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Abstract. Marine low-cloud mesoscale morphology in the
southeastern Pacific Ocean is analyzed using a large dataset
of classifications spanning 3 years generated by machine
learning methods. Meteorological variables and cloud prop-
erties are composited by the mesoscale cloud type of the clas-
sification, showing distinct meteorological regimes of marine
low-cloud organization from the tropics to the midlatitudes.
The presentation of mesoscale cellular convection, with re-
spect to geographic distribution, boundary layer structure,
and large-scale environmental conditions, agrees with prior
knowledge. Two tropical and subtropical cumuliform bound-
ary layer regimes, suppressed cumulus and clustered cumu-
lus, are studied in detail. The patterns in precipitation, cir-
culation, column water vapor, and cloudiness are consistent
with the representation of marine shallow mesoscale convec-
tive self-aggregation by large eddy simulations of the bound-
ary layer. Although they occur under similar large-scale con-
ditions, the suppressed and clustered low-cloud types are
found to be well separated by variables associated with low-
level mesoscale circulation, with surface wind divergence be-
ing the clearest discriminator between them, regardless of
whether reanalysis or satellite observations are used. Clus-
tered regimes are associated with surface convergence, while
suppressed regimes are associated with surface divergence.

1 Introduction

Marine low clouds are radiatively important, with a strong
cooling effect on the planet. They also display a wide range
of morphologies, which have differing radiative properties
(Chen et al., 2000). Classically, ship-based observations have
classified marine low clouds using the familiar World Meteo-
rological Organization (WMO) cloud types such as stratocu-
mulus (Sc), cumulus (Cu), etc. (e.g., Warren et al., 1988).
However, clouds also form larger mesoscale, morphologi-
cally distinct organizations that would not be apparent from
the limited perspective of a surface-based observer. These
mesoscale cloud patterns are of particular interest for sev-
eral reasons. First, they have been shown to represent dif-
ferent underlying marine boundary layer (MBL) regimes
(e.g., Wood and Hartmann, 2006; hereafter WH06), namely
the influence of an additional environmental MBL property
that covaries with cloud morphology. Second, prior work has
shown that the mesoscale organization regulates the relation-
ship between albedo and cloud fraction (CF; McCoy et al.,
2017). Third, larger mesoscale patterns are clearly visible
from current-generation satellite imagers, allowing for their
classification using computer image recognition and subse-
quent generation of a potentially informative MBL cloud
dataset on a near-global and highly temporally resolved scale
for studying these clouds and their drivers.

In the midlatitude storm tracks and eastern ocean subtropi-
cal Sc decks, stratiform low-cloud types dominate (Hartmann
et al., 1992). These high-cloud-fraction cloud types are par-
ticularly effective coolers, and as a result their organization
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Figure 1. Difference in relative frequency of occurrence of cumulus
and stratocumulus cloud types per Hahn et al. (2001) definitions
from ship-based observations. Red areas highlight Cu-dominated
MBLs, while blue regions have more Sc cloud.

and structure have been the subject of extensive investigation
(Agee, 1987; Muhlbauer et al., 2014). In lower latitudes and
away from the eastern subtropical ocean basins, Sc clouds
are rarer, and instead we often find boundary layers (BLs)
dominated by cumuliform cloud types, sometimes clustering
into large convectively active regions and some other times
in relatively isolated smaller Cu. Figure 1, adapted from an
observation-based climatic cloud atlas (Hahn and Warren,
2007), shows the difference between the frequency of oc-
currence of Cu clouds and that of Sc clouds; the commonly
occurring “Cu-under-Sc” case is classified as Sc for consis-
tency with the view from above (Hahn et al., 2001). Red val-
ues indicate more Cu and show that boundary layer clouds
over the ocean between 30◦ N and S are more often cumuli-
form. Although the average cloud radiative effect (CRE) of
these clouds is lower, their ubiquity combined with a high
mesoscale variability in cloud fraction makes them an im-
portant target of study.

Cumuliform MBLs have been observed to contain
mesoscale aggregates of shallow convection in a number
of different forms (LeMone and Meitin, 1984; Nicholls
and Young, 2007). Bretherton and Blossey (2017) (here-
after BB17) demonstrated how mesoscale aggregation of
warm shallow Cu presents in large eddy simulation (LES).
In their conceptual model, the shallow convective self-
aggregation is driven by convection–circulation–humidity
feedbacks. These result in cloudy regions of aggregated con-
vection with a positive mesoscale column water vapor and
moisture anomaly as well as a strong low-level circulation
with lower-boundary-layer convergence, acting to further
concentrate moisture into the moist columns. The difference
between this and the conceptual model for deep-convective
self-aggregation (e.g., Emanuel et al., 2014) is that the lat-
ter relies on radiative feedbacks, which are not necessary to
produce shallow mesoscale aggregation. BB17 demonstrated
that the presentation of shallow aggregation agrees with this

conceptual model and suggested that further observational
validation is warranted.

