Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6411-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6411-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Axel Fouqueau
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Department of Gas Metrology, Laboratoire National de Métrologie et d'Essais (LNE), Paris CEDEX 15 75724, France
Manuela Cirtog
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Mathieu Cazaunau
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Edouard Pangui
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Jean-François Doussin
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Bénédicte Picquet-Varrault
CORRESPONDING AUTHOR
LISA, Université Paris-Est Créteil and Université de Paris, CNRS,
94010 Créteil, France
Related authors
Spiro D. Jorga, Kalliopi Florou, Christos Kaltsonoudis, John K. Kodros, Christina Vasilakopoulou, Manuela Cirtog, Axel Fouqueau, Bénédicte Picquet-Varrault, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, https://doi.org/10.5194/acp-21-15337-2021, 2021
Short summary
Short summary
We test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through the oxidation of the emitted organic vapors by the nitrate radicals produced during the reaction of ozone and nitrogen oxides. Our experiments, using as a starting point the ambient air of an urban area with high biomass burning activity, demonstrate that, even with sunlight, there is 20 %–70 % additional organic aerosol formed in a few hours.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 20, 15167–15189, https://doi.org/10.5194/acp-20-15167-2020, https://doi.org/10.5194/acp-20-15167-2020, 2020
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Laura Renzi, Claudia Di Biagio, Johannes Heuser, Marco Zanatta, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Jérôme Yon, Tommaso Isolabella, Dario Massabò, Virginia Vernocchi, Martina Mazzini, Chenjie Yu, Paola Formenti, Benedicte Picquet-Varrault, Jean-Francois Doussin, and Angela Marinoni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2823, https://doi.org/10.5194/egusphere-2025-2823, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study investigates how particle properties affect the accuracy of a common air pollution instrument, the dual-spot aethalometer. By combining lab experiments with real-world data from a mountain site in Italy, we found that the correction factor for this instrument varies mainly due to particle size and measurement conditions. Understanding these influences helps improve air quality monitoring, which is important for assessing pollution impacts on health and climate.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Chenjie Yu, Paola Formenti, Joel F. de Brito, Astrid Bauville, Antonin Bergé, Hichem Bouzidi, Mathieu Cazaunau, Manuela Cirtog, Claudia Di Biagio, Ludovico Di Antonio, Cécile Gaimoz, Franck Maisonneuve, Pascal Zapf, Tobias Seubert, Simone T. Andersen, Patrick Dewald, Gunther N. T. E. Türk, John N. Crowley, Alexandre Kukui, Chaoyang Xue, Cyrielle Denjean, Olivier Garrouste, Jean-Claude Etienne, Huihui Wu, James D. Allan, Dantong Liu, Yangzhou Wu, Christopher Cantrell, and Vincent Michoud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2667, https://doi.org/10.5194/egusphere-2025-2667, 2025
Short summary
Short summary
We presented a field measurement in a Paris suburban forest region to characterise the impacts of photochemical aging process on aerosol physical chemical properties. Photochemical production of organic aerosols increased forest fine particle mass and significantly enhanced absorption of short-wavelength sunlight. This study highlights the critical need to incorporate light absorbing carbonaceous particles formation mechanisms into models to accurately simulate their direct radiative impacts.
Johannes Heuser, Claudia Di Biagio, Jérôme Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
Atmos. Chem. Phys., 25, 6407–6428, https://doi.org/10.5194/acp-25-6407-2025, https://doi.org/10.5194/acp-25-6407-2025, 2025
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplemented by literature data, allowed us to establish a generalised exponential relationship between the spectral absorption and the elemental-to-total-carbon ratio (EC / TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Diana L. Pereira, Aline Gratien, Chiara Giorio, Emmanuelle Mebold, Thomas Bertin, Cécile Gaimoz, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2393, https://doi.org/10.5194/egusphere-2025-2393, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study provides two methods for the quantification of molecular markers to improve the description of secondary organic aerosols using chromatographic techniques coupled with mass spectrometry. Compounds from various chemical functionalities (alcohols, acids, aldehydes), from biogenic and anthropogenic origin, were identified. Improved method performance was observed for nitro compounds, which have been associated with anthropogenic activities.
