Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-6111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6111-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Yunyan Jiang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth Science and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Jinyuan Xin
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth Science and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science &
Technology, Nanjing 210044, China
Ying Wang
College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000,
China
Guiqian Tang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yuxin Zhao
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science &
Technology, Nanjing 210044, China
Institute of Atmospheric Composition, Chinese Academy of
Meteorological Science, Beijing 100081, China
Danjie Jia
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth Science and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Dandan Zhao
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth Science and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Meng Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Lindong Dai
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Lili Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Tianxue Wen
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Fangkun Wu
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Related authors
No articles found.
Weibin Zhu, Sai Shang, Jieqi Wang, Yunfei Wu, Zhaoze Deng, Liang Ran, Ye Kuang, Guiqian Tang, Xiangpeng Huang, Xiaole Pan, Lanzhong Liu, Weiqi Xu, Yele Sun, Bo Hu, Zifa Wang, and Zirui Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4901, https://doi.org/10.5194/egusphere-2025-4901, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
New particle formation (NPF) contributes to cloud condensation nuclei (CCN), but its role at the boundary-layer top (BLT) under polluted conditions remains unclear. Based on springtime mountain-top observations in the Yangtze River Delta, we show that polluted air masses enhance NPF intensity and accelerate NPF-to-CCN conversion. Ammonia was found to play a crucial role and a new “Time Window” metric reveals oxidation-driven growth and cross-regional transport as key factors.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Haoyuan Chen, Tao Song, Xiaodong Chen, Yinghong Wang, Mengtian Cheng, Kai Wang, Fuxin Liu, Baoxian Liu, Guiqian Tang, and Yuesi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3931, https://doi.org/10.5194/egusphere-2024-3931, 2025
Short summary
Short summary
The methane leakage from natural gas may offset the reduced CO2 emissions from its combustion, To quantify its effect, we established the flux observation platform in the urban area of Beijing, the results showed that natural gas has become a common source of both after the transformation of energy structure, the natural gas could escape during storage and use. Although the natural gas leakage rate is not high (1.12 %), the greenhouse effect caused by natural gas leakage can not be ignored.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Fei Xie, Yue Su, Yongli Tian, Yanju Shi, Xingjun Zhou, Peng Wang, Ruihong Yu, Wei Wang, Jiang He, Jinyuan Xin, and Changwei Lü
Atmos. Chem. Phys., 23, 2365–2378, https://doi.org/10.5194/acp-23-2365-2023, https://doi.org/10.5194/acp-23-2365-2023, 2023
Short summary
Short summary
This work finds the shifting of secondary inorganic aerosol formation mechanisms during haze aggravation and explains the decisive role of aerosol liquid water on a broader scale (~ 500 μg m3) in an ammonia-rich atmosphere based on the in situ high-resolution online monitoring datasets.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Zhaobin Sun, Xiujuan Zhao, Ziming Li, Guiqian Tang, and Shiguang Miao
Atmos. Chem. Phys., 21, 8863–8882, https://doi.org/10.5194/acp-21-8863-2021, https://doi.org/10.5194/acp-21-8863-2021, 2021
Short summary
Short summary
Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective.
Dandan Zhao, Jinyuan Xin, Chongshui Gong, Jiannong Quan, Yuesi Wang, Guiqian Tang, Yongxiang Ma, Lindong Dai, Xiaoyan Wu, Guangjing Liu, and Yongjing Ma
Atmos. Chem. Phys., 21, 5739–5753, https://doi.org/10.5194/acp-21-5739-2021, https://doi.org/10.5194/acp-21-5739-2021, 2021
Short summary
Short summary
The influence of aerosol radiative forcing (ARF) on the boundary layer structure is nonlinear. The threshold of the modification effects of ARF on the boundary layer structure was determined for the first time, highlighting that once ARF exceeded a certain value, the boundary layer would quickly stabilize and aggravate air pollution. This could provide useful information for relevant atmospheric-environment improvement measures and policies.