When classifying stratocumulus and cumulus clouds, a
common form of mesoscale variability is mesoscale cellu-
lar convection (MCC) (Agee, 1987). This can take the form
of open-cellular or closed-cellular MCC. WH06 used a neu-
ral network to classify low-cloud scenes from satellite obser-
vations over the eastern subtropical Pacific Ocean into four
categories, based on MCC type or absence thereof: open,
closed, and cellular but disorganized MCCs and no MCC
present. The utility of these classification-based approaches
is evident in their ability to show the controls on cloud mor-
phology in cold air outbreaks (McCoy et al., 2017), charac-
terize properties and occurrences of the underlying regimes
(Muhlbauer et al., 2014), or discern whether mesoscale mor-
phology is more strongly driven by internal mechanisms or
by large-scale meteorology (WH06). However, a limitation
of the WH06 classification scheme is its inability to discrimi-
nate between cloud morphologies over the warmer regions of
the tropical trades, where MCC is less dominant. Addition-
ally, the power-spectra- and Fourier-transform-based feature
vectors used for classification were very sensitive to the pres-
ence of high cloud, necessitating the strict exclusion of many
otherwise visually identifiable scenes. More recent investi-
gations of low-latitude marine low-cloud mesoscale variabil-
ity, agnostic to previously identified forms of organization,
have been successful in identifying distinct morphological
regimes, using machine learning to classify a large dataset of
cloud images (Stevens et al., 2020).

In this work we continue the exploration of marine low-
cloud morphology drivers and characteristics with the new
classification scheme introduced by Yuan et al. (2020) that
expanded on WH06. The new scheme focuses on discrim-
ination between different cumulus-dominated cloud types,
particularly in the tropical trade wind regions. The machine
learning approach adopted to create this new dataset uses
convolutional neural networks (CNNs) to permit the inclu-
sion of some scenes with thin or small amounts of high cloud.
Two cumuliform low-cloud morphological types were added,
clustered convection and suppressed convection, to capture
more cloud morphological variability in the tropics and sub-
tropics. Following a brief description of the new classifica-
tion scheme and observational datasets (Sect. 2), we present
the physical characteristics of the resulting cloud types in
Sect. 3. Specifically, we validate in that section whether the
presentation of the two cumuliform cloud types is consistent
with the model for mesoscale aggregation of shallow cumu-
lus convection described by BB17. We conclude with a dis-
cussion of the importance of these results (Sect. 4).

2 Datasets and methods

We mainly perform composite analysis of various observa-
tional and model datasets by morphological cloud type. We
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Figure 2. Typical examples of scenes belonging to each of our classification categories. Image scale is roughly 100 km across. Images are
captured using NASA Worldview.

first describe the cloud type classifications, then the datasets
used, and finally the compositing methodology.

2.1 Cloud type classifications

The classification dataset used is derived from imagery by
the Moderate-Resolution Imaging Spectrometer (MODIS),
aboard the Aqua satellite. MODIS RGB visible imagery of
128km×128km (approximately 1◦×1◦) cloudy scenes, fil-
tered to remove scenes with > 10 % coverage of high cloud,
low cloud < 5 %, and viewing angles > 45◦, is manually
classified as being comprised mostly of stratus cloud, closed-
cellular marine cellular convective Sc (closed MCC), open-
cellular Sc (open MCC), disorganized-cellular stratocumulus
(disorganized MCC), clustered cumulus, or suppressed cu-
mulus. These categories were chosen by examining the mor-
phological climatologies in Muhlbauer et al. (2014), studying
regions where there was little variability in morphology cat-
egory (primarily the tropics, where disorganized MCC domi-
nated), and identifying additional commonly occurring cloud
morphologies. These (clustered and suppressed Cu) were
then added to the pre-existing cloud categories, along with
a homogeneous stratiform category initially used in Wood
and Hartmann (2006). Examples of these types can be found
in Fig. 2.

The scenes were then used to train a convolutional neu-
ral network (CNN) using as input the image of scene visible
reflectance. A full description of the machine learning train-
ing and model evaluation can be found in Yuan et al. (2020).
These authors found that average model precision evaluated
on a test set was approximately 93 % across all categories.
Open MCC had the lowest precision, most likely because
it was the lowest-frequency category. The largest source of
model confusion was between disorganized MCC and clus-
tered Cu, which is unsurprising given the similar appearance
of these categories. The primary difference between these

two types is that disorganized MCC represents a regime with
cellular convection at some characteristic scale, though not
organized clearly into open- or closed-cell regimes, while
clustered Cu represents aggregated convection at a variety
of scales within a scene. When distinguishing between these
two types during manual labeling, scene large-scale context
proved helpful.