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025, https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France, circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for, for example, alkyl nitrates and peroxy nitrates.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana L. Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
Atmos. Chem. Phys., 25, 4803–4831, https://doi.org/10.5194/acp-25-4803-2025, https://doi.org/10.5194/acp-25-4803-2025, 2025
Short summary
Short summary
The summer of 2022 has been considered a proxy for future climate scenarios due to its hot and dry conditions. In this paper, we use the measurements from the Atmospheric Chemistry of the Suburban Forest (ACROSS) campaign, conducted in the Paris area in June–July 2022, along with observations from existing networks, to evaluate a 3D chemistry transport model (WRF–CHIMERE) simulation. Results are shown to be satisfactory, allowing us to explain the gas and aerosol variability at the campaign sites.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 25, 3161–3189, https://doi.org/10.5194/acp-25-3161-2025, https://doi.org/10.5194/acp-25-3161-2025, 2025
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed urban emission impact on surrounding areas. CRI full period averages at 520 nm were 1.41 – 0.037i (urban), 1.52 – 0.038i (peri-urban), and 1.50 – 0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22 % of absorption at 370 nm.
Francesco Battaglia, Paola Formenti, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Antonin Bergé, Aline Gratien, Thomas Bertin, Joël F. de Brito, Manolis N. Romanias, Vincent Michoud, Clarissa Baldo, Servanne Chevaillier, Gaël Noyalet, Philippe Decorse, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-4073, https://doi.org/10.5194/egusphere-2024-4073, 2025
Short summary
Short summary
This paper presents an experimental investigation of the interactions between glyoxal, an important volatile organic compound, and mineral dust particles of size and composition typical of natural conditions. We show that their interactions modifies in a definitive way the concentrations of the gas phase and the properties of the dust, which could have important implications of the atmospheric composition and the Earth's climate.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Sergio Harb, Manuela Cirtog, Stéphanie Alage, Christopher Cantrell, Mathieu Cazaunau, Vincent Michoud, Edouard Pangui, Antonin Bergé, Chiara Giorio, Francesco Battaglia, and Bénédicte Picquet-Varrault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3419, https://doi.org/10.5194/egusphere-2024-3419, 2024
Short summary
Short summary
We investigated the reactions of α- and β-phellandrenes (from vegetation emissions) with NO3 radicals, a major nighttime oxidant from human activities. Using lab-based simulations, we examined these reactions and measured particle formation and by-products. Our findings reveal that α- and β-phellandrenes are efficient particle sources and enhance our understanding of biogenic-anthropogenic interactions and their contributions to atmospheric changes affecting climate and health.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Stéphanie Alage, Vincent Michoud, Sergio Harb, Bénédicte Picquet-Varrault, Manuela Cirtog, Avinash Kumar, Matti Rissanen, and Christopher Cantrell
Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, https://doi.org/10.5194/amt-17-4709-2024, 2024
Short summary
Short summary
Calibration exercises are essential for determining the accuracy of instruments. We performed calibrations on a NO3¯ ToFCIMS instrument to determine its sensitivity and linearity for detecting various organic compounds. Our findings revealed significant variability, over several orders of magnitude, in the calibration factors obtained. The results suggest that relying on a single calibration factor from H2SO4 for the quantification of all compounds detected by this technique is not appropriate.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Paola Formenti, Claudia Di Biagio, Yue Huang, Jasper Kok, Marc Daniel Mallet, Damien Boulanger, and Mathieu Cazaunau
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-403, https://doi.org/10.5194/amt-2021-403, 2021
Publication in AMT not foreseen
Short summary
Short summary
This paper provides with standardized correction factors for the measurements of the most common instruments used in the atmosphere to measure the concentration per size of aerosol particles. These correction factors are provided to users with supplementary information for their use.
Spiro D. Jorga, Kalliopi Florou, Christos Kaltsonoudis, John K. Kodros, Christina Vasilakopoulou, Manuela Cirtog, Axel Fouqueau, Bénédicte Picquet-Varrault, Athanasios Nenes, and Spyros N. Pandis
Atmos. Chem. Phys., 21, 15337–15349, https://doi.org/10.5194/acp-21-15337-2021, https://doi.org/10.5194/acp-21-15337-2021, 2021
Short summary
Short summary
We test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through the oxidation of the emitted organic vapors by the nitrate radicals produced during the reaction of ozone and nitrogen oxides. Our experiments, using as a starting point the ambient air of an urban area with high biomass burning activity, demonstrate that, even with sunlight, there is 20 %–70 % additional organic aerosol formed in a few hours.
