Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9629-2021
https://doi.org/10.5194/acp-21-9629-2021
Research article
 | 
28 Jun 2021
Research article |  | 28 Jun 2021

Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications

Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos

Related authors

The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data
Daniel T. McCoy, Frida A.-M. Bender, Daniel P. Grosvenor, Johannes K. Mohrmann, Dennis L. Hartmann, Robert Wood, and Paul R. Field
Atmos. Chem. Phys., 18, 2035–2047, https://doi.org/10.5194/acp-18-2035-2018,https://doi.org/10.5194/acp-18-2035-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024,https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Weak liquid water path response in ship tracks
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024,https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024,https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489,https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024,https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary

Cited articles

Agee, E. M.: Mesoscale cellular convection over the oceans, Dynam. Atmos. Ocean., 10, 317–341, https://doi.org/10.1016/0377-0265(87)90023-6, 1987. 
Bretherton, C. S. and Blossey, P. N.: Understanding Mesoscale Aggregation of Shallow Cumulus Convection Using Large-Eddy Simulation, J. Adv. Model. Earth Syst., 9, 2798–2821, https://doi.org/10.1002/2017MS000981, 2017. 
Bretherton, C. S. and Khairoutdinov, M. F.: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet, J. Adv. Model. Earth Syst., 7, 1765–1787, https://doi.org/10.1002/2015MS000499, 2015. 
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative Effects of Cloud-Type Variations, J. Climate, 13, 264–286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000. 
Download
Short summary
Observations of marine-boundary-layer conditions are composited by cloud type, based on a new classification dataset. It is found that two cloud types, representing regions of clustered and suppressed low-level clouds, occur in very similar large-scale conditions but are distinguished from each other by considering low-level circulation and surface wind fields, validating prior results from modeling.
Altmetrics
Final-revised paper
Preprint