Articles | Volume 16, issue 3
Atmos. Chem. Phys., 16, 1747–1760, 2016
https://doi.org/10.5194/acp-16-1747-2016
Atmos. Chem. Phys., 16, 1747–1760, 2016
https://doi.org/10.5194/acp-16-1747-2016

Research article 15 Feb 2016

Research article | 15 Feb 2016

Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles

L. Brégonzio-Rozier1, C. Giorio2,3, F. Siekmann4, E. Pangui1, S. B. Morales1, B. Temime-Roussel4, A. Gratien1, V. Michoud1, M. Cazaunau1, H. L. DeWitt4, A. Tapparo3, A. Monod4, and J.-F. Doussin1 L. Brégonzio-Rozier et al.
  • 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), Créteil, France
  • 2Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
  • 3Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, 35131, Italy
  • 4Aix-Marseille Université, CNRS, LCE FRE 3416, 13331, Marseille, France

Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

Download
Short summary
The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene/ NOx/light system in an atmospheric simulation chamber. aqSOA formation can be linked to water soluble volatile organic compounds' dissolution in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
Altmetrics
Final-revised paper
Preprint