Hongming Yi, Mathieu Cazaunau, Aline Gratien, Vincent Michoud, Edouard Pangui, Jean-Francois Doussin, and Weidong Chen
Atmos. Meas. Tech., 14, 5701–5715, https://doi.org/10.5194/amt-14-5701-2021, https://doi.org/10.5194/amt-14-5701-2021, 2021
Short summary
Short summary
HONO and NO2 play a crucial role in the atmospheric oxidation capacity that affects the regional air quality and global climate. Accurate measurements of HONO are challenging due to the drawback of existing detection methods. Calibration-free high-sensitivity direct, simultaneous measurements of NO2, HONO and CH2O with UV-IBBCEAS provide accurate and fast quantitative analysis of their concentration variation within their lifetime by intercomparison with NOx, FTIR and NitroMAC sensors.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 20, 15167–15189, https://doi.org/10.5194/acp-20-15167-2020, https://doi.org/10.5194/acp-20-15167-2020, 2020
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Cited articles
Aoki, N., Inomata, S., and Tanimoto, H.: Detection of C1-C5 alkyl nitrates
by proton transfer reaction time-of-flight mass spectrometry, Int. J. Mass. Spectrom., 263, 12–21,
2007.
Aschmann, S. M., Arey, J., and Atkinson, R.: Kinetics and Products of the
Reactions of OH Radicals with Cyclohexene, 1-Methyl-1-cyclohexene,
cis-Cyclooctene, and cis-Cyclodecene, J. Phys. Chem. A., 116, 9507–15, https://doi.org/10.1021/jp307217m, 2012.
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86,
69–201, 1986.
Atkinson, R., Plum, C. N., Carter, W. P. L., Winer, A. M., and Pitts, J. N.:
Rate constants for the gas-phase reactions of nitrate radicals with a series
of organics in air at 298 . . 1 K, J. Phys. Chem., 88, 1210–1215,
https://doi.org/10.1021/j150650a039, 1984a.
Atkinson, R., Aschmann, S. M., Winer, A. M., and Pitts, J. N.: Kinetics
of the gas-phase reactions of nitrate radicals with a series of dialkenes,
cycloalkenes, and monoterpenes at 295 . . 1 K, Environ. Sci. Technol.,
18, 370–375, https://doi.org/10.1021/es00123a016, 1984b.
Atkinson, R., Aschmann, S. M., and Pitts, J. N.: Rate constants for the
gas-phase reactions of the nitrate radical with a series of organic
compounds at 296 . . 2 K, 92, 3454–3457,
https://doi.org/10.1021/j100323a028, 1988.
Benter, T., Becker, E., Wille, U., Rahman, M. M., and Schindler, R. N.: The
Determination of Rate Constants for the Reactions of Some Alkenes with the
NO3 Radical, Berichte der Bunsengesellschaft für physikalische Chemie,
96, 769–775, https://doi.org/10.1002/bbpc.19920960607, 1992.
Berndt, T. and Böge, O.: Products and Mechanism of the Reaction of NO3
with Selected Acyclic Monoalkenes, J. Atmos. Chem., 21, 275–291, 1995.
Berndt, T., Kind, I., and Karbach, H.-J.: Kinetics of the Gas-Phase Reaction
of NO3 Radicals with 1-Butene, trans-Butene, 2-Methyl-2-butene and
2,3-Dimethyl-2-butene Using LIF Detection, Berichte der Bunsengesellschaft
für physikalische Chemie, 102, 1486–1491,
https://doi.org/10.1002/bbpc.199800017, 1998.
Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I., and Ng, N. L.: Secondary organic aerosol formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate, Atmos. Chem. Phys., 15, 7497–7522, https://doi.org/10.5194/acp-15-7497-2015, 2015.
Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry,
Chem. Soc. Rev., 41, 6405–6447, https://doi.org/10.1039/C2CS35181A, 2012.
Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J.: The
Mechanisms of Reactions Influencing Atmospheric Ozone, Oxford University
Press, New York, ISBN: 9780190233020, 2015.
Claflin, M. S. and Ziemann, P. J.: Identification and Quantitation of
Aerosol Products of the Reaction of β-Pinene with NO3 Radicals and
Implications for Gas- and Particle-Phase Reaction Mechanisms, J. Phys. Chem.
A, 122, 3640–3652, https://doi.org/10.1021/acs.jpca.8b00692, 2018.