For this paper, most analysis is based on 3 years of
CNN classifications from the southeast Pacific (SEP) re-
gion, (65◦ S–Equator, 140–40◦W) which includes much of
the Southern Ocean and a small portion of the southwest
Atlantic, as well as classifications from summer 2015 in
the northeast Pacific (NEP) region (Equator–60◦ N, 180–
100◦W) for co-location with aircraft data (see Sect. 3.5 be-
low). The resulting tabular dataset contains location, time,
and cloud scene classification as well as MODIS low-
cloud fraction derived from the MODIS cloud product
cloud top heights (MYD06; Platnick et al., 2017). Approx-
imately 750 000 scenes were available for the SEP (averag-
ing approximately 65 classifications per MODIS granule and
11 granules per day), while the NEP dataset is smaller, with
∼ 35000 scenes. Relative distributions, normalized for each
location, for the various cloud scene types are provided in
Fig. 3. Due to geographical differences in cloud cover and
satellite sampling, the number of viable scenes is not dis-
tributed evenly over the regions of interest, with approxi-
mately 5 times as many scenes in the subtropical Sc regions
as in the midlatitudes.

2.2 Satellite-derived ancillary data

Surface wind divergence is derived from the Advanced
SCATterometer (ASCAT) aboard MetOp-A, specifically the
0.25◦ gridded wind vectors (Ricciardulli and Wentz, 2016).
For each classified scene, the 1◦× 1◦ co-located calcu-
lated ASCAT divergence values are extracted and aver-
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Figure 3. Relative frequency of occurrence of each cloud type on a logarithmic scale. In the upper right corner of each panel, the total number
of classifications over 3 years (2014–2016) as well as the total fraction of scenes of each type is shown. Gray areas are where fewer than
200 scenes are sampled.

aged. Since the ASCAT swath width is much narrower than
that of MODIS (even when filtering out high-viewing-angle
scenes), many classified scenes (approximately 45 %) can-
not be paired with wind data. Additionally, the overpass
time of MetOp-A (∼ 09:30 LT – local time) does not co-
incide with Aqua (∼ 13:30 LT) so that any significant diur-
nal cycle in wind divergence could influence results. While
this is a source of noise and a point of potential improve-
ment for future work, the diurnal amplitude in surface di-
vergence is likely much smaller than that of mesoscale varia-
tions (Wood et al., 2009), making the likelihood of significant
biases small. This is confirmed by repeating the divergence
analysis with the temporally better-matched reanalysis wind
data (see below), which yields similar results.

Column water vapor (CWV) is provided by the Ad-
vanced Microwave Sounding Radiometer (AMSR-2) aboard
the Global Change Observation Mission (GCOM-W1) satel-
lite in the form of a 0.25◦ gridded daily product (Wentz et al.,
2014). Being on the A-Train as Aqua, GCOM-W1 overpass
times are nearly simultaneous with those of MODIS.

Rain rates come from a precipitation dataset based on
AMSR-2 89 GHz brightness temperatures and CloudSat ob-
servations (Eastman et al., 2019). This particular dataset has
the advantage of being calibrated specifically for warm rain
from shallow marine clouds, with greater sensitivity to light
rain than other passive microwave rain products (Eastman et
al., 2019).

To assess the radiative impacts of our cloud types, we also
analyze data from the Clouds and the Earth’s Radiant Energy
System (CERES), specifically SYN1deg hourly data, provid-
ing 1◦, top-of-atmosphere (TOA), all-sky and clear-sky, and

longwave (LW) and shortwave (SW) fluxes (Doelling et al.,
2013). These are also spatiotemporally co-located with the
classified cloud scenes and used to calculate the LW, SW, and
total cloud radiative effect (CRE) for each classified scene
via clear- and all-sky upward fluxes F :

CRELW = FLW,clear−FLW,all

CRESW = FSW,clear−FSW,all

CREtot = CRELW+CRESW. (1)

2.3 Reanalysis data

For the purpose of analyzing large-scale meteorology as
well as comparing to satellite observations, we added data
from the Modern-Era Retrospective analysis for Research
and Application, Version 2 (MERRA-2; Gelaro et al., 2017),
to our analysis. The data used have a 3-hourly resolution,
and we selected the time nearest to the MODIS-Aqua over-
pass. In addition to available variables (sea surface temper-
ature, near-surface winds), we derived the estimated inver-
sion strength (EIS) following Wood and Bretherton (2006),
a surface divergence estimated from the 10 m winds, and a
large-scale divergence D estimate from the 700 hPa heights
and vertical motion from

D700 =
w700

z700

w700 ≈−
ω700

ρ700g
. (2)

Note that this large-scale divergence is not the horizontal
divergence at 700 hPa but rather the mean divergence from
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the surface to the 700 hPa level; this follows from the mass
continuity equation by considering a column of air from the
surface (where vertical motion is 0) to 700 hPa. Note that
the terms large-scale divergence and 700 hPa subsidence are
used interchangeably throughout; divergence is plotted in-
stead of subsidence to allow for a more straightforward com-
parison with surface divergence. As surface pressure varies
with time, the second equality is only approximate.

