Lukas Durdina, Peter A. Alpert, Fabian Mahrt, Christopher H. Dreimol, Jacinta Edebeli, Curdin Spirig, Zachary C. J. Decker, Julien Anet, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 4537–4567, https://doi.org/10.5194/acp-24-4537-2024,https://doi.org/10.5194/acp-24-4537-2024, 2024
Short summary
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024,https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Measurement report: Water diffusion in single suspended phase-separated aerosols
Yu-Kai Tong, Zhijun Wu, Min Hu, and Anpei Ye
Atmos. Chem. Phys., 24, 2937–2950, https://doi.org/10.5194/acp-24-2937-2024,https://doi.org/10.5194/acp-24-2937-2024, 2024
Short summary
Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles
Eugene F. Mikhailov, Sergey S. Vlasenko, and Alexei A. Kiselev
Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024,https://doi.org/10.5194/acp-24-2971-2024, 2024
Short summary
Jet aircraft lubrication oil droplets as contrail ice-forming particles
Joel Ponsonby, Leon King, Benjamin J. Murray, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 2045–2058, https://doi.org/10.5194/acp-24-2045-2024,https://doi.org/10.5194/acp-24-2045-2024, 2024
Short summary

Cited articles

Bear, F. E.: Chemistry of the soil, 2nd edn., Reinhold Publishing, New York, (IDSBB)000085963DSV01, (NEBIS)000022650EBI01, 1964. 
Bi, Y., Cao, B., and Li, T.: Enhanced heterogeneous ice nucleation by special surface geometry, Nat. Commun., 8, 15372, https://doi.org/10.1038/ncomms15372, 2017. 
Bickmore, B. R., Nagy, K. L., Sandlin, P. E., and Crater, T. S.: Quantifying surface areas of clays by atomic force microscopy, Am. Mineral., 87, 780–783, 2002. 
Boose, Y., Welti, A., Atkinson, J., Ramelli, F., Danielczok, A., Bingemer, H. G., Plötze, M., Sierau, B., Kanji, Z. A., and Lohmann, U.: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 1: Immersion freezing, Atmos. Chem. Phys., 16, 15075–15095, https://doi.org/10.5194/acp-16-15075-2016, 2016. 
Campbell, J. M. and Christenson, H. K.: Nucleation- and emergence-limited growth of ice from pores, Phys. Rev. Lett., 120, 165701, https://doi.org/10.1103/PhysRevLett.120.165701, 2018. 
Download
Short summary
The prerequisites of a particle surface for efficient ice nucleation are still poorly understood. This study compares the ice nucleation activity of two chemically identical but morphologically different minerals (kaolinite and halloysite). We observe, on average, not only higher ice nucleation activities for halloysite than kaolinite but also higher diversity between individual samples. We identify the particle edges as being the most likely site for ice nucleation.
Altmetrics
Final-revised paper
Preprint