Corchnoy, S. B. and Atkinson, R.: Kinetics of the gas-phase reactions of
hydroxyl and nitrogen oxide (NO3) radicals with 2-carene, 1,8-cineole,
p-cymene, and terpinolene, Environ. Sci. Technol., 24, 1497–1502, 1990.
Doussin, J.-F., Durand-Jolibois, R., Ritz, D., Monod, A., and Carlier, P.:
Design of an environmental chamber for the study of atmospheric chemistry:
New developments in the analytical device, 25, 236 p., 1997.
Draper, D. C., Farmer, D. K., Desyaterik, Y., and Fry, J. L.: A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2, Atmos. Chem. Phys., 15, 12267–12281, https://doi.org/10.5194/acp-15-12267-2015, 2015.
Duncianu, M., David, M., Kartigueyane, S., Cirtog, M., Doussin, J.-F., and Picquet-Varrault, B.: Measurement of alkyl and multifunctional organic nitrates by proton-transfer-reaction mass spectrometry, Atmos. Meas. Tech., 10, 1445–1463, https://doi.org/10.5194/amt-10-1445-2017, 2017.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Doussin, J.-F., and Picquet-Varrault, B.: A comparative and experimental study of the reactivity with nitrate radical of two terpenes: α-terpinene and γ-terpinene, Atmos. Chem. Phys., 20, 15167–15189, https://doi.org/10.5194/acp-20-15167-2020, 2020a.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Zapf, P., Siour, G., Landsheere, X., Méjean, G., Romanini, D., and Picquet-Varrault, B.: Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies, Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, 2020b.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Doussin, J.-F., and Picquet-Varrault, B.: Library of Advanced Data Products: Photolysis Frequencies & Quantum yields [data set], https://data.eurochamp.org/data-access/photolysis-frequencies-quantum-yields/ (last access: 1 May 2021), 2021a.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Doussin, J.-F., and Picquet-Varrault, B.: Database of Atmospheric Simulation Chamber Studies [data set], https://data.eurochamp.org/data-access/chamber-experiments/ (last access: 1 May 2021), 2021b.
Friedman, B. and Farmer, D. K.: SOA and gas phase organic acid yields from
the sequential photooxidation ofseven monoterpenes, Atmos. Environ., 187, 335–345, 2018.
Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J.,
Winkler, P. M., Lawler, M. J., Brown, S. S., Edwards, P. M., Cohen, R. C.,
and Lee, L.: Secondary Organic Aerosol Formation and Organic Nitrate Yield
from NO3 Oxidation of Biogenic Hydrocarbons, Environ. Sci. Technol., 48,
11944–11953, https://doi.org/10.1021/es502204x, 2014.
Geron, C., Rasmussen, R., R. Arnts, R., and Guenther, A.: A review and
synthesis of monoterpene speciation from forests in the United States,
Atmos. Environ., 34, 1761–1781,
https://doi.org/10.1016/S1352-2310(99)00364-7, 2000.
Gómez-González, Y., Surratt, J. D., Cuyckens, F., Szmigielski, R.,
Vermeylen, R., Jaoui, M., Lewandowski, M., Offenberg, J. H., Kleindienst, T.
E., Edney, E. O., Blockhuys, F., Alsenoy, C. V., Maenhaut, W., and Claeys,
M.: Characterization of organosulfates from the photooxidation of isoprene
and unsaturated fatty acids in ambient aerosol using liquid
chromatography/(-) electrospray ionization mass spectrometry, J. Mass. Spectrom., 43, 371–382,
2008.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J.,
Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V.
I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C.,
Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M.,
Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T.
J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M.,
Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P.,
Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M.,
Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Auwera, J. V.,
Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E.
J.: The HITRAN2016 molecular spectroscopic database, J. Quant.
Spectrosc. Ra., 203, 3–69,
https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res.-Atmos., 100, 8873–8892, 1995.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hallquist, M., Wangberg, I., Ljungstrom, E., Barnes, I., and Becker, E.:
Aerosol and Product Yields from NO3 Radical-Initiated Oxidation of Selected
Monoterpenes, Environ. Sci. Technol., 33, 553–559, 1999.
