Articles | Volume 21, issue 24
https://doi.org/10.5194/acp-21-18375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-18375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth
Qingqing He
Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
Mengya Wang
Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong SAR, China
Asian School of the Environment, Nanyang Technological University, Singapore
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
Related authors
Qingqing He, Jingru Cao, Pablo E. Saide, Tong Ye, Weihang Wang, Ming Zhang, and Jiejun Huang
Atmos. Chem. Phys., 25, 6663–6677, https://doi.org/10.5194/acp-25-6663-2025, https://doi.org/10.5194/acp-25-6663-2025, 2025
Short summary
Short summary
We analyzed ground-level ozone variations and exposure hotspots across China (2000–2020) at multiple scales using daily 1 km ozone data derived from satellite-sourced land-surface temperature data via a machine-learning hindcasting model. The dataset was validated using cross-validation and external measurements. A non-monotonic trend with regional and seasonal variations emerged, with turning points around 2008 and 2015. Ozone levels >100 μg m‾³ shifted from June to May, while levels >160 μg m‾³ expanded in the North China Plain.
Qingqing He, Jingru Cao, Pablo E. Saide, Tong Ye, Weihang Wang, Ming Zhang, and Jiejun Huang
Atmos. Chem. Phys., 25, 6663–6677, https://doi.org/10.5194/acp-25-6663-2025, https://doi.org/10.5194/acp-25-6663-2025, 2025
Short summary
Short summary
We analyzed ground-level ozone variations and exposure hotspots across China (2000–2020) at multiple scales using daily 1 km ozone data derived from satellite-sourced land-surface temperature data via a machine-learning hindcasting model. The dataset was validated using cross-validation and external measurements. A non-monotonic trend with regional and seasonal variations emerged, with turning points around 2008 and 2015. Ozone levels >100 μg m‾³ shifted from June to May, while levels >160 μg m‾³ expanded in the North China Plain.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021, https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
Short summary
This study analyzed the nature, mechanisms and drivers for hot-and-polluted episodes (HPEs) in the Pearl River Delta, China. A total of eight HPEs were identified and can be grouped into three clusters of HPEs that were respectively driven (1) by weak subsidence and convection induced by approaching tropical cyclones, (2) by calm conditions with low wind speed in the lower atmosphere and (3) by the combination of both aforementioned conditions.
Zhiyuan Li, Kin-Fai Ho, Hsiao-Chi Chuang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 5063–5078, https://doi.org/10.5194/acp-21-5063-2021, https://doi.org/10.5194/acp-21-5063-2021, 2021
Short summary
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
Cited articles
Arola, A., Eck, T. F., Huttunen, J., Lehtinen, K. E. J., Lindfors, A. V., Myhre, G., Smirnov, A., Tripathi, S. N., and Yu, H.: Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895–7901, https://doi.org/10.5194/acp-13-7895-2013, 2013.
Chudnovsky, A. A., Kostinski, A., Lyapustin, A., and Koutrakis, P.:
Spatial scales of pollution from variable resolution satellite imaging,
Environ. Pollut.,
172, 131–138, 2013.
Gong, W., Huang, Y., Zhang, T., Zhu, Z., Ji, Y., and Xiang, H.:
Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China,
Remote Sens.-Basel,
9, 1038, https://doi.org/10.3390/rs9101038, 2017.
Gu, Y. and Yim, S. H. L.:
The air quality and health impacts of domestic trans-boundary pollution in various regions of China,
Environ. Int.,
97, 117–124, https://doi.org/10.1016/j.envint.2016.08.004, 2016.
Gu, Y., Wong, T. W., Law, C. K., Dong, G. H., Ho, K. F., Yang, Y., and Yim, S. H. L.:
Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs,
Environ. Res. Lett.,
13, 084008, https://doi.org/10.1088/1748-9326/aad138, 2018.
Gu, Y., Zhang, W., Yang, Y., Wang, C., Streets, D. G., and Yim, S. H. L.:
Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China,
Resour. Conserv. Recy.,
159, 104812, https://doi.org/10.1016/j.resconrec.2020.104812, 2020.
Guo, J., Zhang, X., Wu, Y., Zhaxi, Y., Che, H., La, B., Wang, W., and Li, X.:
Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008,
Atmos. Environ.,
45, 6802–6811, 2011.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W., Yao, W., and Li, X.:
Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses,
J. Geophys. Res.-Atmos.,
121, 6472–6488, https://doi.org/10.1002/2015JD023257, 2016.
Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., and Min, M.:
Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: Implications for PM2.5 remote sensing,
Environ. Pollut.,
221, 94–104, 2017.
Guo, J.-P., Zhang, X.-Y., Che, H.-Z., Gong, S.-L., An, X., Cao, C.-X., Guang, J., Zhang, H., Wang, Y.-Q., and Zhang, X.-C.:
Correlation between PM concentrations and aerosol optical depth in eastern China,
Atmos. Environ.,
43, 5876–5886, 2009.
He, Q., Gu, Y., and Zhang, M.:
Spatiotemporal patterns of aerosol optical depth throughout China from 2003 to 2016,
Sci. Total Environ.,
653, 23–35, 2019.
He, Q., Gu, Y., and Zhang, M.:
Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data,
Environ. Int.,
137, 105536, https://doi.org/10.1016/j.envint.2020.10553, 2020.
Hou, X., Chan, C. K., Dong, G. H., and Yim, S. H. L.:
Impacts of transboundary air pollution and local emissions on PM2.5 pollution in the Pearl River Delta region of China and the public health, and the policy implications,
Environ. Res. Lett.,
14, 034005, https://doi.org/10.1088/1748-9326/aaf493, 2019.
Kim, K.-M., Lau, W. K. M., Sud, Y. C., and Walker, G. K.:
Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations,
Clim. Dynam.,
35, 115–126, https://doi.org/10.1007/s00382-010-0750-1, 2010.
King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.:
Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),
IEEE T. Geosci. Remote,
30, 2–27, 1992.
Kloog, I., Chudnovsky, A. A., Just, A. C., Nordio, F., Koutrakis, P., Coull, B. A., Lyapustin, A., Wang, Y., and Schwartz, J.:
A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data,
Atmos. Environ.,
95, 581–590, https://doi.org/10.1016/j.atmosenv.2014.07.014, 2014.
Kong, L., Xin, J., Zhang, W., and Wang, Y.:
The empirical correlations between PM2.5, PM 10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS,
Environ. Pollut.,
216, 350–360, 2016.
Lee, H. J., Chatfield, R. B., and Strawa, A. W.:
Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California, United States,
Environ. Sci. Technol.,
50, 6546–6555, 2016a.
Lee, S. S., Guo, J., and Li, Z.:
Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations,
J. Geophys. Res.-Atmos.,
121, 11,739-711,760, https://doi.org/10.1002/2015JD024362, 2016b.
Li, Z., Xia, X., Cribb, M., Mi, W., Holben, B., Wang, P., Chen, H., Tsay, S. C., Eck, T., and Zhao, F.:
Aerosol optical properties and their radiative effects in northern China,
J. Geophys. Res.-Atmos, 112, D22S01, https://doi.org/10.1029/2006JD007382, 2007.
Li, Z., Yim, S. H.-L., and Ho, K.-F.:
High temporal resolution prediction of street-level PM2.5 and NOx concentrations using machine learning approach,
J. Clean. Prod.,
268, 121975, https://doi.org/10.1016/j.jclepro.2020.121975, 2020.
Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., Liu, Y., Wang, J., Jantunen, M., Bi, J., and Kinney, P. L.:
Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012,
Environ. Int.,
98, 75–81, https://doi.org/10.1016/j.envint.2016.10.003, 2017.
Liu, N., Zou, B., Feng, H., Wang, W., Tang, Y., and Liang, Y.: Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China, Atmos. Chem. Phys., 19, 8243–8268, https://doi.org/10.5194/acp-19-8243-2019, 2019.
Liu, S. and Liang, X.-Z.:
Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height,
J. Climate,
23, 5790–5809, https://doi.org/10.1175/2010JCLI3552.1, 2010.
Liu, X., Chen, Q., Che, H., Zhang, R., Gui, K., Zhang, H., and Zhao, T.:
Spatial distribution and temporal variation of aerosol optical depth in the Sichuan basin, China, the recent ten years,
Atmos. Environ.,
147, 434–445, 2016.
Liu, Z., Yim, S. H. L., Wang, C., and Lau, N. C.:
The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region,
Geophys. Res. Lett.,
45, 4410–4418, https://doi.org/10.1029/2018GL077517, 2018.