For all of the above variables (from either reanalysis or
satellite) and for each MODIS scene for which we have a
classification, we extract the variable in a 1◦× 1◦ box cen-
tered on the cloud scene to calculate a mesoscale average
value and use the mean over a 10◦× 10◦ box for the synop-
tic mean value. These can then be used together to calculate
a mesoscale perturbation, which is simply the difference be-
tween the 1◦× 1◦ and 10◦× 10◦ averages. We also calculate
a climatological 1◦× 1◦ average by seasonal averaging.

2.4 Aircraft observations

To provide insight into the vertical structure of the bound-
ary layer as well as in situ cloud observations, we use air-
craft observations from the Cloud System Evolution in the
Trades (CSET) field campaign (Albrecht et al., 2019), which
took place in summer 2015. This campaign is particularly
suitable for our purposes since it provides a large num-
ber of aircraft profiles and dropsondes throughout the depth
of the marine boundary layer on a transect spanning from
California to Hawaii and therefore sampling from the Sc-
dominated near-coastal region (where organized MCC fre-
quently is found) through the Sc–Cu transition to the cumuli-
form tropical MBL. All cloud types other than midlatitude Sc
were therefore sampled. The campaign profiles allowed us to
estimate the boundary layer depth and degree of decoupling
following Mohrmann et al. (2019) and to composite by cloud
morphological type.

2.5 Data compositing by cloud type

Many of the results that follow are summarized as in Fig. 4,
which shows the composite net cloud radiative effect (CRE)
for each cloud type (for the SEP region). For this figure, the
∼ 750000 classifications are split by year and then further
split by scene type. The mean net CRE for each year and
type is then plotted. The large sample size makes the sam-
pling uncertainty negligible (error bars representing the stan-
dard error of the mean are plotted throughout, though they
are typically too small to be visible). This is true even after
accounting for the high autocorrelation in the data. The data
are nevertheless split by year to demonstrate the robustness
indicated by (low) interannual variability.

An issue with the compositing of observational data is that
the cloud types do not all have the same geographic distribu-
tion. One approach would be to try to impose geographic par-
ity by sampling the same number of points from some grid or

else to control for every other variable by stratifying the data
in many dimensions. The approach we adopted to identify
the extent to which differences in potential driver variables
reflect short-lived anomalies compared to geographic sam-
pling bias was to calculate seasonal climatologies for each
gridded dataset and then extract for each scene the climato-
logical value of that field at that location. These were also
composited by scene cloud type and compared to the com-
posite of instantaneous values. This analysis is similar to the
mesoscale vs. synoptic mean comparison described in the
previous section but in this case using temporal deviations
from local climatology. Figure 5a shows all three averages
in the same panel for direct comparison. The black circles
represent the mesoscale (i.e., 1◦× 1◦ average) sea surface
temperature (SST) at that location and time, averaged over
all classifications; the black diamonds are the same but aver-
aged over a 10◦×10◦ box, and the black squares correspond
again to 1◦× 1◦ averages but with seasonal averages instead
of daily values of SST.

3 Results

3.1 Climatology of occurrence

We first present the characteristics of the cloud types rep-
resented by the classifier categories. This complements the
analysis of Yuan et al. (2020), which presents example
scenes, cloud optical thickness, droplet effective radius, and
absolute frequency for each cloud type. Figure 3 shows the
relative frequency of occurrence of the six cloud types in
the classification scheme. The most stratiform MCC types
(Fig. 3a–d) occur at higher latitudes and towards the east-
ern SEP basin, while the two cumuliform types (Fig. 3e
and f) dominate the warmer (sub) tropical oceans away from
the continents, consistent with the ship-based climatology
of Fig. 1. The location of the MCC types (with closed-
cell upwind, open-cell downwind) is mostly consistent with
their occurrence in the WH06 classifications. Both subtrop-
ical and midlatitude MCC are identified. The main differ-
ences with the WH06 classifications are that the disorga-
nized MCC type, which previously included all scenes not
classified as open MCC, closed MCC, or stratus, now pri-
marily occurs near the Sc cloud deck instead of spreading
over a much larger region. Another significant departure is
that open-cellular MCC occurs much less frequently than in
the WH06 classifier, representing only 4 % of all scenes. The
solid stratus type is a mix of coastal stratus and midlatitude
frontal stratus.