Hao, L. Q., Kortelainen, A., Romakkaniemi, S., Portin, H., Jaatinen, A., Leskinen, A., Komppula, M., Miettinen, P., Sueper, D., Pajunoja, A., Smith, J. N., Lehtinen, K. E. J., Worsnop, D. R., Laaksonen, A., and Virtanen, A.: Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland–urban mixed region, Atmos. Chem. Phys., 14, 13483–13495, https://doi.org/10.5194/acp-14-13483-2014, 2014.
Hjorth, J., Ottobrini, G., Cappellani, F., and Restelli, G.: A Fourier
transform infrared study of the rate constant of the homogeneous gas-phase
reaction nitrogen oxide (N2O5)+ water and determination of absolute
infrared band intensities of N2O5 and nitric acid, J. Phys. Chem., 91,
1565–1568, https://doi.org/10.1021/j100290a055, 1987.
Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and
Herrmann, H.: Evidence for the Existence of Organosulfates from β-Pinene
Ozonolysis in Ambient Secondary Organic Aerosol, Environ. Sci. Technol., 41,
6678–6683, https://doi.org/10.1021/es070938t, 2007.
Ito, A., Sillman, S., and Penner, J. E.: Effects of additional nonmethane
volatile organic compounds, organic nitrates, and direct emissions of
oxygenated organic species on global tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D06309,
https://doi.org/10.1029/2005JD006556, 2007.
Jaoui, M., Kleindienst, T. E., Docherty, K. S., Lewandowski, M., and
Offenberg, J. H.: Secondary organic aerosol formation from the oxidation of
a series of sesquiterpenes: α-cedrene, β-caryophyllene,
α-humulene and α-farnesene with O3, OH and NO3 radicals, Environ. Chem., 10, 178–193,
2013.
Kerdouci, J., Picquet-Varrault, B., and Doussin, J. F.: Structure–activity
relationship for the gas-phase reactions of NO3 radical with organic
compounds: Update and extension to aldehydes, Atmos. Environ., 84, 363–372,
https://doi.org/10.1016/j.atmosenv.2013.11.024, 2014.
Khan, M. A. H., Morris, W. C., Watson, L. A., Galloway, M., Hamer, P. D.,
Shallcross, B. M. A., Percival, C. J., and Shallcross, D. E.: Estimation of
Daytime NO3 Radical Levels in the UK Urban Atmosphere Using the Steady State
Approximation Method, Adv. Meteorol., 2015, e294069, https://doi.org/10.1155/2015/294069,
2015.
Kiendler-Scharr, A., Mensah, A., Friese, E., Topping, D., Nemitz, E.,
Prevot, A. S. H., Äijälä, M., Allan, J., Canonaco, F.,
Canagaratna, M., Carbone, S., Crippa, M., Dall'Osto, M., Day, D. A., De
Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L.,
Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A.,
McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S.
N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P.,
Vermeulen, A., Wahner, A., Wornsnop, D., and Wu, H.-C.: Ubiquity of organic
nitrates from nighttime chemistry in the European submicron aerosol, Geophys. Res. Lett., 43,
7735–7744, https://doi.org/10.1002/2016GL069239, 2016.
Kurten, T., Moller, K. H., Nguyen, T. B., Schwantes, R. H., Misztal, P. K.,
Su, L., Wennberg, P. O., Fry, J. L., and Kjaergaard, H. G.: Alkoxy Radical
Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and
Organonitrate Yields From α-Pinene + NO3, J. Phys. Chem. Lett., 8, 2826–2834,
https://doi.org/10.1021/acs.jpclett.7b01038, 2017.
Lai, A. C. K. and Nazaroff, W. W.: Modeling indoor particle deposition from
turbulent flow onto smooth surfaces, J. Aerosol Sci., 31, 463–476,
https://doi.org/10.1016/S0021-8502(99)00536-4, 2000.
Lamkaddam, H., Gratien, A., Pangui, E., Cazaunau, M., Picquet-Varrault, B.,
and Doussin, J.-F.: High-NOx Photooxidation of n-Dodecane: Temperature
Dependence of SOA Formation, Environ. Sci. Technol., 51, 192–201,
https://doi.org/10.1021/acs.est.6b03821, 2017.
Lancar, I. T., Daele, V., Lebras, G., and Poulet, G.: Reaction of NO3
radicals with 2,3-dimethylbut-2-ene, buta-1,3-diene and
2,3-dimethylbuta-1,3-diene, J. Chim. Phys. Pcb., 88, 1777–1792,
1991.
Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V.,
Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol
yields from the photooxidation of 16 different terpenes, 111, D17305, https://doi.org/10.1029/2006JD007050, 2006.
Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee,
L., Romer, P., Cohen, R. C., Iyer, S., Kurten, T., Hu, W., Day, D. A.,
Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber, R.
J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J. A., Olson, K.,
Goldstein, A. H., Seco, R., Kim, S., McAvey, K., Shepson, P. B., Starn, T.,
Baumann, K., Edgerton, E. S., Liu, J., Shilling, J. E., Miller, D. O.,
Brune, W., Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly
functionalized organic nitrates in the southeast United States: Contribution
to secondary organic aerosol and reactive nitrogen budgets, P. Natl. Acad. Sci. USA, 113, 1516–1521,
https://doi.org/10.1073/pnas.1508108113, 2016.
Lindwall, F., Faubert, P., and Rinnan, R.: Diel Variation of Biogenic
Volatile Organic Compound Emissions–A field Study in the Sub, Low and High
Arctic on the Effect of Temperature and Light, PLoS ONE, 10, e0123610, https://doi.org/10.1371/journal.pone.0123610, 2015.
Martinez, E., Cabanas, B., Aranda, A., Martin, P., Notario, A., and Salgado,
S.: Study on the NO3 Radical Reactivity: Reactions with Cyclic Alkenes,
J. Phys. Chem. A, 103, 5321–5327, 1999.
McGillen, M. R., Carter, W. P. L., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., and Wallington, T. J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds, Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, 2020.
Müller, M., Graus, M., Wisthaler, A., Hansel, A., Metzger, A., Dommen, J., and Baltensperger, U.: Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments, Atmos. Chem. Phys., 12, 829–843, https://doi.org/10.5194/acp-12-829-2012, 2012.
Newland, M. J., Ren, Y., McGillen, M. R., Michelat, L., Daële, V., and Mellouki, A.: NO3 chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO3 radical, Atmos. Chem. Phys., 22, 1761–1772, https://doi.org/10.5194/acp-22-1761-2022, 2022.
Ng, N. L., Kwan, A. J., Suratt, J. D., Chan, A. W. H., Chhabra, P. S.,
Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R.
C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from
reaction of isoprene with nitrate radicals (NO3), 8, 4117–4140, 2008.
Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.
Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and
Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic Aerosol
Yields, Environ. Sci. Technol., 30, 2580–2585, 1996.
Orphal, J., Fellows, C. E., and Flaud, P.-M.: The visible absorption
spectrum of NO3 measured by high-resolution Fourier transform
spectroscopy, 108, 4077, https://doi.org/10.1029/2002JD002489, 2003.
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, 2008.
Picquet-Varrault, B., Scarfogliero, M., Ait Helal, W., and Doussin,
J.-F.: Reevaluation of the rate constant for the reaction propene +NO3 by absolute rate determination, International Journal of Chemical
Kinetics, 41, 73–81, 2009.
Picquet-Varrault, B., Suarez-Bertoa, R., Duncianu, M., Cazaunau, M., Pangui, E., David, M., and Doussin, J.-F.: Photolysis and oxidation by OH radicals of two carbonyl nitrates: 4-nitrooxy-2-butanone and 5-nitrooxy-2-pentanone, Atmos. Chem. Phys., 20, 487–498, https://doi.org/10.5194/acp-20-487-2020, 2020.
Rahman, M. M., Becker, E., Benter, Th., and Schindler, R. N.: A Gasphase
Kinetic Investigation of the System F +HNO3 and the Determination of
Absolute Rate Constants for the Reaction of the NO3 Radical with CH3SH,
2-Methylpropene, 1,3-Butadiene and 2,3-Dimethyl-2-Butene, Berichte der
Bunsengesellschaft für physikalische Chemie, 92, 91–100,
https://doi.org/10.1002/bbpc.198800018, 1988.
Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical
production of organic nitrates from a-pinene and loss via acid-dependent
particle phase hydrolysis, Atmos. Environ., 100, 193–201, 2015.
Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H.-P., Dubé, W. P., Fuchs, H., Mensah, A., Mentel, T. F., Rohrer, F., Tillmann, R., Wegener, R., Wooldridge, P. J., and Cohen, R. C.: Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields, Atmos. Chem. Phys., 9, 6685–6703, https://doi.org/10.5194/acp-9-6685-2009, 2009.