Cited articles
Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a
Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks,
J. Atmos. Ocean. Tech., 29, 347–355, 2012.
Banakh, V. A., Smalikho, I. N., and Falits, A. V.: Wind-Temperature Regime
and Wind Turbulence in a Stable Boundary Layer of the Atmosphere: Case
Study, Remote Sens.-Basel, 12, 955, https://doi.org/10.3390/rs12060955, 2020.
Bei, N., Zhao, L., Wu, J., Li, X., Feng, T., and Li, G.: Impacts of sea-land
and mountain-valley circulations on the air pollution in
Beijing-Tianjin-Hebei (BTH): A case study, Environ. Pollut., 234, 429–438, 2018.
Chen, Y., Zhao, C., Zhang, Q., Deng, Z., Huang, M., and Ma, X.: Aircraft
study of Mountain Chimney Effect of Beijing, China,
J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008jd010610, 2009.
Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., Wang, X.,
Bressi, M., de Miranda, R. M., Jiang, J., Zhou, W., Fajardo, O., Yan, N.,
and Hao, J.: Status and characteristics of ambient PM2.5 pollution in global megacities, Environ. Int., 89–90, 212–221, 2016.
Dai, L., Xin, J., Zuo, H., Ma, Y., Zhang, L., Wu, X., Ma, Y., Jia, D., and
Wu, F.: Multilevel Validation of Doppler Wind Lidar by the 325 m
Meteorological Tower in the Planetary Boundary Layer of Beijing, Atmosphere,
11, 1051, https://doi.org/10.3390/atmos11101051, 2020.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petaja, T.,
Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X. G., Wang, J. P.,
Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F.,
Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C. B.: Enhanced
haze pollution by black carbon in megacities in
China, Geophys. Res. Lett., 43, 2873–2879, 2016.
Fu, G. Q., Xu, W. Y., Yang, R. F., Li, J. B., and Zhao, C. S.: The distribution and trends of fog and haze in the North China Plain over the past 30 years, Atmos. Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, 2014.
Gryning, S.-E., Floors, R., Pena, A., Batchvarova, E., and Bruemmer, B.:
Weibull Wind-Speed Distribution Parameters Derived from a Combination of
Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine
Sites, Bound.-Lay. Meteorol., 159, 329–348, 2016.
Hu, X.-M., Ma, Z., Lin, W., Zhang, H., Hu, J., Wang, Y., Xu, X., Fuentes, J.
D., and Xue, M.: Impact of the Loess Plateau on the atmospheric boundary
layer structure and air quality in the North China Plain: A case study,
Sci. Total Environ., 499, 228–237, 2014.
Huang, M., Gao, Z., Miao, S., and Xu, X.: Characteristics of sea breezes
over the Jiangsu coastal area, China, Int. J. Climatol., 36, 3908–3916, 2016.
Jenkinson, A. F. and Collison, F. P.: An initial climatology of gales over
the North Sea, Synoptic Climatology Branch Memorandum, Meteorological Office, Bracknell, UK, 1977.
Jiang, Y., Xin, J., Zhao, D., Jia, D., Tang, G., Quan, J., Wang, M., and
Dai, L.: Analysis of differences between thermodynamic and material boundary
layer structure: Comparison of detection by ceilometer and microwave
radiometer, Atmos. Res., 248, 105179, https://doi.org/10.1016/j.atmosres.2020.105179, 2021.
Kotthaus, S. and Grimmond, C. S. B.: Atmospheric boundary-layer
characteristics from ceilometer measurements, Part 1: A new method to track
mixed layer height and classify clouds, Q. J. Roy. Meteor. Soc., 144, 1525–1538, 2018.
Lamb, H. H.: British Isles weather types and a register of the daily sequence of circulation patterns, 1861–1971, Geophysical Memoirs: HMSO, London, 116, p. 85, 1972.
Leung, D. M., Tai, A. P. K., Mickley, L. J., Moch, J. M., van Donkelaar, A., Shen, L., and Martin, R. V.: Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China, Atmos. Chem. Phys., 18, 6733–6748, https://doi.org/10.5194/acp-18-6733-2018, 2018.