An ideal cloud type classification scheme would produce
useful discrimination among cloud types in all regions as op-
posed to having different cloud types each dominating one
region. One way to visualize how well this classification
scheme embodies this property is by considering, for each
region, the fraction of all scenes which come from the most
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Figure 4. Cloud radiative properties by cloud type: (a) CERES cloud fraction, (b) cloud frequency of occurrence, (c) average CERES net
CRE per cloud type, (d) frequency-weighted net CRE. Each set of three symbols is for the 3 years (2014–2016) used. For panels (a) and (c),
the mesoscale, synoptic, climatological averages are shown using circular, diamond, and square symbols, respectively (see Sect. 2e).

common cloud type in that region and then from the top two
most common, etc. This is shown in Fig. 6. Figure 6a shows
the fraction of scenes covered by the dominant cloud type
for that grid box. In Fig. 6b, we see that in the northwest-
ern corner of our region of interest, the top two cloud types
(in this case, suppressed and clustered Cu) account for more
than 90 % of all scenes. This suggests that any further dif-
ferentiation into more specific cloud subtypes would be most
effective if focused on this region. Figure 6c and d show that
the region with the greatest variability in cloud type is the
zonal band near 45◦ S as well as the subtropical Sc–Cu tran-
sition region near 15◦ S.

3.2 Sample case

To better illustrate the scale at which the classifications and
the underlying data exist, Fig. 7 shows a case study from
22 July 2015. Each panel shows the classifications in col-
ored circles, marking the center of each rectangular MODIS

image on which the classifications are carried out (see Yuan
et al., 2020, for additional details on classification).

The scene selected highlights suppressed and clustered
types. In Fig. 7a, a roughly 200 km by 400 km region of
enhanced cloud in the lower middle of the scene is identi-
fied as clustered Cu, surrounded by suppressed-Cu scenes.
A misidentification of sun glint as solid stratus is evident
as well (though Fig. 3 shows that very few misidentifica-
tions of this type occur in tropical scenes to have a signif-
icant impact on the classification climatology). Figure 7b
and c show the surface divergence as inferred from AS-
CAT and the MERRA-2 reanalysis; the ASCAT overpass
time at 09:30 LT, being 4 h ahead of the MODIS-Aqua ob-
servation time, causes a slight geographic mismatch. Nev-
ertheless, both surface divergence plots show strong con-
vergence (in blue) in the clustered region and divergence
in surrounding regions. Note also the noisy nature of the
ASCAT observations as well as the narrow swath of AS-
CAT not allowing matches with many (approximately half)
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Figure 5. Same as Fig. 4a but for (a) MERRA-2 sea surface temperature, (b) MERRA-2 estimated inversion strength (EIS), (c) MERRA-2
700 hPa divergence, and (d) MERRA-2 700 hPa relative humidity.

of the classifications. Figure 7f shows the large-scale diver-
gence as inferred from the 700 hPa vertical motion. Although
there is some convergence aloft at the southern boundary
of the scene (where the MERRA-2 surface convergence
is strongest), the remainder of the clustered region shows
slightly enhanced subsidence aloft, in contrast to surface
conditions, which as we see later is also the mean behav-
ior for clustered scenes. MODIS indicates cloud top pres-
sures between 800 and 700 hPa (not shown) at around 15◦ N,
138◦W (where the divergence is strongest), consistent with
the schematic model in BB17 (their Fig. 10). This divergence
may potentially represent the outflow from the aggregated
convection in this clustered region.

Figure 7d and e show the AMSR-2 precipitation and mois-
ture retrievals, respectively. The clustered (suppressed) clas-
sifications are consistently associated with a moist (dry)
CWV anomaly, and precipitation is only found in the clus-
tered regions. Overall, the mesoscale anomalies are clearly
resolved on the spatial scales of the classifications. Classifi-
cation edge cases exist where a human observer would strug-

gle to clearly identify a scene as suppressed or clustered;
however on aggregate the machine learning classifications
are consistent with human labeling, as the performance eval-
uation presented in Yuan et al. (2020) has shown.

3.3 Radiative properties of morphological cloud types

As the climatological relevance of marine low clouds re-
lates in large part to their radiative effect, it is worth iden-
tifying the variability in radiative properties among the dif-
ferent categories. Figure 4 shows the low-cloud fraction of
each cloud type, with closed MCC having the highest and
suppressed Cu the lowest. The mean cloud fraction across
all scenes (black dot at right of Fig. 4a) also shows that the
Cu vs. Sc cloud types also split tidily into the below-average
and above-average cloudy scenes for this particular sample,
as expected. The mesoscale cloud fraction anomaly (repre-
sented by the difference between the small diamonds and
circles for each type) shows that, on average, the scenes we
classify are slightly cloudier than their surroundings. This is
most pronounced for the closed MCC and most likely a re-
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Figure 6. The fraction of cloud scenes for each grid point, which
are represented by (a) the most common cloud type for that grid
point and (b–d) the top two through top four most common cloud
types. Gray areas indicate that fewer than 200 scenes were sampled.

sult of the filtering of scenes with very low cloud. The only
exception is suppressed Cu, which is associated with a low
CF anomaly. The same is true when comparing to the clima-
tological cloud fraction (small squares) where a high bias in
cloud fraction is seen, again most likely due to the fact that
we can only classify cloudy scenes.