Rothman, L. S., Barbe, A., Chris Benner, D., Brown, L. R., Camy-Peyret, C.,
Carleer, M. R., Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A.,
Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Jucks, K. W.,
Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Nemtchinov, V., Newnham, D.
A., Perrin, A., Rinsland, C. P., Schroeder, J., Smith, K. M., Smith, M. A.
H., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K.:
The HITRAN molecular spectroscopic database: edition of 2000 including
updates through 2001, J. Quant. Spectrosc. Ra., 82, 5–44, https://doi.org/10.1016/S0022-4073(03)00146-8, 2003.
Schott, G. and Davidson, N.: Shock waves in chemical kinetics: The
decomposition of N2O5 at high temperatures, 80, 1841–1853, 1958.
Shu, Y. and Atkinson, R.: Atmospheric lifetimes and fates of a series of
sesquiterpenes, 100, 7275–7281, 1995.
Skov, H., Benter, T., Schindler, R. N., Hjorth, J., and Restelli, G.:
Epoxide formation in the reactions of the nitrate radical with
2,3-dimethyl-2-butene, cis- and trans-2-butene and isoprene, Atmos. Environ., 28, 1583–1592,
1994.
Slade, J. H., de Perre, C., Lee, L., and Shepson, P. B.: Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields, Atmos. Chem. Phys., 17, 8635–8650, https://doi.org/10.5194/acp-17-8635-2017, 2017.
Spittler, M., Barnes, I., Bejan, I., Brockmann, K. J., Benter, Th., and
Wirtz, K.: Reactions of NO3 radicals with limonene and α-pinene: Product
and SOA formation, Atmos. Environ., 40, 116–127,
https://doi.org/10.1016/j.atmosenv.2005.09.093, 2006.
Stewart, D. J., Almabrok, S. H., Lockhart, J. P., Mohamed, O. M., Nutt, D.
R., Pfrang, C., and Marston, G.: The kinetics of the gas-phase reactions of
selected monoterpenes and cyclo-alkenes with ozone and the NO3 radical,
Atmos. Environ., 70, 227–235,
https://doi.org/10.1016/j.atmosenv.2013.01.036, 2013.
Suarez-Bertoa, R., Picquet-Varrault, B., Tamas, W., Pangui, E., and Doussin,
J.-F.: Atmospheric Fate of a Series of Carbonyl Nitrates: Photolysis
Frequencies and OH-Oxidation Rate Constants, Environ. Sci. Technol., 46, 12502–12509, 2012.
Valorso, R., Aumont, B., Camredon, M., Raventos-Duran, T., Mouchel-Vallon, C., Ng, N. L., Seinfeld, J. H., Lee-Taylor, J., and Madronich, S.: Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation, Atmos. Chem. Phys., 11, 6895–6910, https://doi.org/10.5194/acp-11-6895-2011, 2011.
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally,
S., Mérienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of
the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm)
at 220 K and 294 K, J. Quant. Spectrosc. Ra., 59, 171–184, 1997.
Vereecken, L. and Peeters, J.: Decomposition of substituted alkoxy
radicals – part I: a generalized structure–activity relationship for
reaction barrier heightsw, Phys. Chem. Chem. Phys., 11, 9062–9074, https://doi.org/10.1039/b909712k,
2009.
Wangberg, I., Barnes, I., and Becker, K. H.: Product and mechanistic study
of the reaction of NO3 radicals with alpha-pinene, Environ. Sci. Technol.,
31, 2130–2135, 1997.
Wang, J., Doussin, J.-F., Perrier, S., Perraudin, E., Katrib, Y., Pangui,
E., and Picquet-Varrault, B.: Design of a new multi-phase experimental
simulation chamber for atmospheric photosmog, Aerosol and Cloud Chemistry
Research, 4, 2465–2494, 2011.
Wu, C., Bell, D. M., Graham, E. L., Haslett, S., Riipinen, I., Baltensperger, U., Bertrand, A., Giannoukos, S., Schoonbaert, J., El Haddad, I., Prevot, A. S. H., Huang, W., and Mohr, C.: Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition, Atmos. Chem. Phys., 21, 14907–14925, https://doi.org/10.5194/acp-21-14907-2021, 2021.
Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates, Atmos. Chem. Phys., 15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015, 2015.
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with...
Altmetrics
Final-revised paper
Preprint