Li, L.-J., Ying, W., Zhang, Q., Tong, Y. U., Yue, Z., and Jun, J. I. N.:
Spatial distribution of aerosol pollution based on MODIS data over Beijing,
China, J. Environ. Sci., 19, 955–960, 2007.
Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., Li, L., Li, X., Wang,
Y., Liu, L., Daellenbach, K. R., Paasonen, P. J., Kerminen, V.-M., Kulmala,
M., and Wang, Y.: Exploring the regional pollution characteristics and
meteorological formation mechanism of PM2.5 in North China during 2013–2017, Environ. Int., 134, 105283, https://doi.org/10.1016/j.envint.2019.105283, 2020.
Li, X., Ma, Y., Wei, W., Zhang, Y., Liu, N., Hong, Y., and Wang, Y.:
Vertical Distribution of Particulate Matter and its Relationship with
Planetary Boundary Layer Structure in Shenyang, Northeast
China, Aerosol Air Qual. Res., 19, 2464–2476, 2019.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H.,
Zhang, H., and Zhu, B.: Aerosol and boundary-layer interactions and impact
on air quality, Natl. Sci. Rev., 4, 810–833, 2017.
Liao, Z., Gao, M., Sun, J., and Fan, S.: The impact of synoptic circulation
on air quality and pollution-related human health in the Yangtze River Delta
region, Sci. Total Environ., 607, 838–846, 2017.
Liu, S., Liu, Z., Li, J., Wang, Y., Ma, Y., Sheng, L., Liu, H., Liang, F.,
Xin, G., and Wang, J.: Numerical simulation for the coupling effect of local
atmospheric circulations over the area of Beijing, Tianjin and Hebei
Province, Sci. China Ser. D, 52, 382–392, 2009.
Liu, Y., Wang, B., Zhu, Q., Luo, R., Wu, C., and Jia, R.: Dominant Synoptic
Patterns and Their Relationships with PM2.5 Pollution in Winter over the
Beijing-Tianjin-Hebei and Yangtze River Delta Regions in China,
J. Meteorol. Res.-PRC, 33, 765–776, 2019.
Lou, M., Guo, J., Wang, L., Xu, H., Chen, D., Miao, Y., Lv, Y., Li, Y., Guo,
X., Ma, S., and Li, J.: On the Relationship Between Aerosol and Boundary
Layer Height in Summer in China Under Different Thermodynamic Conditions,
Earth and Space Science, 6, 887–901, 2019.
Miao, Y., Hu, X.-M., Liu, S., Qian, T., Xue, M., Zheng, Y., and Wang, S.:
Seasonal variation of local atmospheric circulations and boundary layer
structure in the Beijing-Tianjin-Hebei region and implications for air
quality, J. Adv. Model. Earth Sy., 7, 1602–1626, 2015a.
Miao, Y., Liu, S., Zheng, Y., Wang, S., Chen, B., Zheng, H., and Zhao, J.:
Numerical study of the effects of local atmospheric circulations on a
pollution event over Beijing-Tianjin-Hebei, China, J. Environ. Sci., 30, 9–20, 2015b.
Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017.
Münkel, C., Eresmaa, N., Rasanen, J., and Karppinen, A.: Retrieval of
mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol., 124, 117–128, 2007.
O'Connor, E. J., Illingworth, A. J., Brooks, I. M., Westbrook, C. D., Hogan,
R. J., Davies, F., and Brooks, B. J.: A Method for Estimating the Turbulent
Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar,
and Independent Evaluation from Balloon-Borne In Situ Measurements, J. Atmos. Ocean. Tech., 27, 1652–1664, 2010.
Petaja, T., Jarvi, L., Kerminen, V. M., Ding, A. J., Sun, J. N., Nie, W.,
Kujansuu, J., Virkkula, A., Yang, X. Q., Fu, C. B., Zilitinkevich, S., and
Kulmala, M.: Enhanced air pollution via aerosol-boundary layer feedback in
China, Sci. Rep.-UK, 6, 18998, https://doi.org/10.1038/srep18998, 2016.
Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.:
Characteristics of heavy aerosol pollution during the 2012–2013 winter in
Beijing, China, Atmos. Environ., 88, 83–89, 2014.
Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T.,
Wang, A., and Liu, Y.: Air pollution in China: Status and spatiotemporal
variations, Environ. Pollut., 227, 334–347, 2017.
Steyn, D. G., Baldi, M., and Hoff, R. M.: The detection of mixed layer depth
and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Ocean. Tech., 16, 953–959, 1999.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1988.
Sun, Z.-B., Wang, H., Guo, C., Wu, J., Cheng, T., and Li, Z.-M.: Barrier
effect of terrain on cold air and return flow of dust air masses, Atmos. Res., 220, 81–91, 2019.
Suomi, I., Gryning, S.-E., O'Connor, E. J., and Vihma, T.: Methodology for
obtaining wind gusts using Doppler lidar, Q. J. Roy. Meteor. Soc., 143, 2061–2072, 2017.
Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine
particulate matter (PM2.5) and meteorological variables in the United
States: Implications for the sensitivity of PM2.5 to climate change, Atmos. Environ., 44, 3976–3984, 2010.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
Trigo, R. M. and DaCamara, C. C.: Circulation weather types and their
influence on the precipitation regime in Portugal, Int. J. Climatol., 20, 1559–1581, 2000.
Tsaknakis, G., Papayannis, A., Kokkalis, P., Amiridis, V., Kambezidis, H. D., Mamouri, R. E., Georgoussis, G., and Avdikos, G.: Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech., 4, 1261–1273, https://doi.org/10.5194/amt-4-1261-2011, 2011.
Wang, X., Dickinson, R. E., Su, L., Zhou, C., and Wang, K.: PM2.5 Pollution in China and how it has been exacerbated by terrain and meteorological conditions, B. Am. Meteorol. Soc., 99, 105–120, 2018.
Wu, P., Ding, Y., and Liu, Y.: Atmospheric circulation and dynamic mechanism
for persistent haze events in the Beijing-Tianjin-Hebei region,
Adv. Atmos. Sci., 34, 429–440, 2017.
Xu, T., Song, Y., Liu, M., Cai, X., Zhang, H., Guo, J., and Zhu, T.:
Temperature inversions in severe polluted days derived from radiosonde data
in North China from 2011 to 2016, Sci. Total Environ., 647,
1011–1020, 2019.
Ye, X., Song, Y., Cai, X., and Zhang, H.: Study on the synoptic flow
patterns and boundary layer process of the severe haze events over the North
China Plain in January 2013, Atmos. Environ., 124, 129–145, 2016.
Yu, B., Zhu, B., Dou, J., Zhang, W., and Hu, D.: Classification of air
pollution synoptic patterns and air pollutants transport/purification effect
by cold front over Hangzhou, China Environ. Sci., 37, 452–459, 2017.
Zhang, R.: Warming boosts air pollution, Nat. Clim. Change, 7, 238–239,
2017.
Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu,
C.: Impact of synoptic weather patterns and inter-decadal climate
variability on air quality in the North China Plain during 1980–2013, Atmos. Environ., 124, 119–128, 2016.
Zhang, Y., Guo, J., Yang, Y., Wang, Y., and Yim, S. H. L.: Vertica Wind
Shear Modulates Particulate Matter Pollutions: A Perspective from Radar Wind
Profiler Observations in Beijing, China, Remote Sens.-Basel, 12, 546, https://doi.org/10.3390/rs12030546, 2020.
Zhao, D., Xin, J., Gong, C., Quan, J., Liu, G., Zhao, W., Wang, Y., Liu, Z.,
and Song, T.: The formation mechanism of air pollution episodes in Beijing
city: Insights into the measured feedback between aerosol radiative forcing
and the atmospheric boundary layer stability, Sci. Total Environ., 692, 371–381, 2019.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL)...
Altmetrics
Final-revised paper
Preprint