Figure 4b–d show the composite net CRE of the various
cloud types. In Fig. 4b the overall frequency of each cloud
type in our dataset is broken down by year (2014–2016).
Together, clustered- and suppressed-Cu scenes account for
more than half of all scenes. Figure 4c shows the CERES
net CRE as calculated in Sect. 2b for each type and year
as well as the mesoscale and climatological value. The net
CRE, mostly coming from the shortwave, broadly mirrors
the cloud fraction. The total cooling averaged over all scenes
is shown as the black dots in Fig. 4c, corresponding to a net
CRE of ∼−113 W m−2. Note that due to the specific sam-
pling strategy (only considering scenes with low cloud, with-
out too much overlying high cloud) and the fact that we com-
posite instantaneous daytime values that are not weighted by
the global frequency of occurrence of our cloud types, our
CRE for marine low clouds is approximately an order of
magnitude larger than the global value found by L’Ecuyer
et al. (2019).

The above difference between instantaneous local and
global values underscores the fact that when considering the
radiative importance of different cloud types, both frequency
and mean CRE at the time of occurrence are relevant. Specif-
ically, when considering the Cu cloud types (clustered and
suppressed), which are the two types that are the most fre-

quently occurring in our dataset, due to their dominance in
the tropics and subtropics, one should keep in mind that their
low mean instantaneous CRE is counterbalanced by their
high frequency of occurrence. The frequency-weighted CRE
(Fig. 4d), which is simply the product for each year of the
data in Fig. 4b and c, is therefore appropriate as it represents
the fraction of total cooling, over all scenes, by a particu-
lar cloud type. Thus open MCC, despite having a mean net
CRE of −100 W m−2, only accounts for ∼ 5 W m−2 of the
total cooling of all scenes in our dataset (approximately 4 %);
while these scenes have high CFs and therefore net CRE,
they are infrequent, more so in this classification compared
to previous work. For the clustered and suppressed types, the
importance of understanding their drivers is highlighted in
Fig. 4d; clustered-Cu scenes have a contribution to the net
CRE that is 5 times higher than suppressed-Cu scenes.

3.4 Composite analysis

Figures 5 and 8 are similar to Fig. 4, showing composites
of meteorological variables by cloud type as well as synop-
tic and climatological averages (where seasonal mean values
for a given location are composited instead of instantaneous
values). For both these figures, we can estimate the variabil-
ity between types explained by differences in geography by
comparing the mesoscale averages (circles) to the climato-
logical averages (squares). For instance, for every cloud type,
there is almost no bias between the mesoscale and climato-
logical averages of sea surface temperature (SST; Fig. 5a).
In other words, variation in SST between scenes is almost
entirely explainable by the variation in geography. The sup-
pressed scenes occur over the warmest waters and the closed
MCC over the coldest. The same is largely true for EIS,
which is determined in part by SST. This is not surprising
given the geographic distributions of the cloud types seen
earlier and climatological gradients in SST and EIS. What
this tells us, however, is that there is no strong evidence
for subseasonal timescale perturbations to SST or EIS co-
inciding with variations in cloud type. We can also compare
the mesoscale averages to the 10◦ synoptic averages to as-
sess whether any mesoscale anomalies are coincident with
cloud type variability. However, an important caveat to bear
in mind is the bias introduced by our sampling strategy: only
scenes with some low cloud and not too much high cloud are
considered, whereas the surrounding scenes are not similarly
constrained. These biases are best identified from the black
“all scenes” markers. For instance, we notice in Fig. 5d that
averaged over all scenes, RH700 is biased low by 3 %, most
likely due to preferential selection of scenes with little high
cloud (and therefore a free troposphere that is biased dry).
This bias is also applicable to the climatological compari-
son. The dry free troposphere (FT) anomaly relative to the
synoptic (and climatological) averages in, for example, the
closed-MCC scenes can be explained by this sampling bias
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Figure 7. Sample region observed on 22 July 2015 showing classifications (every panel, in colored circles). (a) MODIS true-color reflectance,
(b) ASCAT surface divergence, (c) MERRA-2 surface divergence, (d) AMSR-2 89 Ghz precipitation rate, (e) AMSR-2 column water vapor,
(f) MERRA-2 700 hPa divergence.

and is not indicative of some mechanism in a drier FT yield-
ing closed-MCC clouds.

With that caveat in mind, Fig. 5 shows that closed MCC
and to a lesser extent disorganized MCC are associated with
a significant mesoscale anomaly in EIS (consistent with
Muhlbauer et al., 2014). Solid stratus is associated with a
positive anomaly in vertical motion and RH700 relative to
climatology but not a mesoscale one, indicating that this link
is driven by synoptic features; manual inspection confirms
that many scenes identified as stratus are indeed associated
with frontal systems. Both closed and open MCC are asso-
ciated with strong subseasonal anomalies of enhanced subsi-
dence, though again the absence of an anomaly relative to the
synoptic mean indicates that these are larger features, likely
associated with variability in the position of the subtropical
high.

Aside from the mesoscale and subseasonal anomaly anal-
ysis, a key result is that clustered and suppressed types are
poorly separated by the variables in Fig. 5; they have virtually
identical EIS distributions, and though suppressed scenes are
associated with slightly higher SST, large-scale divergence,
and lower FT humidity, there is not much separation between
them in this phase space, especially relative to the variabil-
ity between all cloud types, and these small differences are
consistent with their slightly different geographic distribu-
tions. In contrast, EIS is an excellent discriminator between
the stratiform MCC types.

Composite analysis of the surface divergence, however, is
much more helpful at distinguishing between the Cu cloud
types. This is evident from Fig. 8a and b. From the ASCAT
composite data, the strongest surface divergence is associ-
ated with suppressed scenes and the strongest convergence
with the clustered scenes. When using MERRA-2 data, the
only difference is that the closed-MCC cases have slightly
stronger divergence, yet the clear separation between Cu
types remains. Additionally, the surface divergence signal is
clearly of a mesoscale nature and not explained by climato-
logical differences, particularly for the convergence associ-
ated with clustered scenes; the synoptic environment shows
broad divergence.

Having calculated both the 700 hPa large-scale and sur-
face divergence, we can subtract the former from the latter
to estimate a boundary layer anomaly divergence. If near-
surface divergence purely reflects the large-scale subsiding
flow, with no additional low-level circulation, we would ex-
pect this anomaly to be small. Figure 9a shows this surface
level anomaly using both the MERRA-2 and ASCAT winds.
The large positive anomaly for suppressed-Cu scenes indi-
cates that the bulk of the divergence is a result of near-surface
circulations rather than those extending over a deep layer of
the lower troposphere; similarly for clustered Cu, the surface
convergence together with mean large-scale divergence indi-
cates a shallow circulation, as seen in the case study of Fig. 7.

Considering AMSR-2 retrievals, the rain rate shows a
very clear separation between clustered and suppressed cloud
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Figure 8. Same as Fig. 5 but with (a) ASCAT surface wind divergence, (b) MERRA-2 surface wind divergence, (c) AMSR-2 rain rate, and
(d) AMSR-2 column water vapor.

types, with a strong positive (negative) mesoscale anomaly
for clustered (suppressed) Cu of around 0.4 mm d−1. Simi-
lar qualitative results are found for conditional rain rates and
rain probabilities (not shown). It is worth noting that the res-
olution of the precipitation data is approximately 4 km, so
the smallest clouds will not be resolved. The column wa-
ter vapor results are interesting as well; consistent with the
warm SSTs, both Cu cloud types occur in areas of high
column water vapor. The mesoscale anomalies, however,
are consistent with the BB17 presentation: clustered scenes
are slightly moister than their environment and suppressed
scenes slightly drier. This is difficult to identify in Fig. 8d,
so Fig. 9b shows just the mesoscale anomaly for all cloud
types and makes clear that the suppressed scenes are the most
anomalously dry and the clustered scenes most anomalously
moist. Although the moisture anomalies of the LES in BB17
were larger than those found here, this may be due to their
mean state being moister. One finding from that work is that
the amplitude of aggregation-associated moisture anomalies
tended to scale with the mean state CWV, and so we expect

that the higher mean state moisture in BB17 would occur
with larger moisture anomalies.

3.5 Aircraft observations

Figure 10 shows the depth of the boundary layer and degree
of decoupling (using the αq metric from Wood and Brether-
ton, 2004) based on CSET aircraft profiles. The parameter αq
is a measure of relative resemblance of upper-boundary-layer
moisture to the lower FT and lower boundary layer, with a
value of 0 indicating a perfectly well-mixed boundary layer
and a value of 1 indicating a perfectly decoupled boundary
layer, where the upper-boundary-layer moisture is equal to
the lower FT moisture.

αqT =
qT (upper BL)− qT (lower BL)
qT (lower FT)− qT (lower BL)

(3)

For a given profile, the thermal inversion height is estimated
using the maximum lapse rate, with the inversion being the
layer where the lapse rate deviation from a moist adiabat ex-
ceeds 25 % of maximum deviation (this was tuned to agree
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Figure 9. (a) Surface divergence anomaly from 700 hPa (circles are based on MERRA-2 surface winds; squares are based on ASCAT surface
winds). (b) AMSR-2 column water vapor mesoscale anomaly.

Figure 10. Histograms of (a) boundary layer depth and (b) bound-
ary layer decoupling index from CSET flights and dropsonde obser-
vations.

with a visual assessment of the inversion layer and worked
well for all profiles). Upper and lower BL in the qT equation
are taken as the top and bottom 25 % of the BL depth, while
the lower FT starts 500 m above the inversion top. While this
method may not be the most precise in individual, more com-
plex cumulus cases with more spatially and vertically het-
erogeneous moisture profiles, we use it for consistency and
reproducibility. We also note that a joint histogram analysis
of αq vs. cloud layer depth (not shown) produced consistent
results to Wood and Bretherton (2004) and Park et al. (2004).

For each aircraft profile, the cloud type classification
which covers that profile is selected for compositing, and
so the profile represents a random estimate of depth or de-
coupling within that scene. Here the sample sizes are much
smaller than the composites of satellite and reanalysis data,

and so the full histograms are shown (smoothed using ker-
nel density estimation) to highlight the uncertainty. Adopt-
ing a Lagrangian perspective, which accounts for the bound-
ary layer evolving downstream of the trade winds through
the Sc–Cu transition, boundary layer deepening and decou-
pling are found from stratus through closed, disorganized,
and open MCC; in particular the degree of decoupling be-
tween closed and open MCC is very pronounced, with the
former being the most coupled and the latter the most decou-
pled. However, this evolution breaks down for the Cu-type
boundary layers, which are neither deeper nor more decou-
pled than open MCC. This is not surprising as the inversion
at the top of the surface mixed layer where Cu clouds form
will persist as the decoupled Sc layer is eroded, such that the
remaining boundary layer stays shallower and strongly cou-
pled to the surface. Also important to note is that, as with
EIS and SST, clustered and suppressed types are difficult to
distinguish by their depth and decoupling state, though clus-
tered scenes are marginally deeper in Fig. 10a.

4 Conclusions

In this study we have analyzed the characteristics of the ma-
rine boundary layer for six different morphological cloud
types, the occurrence of which was derived by novel machine
learning-based cloud classification operating on MODIS
mesoscale imagery. Specifically, we assessed whether the
observations of clustered and suppressed cumulus are con-
sistent with previous modeling of mesoscale aggregation of
shallow cumulus. The key findings are as follows:
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– The six cloud types represent distinct MBL regimes,
based on their geography and environmental conditions.

– The anomalies in cloudiness, column water vapor,
circulation, and precipitation are consistent with the
Bretherton and Blossey (2017) LES results and concep-
tual model for mesoscale shallow aggregation.

– Suppressed- and clustered-Cu scenes are most clearly
separable by looking at surface wind divergence, and
this signal is apparent in both satellite retrievals and the
MERRA-2 reanalysis.

This last finding pertains to a more general conclusion,
namely that, at least for the variables considered, mesoscale
anomalies in meteorological variables are more pronounced
for the cumulus types than the stratiform MCC types; this
is true for CWV, precipitation, and surface divergence. For
discriminating between the MCC types, EIS, depth, and de-
coupling are the most useful; in stratocumulus regions, these
variables have been shown to correlate strongly with each
other and with cloud cover (Wood and Bretherton, 2004;
Wood and Hartmann, 2006).

Though it is tempting to conclude that surface divergence
is such a good discriminator because the mesoscale aggre-
gation described in BB17 is likely the most important deter-
minant of cloud variability, we must also bear in mind that,
along with precipitation, it is more an “internal” boundary
layer predictor than most of the other predictors, e.g., EIS
or SST, and therefore better coupled to other MBL state vari-
ables (e.g., cloud fraction). Additionally, it is also much more
directly observed and resolved at a finer scale than, for ex-
ample, 700 hPa vertical motion and therefore has a lower ob-
servational uncertainty. That being said, the strong consis-
tency between the observations and the BB17 LES modeling
of mesoscale shallow convection suggests that this process is
an important driver of cumulus-dominated MBL cloud vari-
ability.

There are several limitations on the generalizability of
these results. The first is that we have only considered the
SEP and NEP regions, and other clouds, particularly those in
the warmer trade wind regions of the western ocean basins,
may have different MBL characteristics. The second is that
we have only considered daytime behavior and cannot ac-
count for diurnal variability in cloud type. The observations
from aircraft data were limited and did not extend south of
Hawaii or north of California. Lastly, we have not examined
in depth the role of SST in determining cloud type. This is
not because it is unimportant (on the contrary, it is a key
driver of most MCC variability; see McCoy et al., 2017) but
rather because it does not vary much at mesoscale and short
timescales.

With regards to climate modeling, CRE for different cloud
types largely mirrors cloud fraction. While the CRE between
suppressed and clustered types is very different, it remains to

be seen whether the process of shallow convective aggrega-
tion affects synoptic-scale mean cloud cover and CRE. Given
that models capable of reproducing such shallow aggregation
are now able to run at global scales (Bretherton and Khairout-
dinov, 2015), this question is best answered using simulation
studies.
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