Liu, Z., Ming, Y., Wang, L., Bollasina, M., Luo, M., Lau, N.-C., and Yim, S. H.-L.:
A Model Investigation of Aerosol-Induced Changes in the East Asian Winter Monsoon,
Geophys. Res. Lett.,
46, 10186–10195, https://doi.org/10.1029/2019GL084228, 2019.
Liu, Z., Ming, Y., Zhao, C., Lau, N. C., Guo, J., Bollasina, M., and Yim, S. H. L.: Contribution of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in Guangdong Province, China, Atmos. Chem. Phys., 20, 223–241, https://doi.org/10.5194/acp-20-223-2020, 2020.
Luo, M., Hou, X., Gu, Y., Lau, N.-C., and Yim, S. H.-L.:
Trans-boundary air pollution in a city under various atmospheric conditions,
Sci. Total Environ.,
618, 132–141, https://doi.org/10.1016/j.scitotenv.2017.11.001, 2018.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Ma, Z., Hu, X., Huang, L., Bi, J., and Liu, Y.:
Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing,
Environ. Sci. Technol.,
48, 7436–7444, https://doi.org/10.1021/es5009399, 2014.
Martins, V., Lyapustin, A., Carvalho, L., Barbosa, C., and Novo, E.:
Validation of high-resolution MAIAC aerosol product over South America,
J. Geophys. Res.-Atmos., 122, 7537–7559, https://doi.org/10.1002/2016JD026301, 2017.
MEEC: Ministry of Ecology and Environment of the People's Republic of China, available at: https://www.mee.gov.cn/, last access: 10 November 2021.
NASA: Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), available at: https://ladsweb.modaps.eosdis.nasa.gov/search/, last access: 10 November 2021a.
NASA: AERONET, available at: https://aeronet.gsfc.nasa.gov/, last access: 10 November 2021b.
Ning, G., Wang, S., Yim, S. H. L., Li, J., Hu, Y., Shang, Z., Wang, J., and Wang, J.: Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin, China, Atmos. Chem. Phys., 18, 13601–13615, https://doi.org/10.5194/acp-18-13601-2018, 2018.
Ning, G., Yim, S. H. L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J., and Shang, K.:
Synergistic effects of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of China,
Clim. Dynam.,
53, 6729–6744, https://doi.org/10.1007/s00382-019-04954-3, 2019.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.:
Modulations of synoptic and climatic changes on ozone pollution and its health risks in mountain-basin areas,
Atmos. Environ.,
240, 117808, https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.:
Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,
JAMA-J. Am. Med. Assoc.,
287, 1132–1141, 2002.
Schwartz, J.:
Air pollution and hospital admissions for respiratory disease,
Epidemiology,
7, 20–28, 1996.
Shao, P., Xin, J., An, J., Kong, L., Wang, B., Wang, J., Wang, Y., and Wu, D.:
The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta,
Atmos. Pollut. Res.,
8, 233–243, 2017.
Shi, C., Nduka, I. C., Yang, Y., Huang, Y., Yao, R., Zhang, H., He, B., Xie, C., Wang, Z., and Yim, S. H. L.:
Characteristics and meteorological mechanisms of transboundary air pollution in a persistent heavy PM2.5 pollution episode in Central-East China,
Atmos. Environ.,
223, 117239, https://doi.org/10.1016/j.atmosenv.2019.117239, 2020.
Silva, H., Conceicao, R., Wright, M., Matthews, J., Pereira, S., and Shallcross, D.:
Aerosol hygroscopic growth and the dependence of atmospheric electric field measurements with relative humidity,
J. Aerosol Sci.,
85, 42–51, 2015.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C.-Y., Chen, Y. D., and Lau, N. C.:
Projecting the impacts of atmospheric conditions under climate change on air quality over the Pearl River Delta region,
Atmos. Environ.,
193, 79–87, https://doi.org/10.1016/j.atmosenv.2018.08.053, 2018a.
Tong, C. H. M., Yim, S. H. L., Rothenberg, D., Wang, C., Lin, C.-Y., Chen, Y. D., and Lau, N. C.:
Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region,
Atmos. Environ.,
180, 69–78, https://doi.org/10.1016/j.atmosenv.2018.02.039, 2018b.
Wang, J. and Christopher, S. A.:
Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies,
Geophys. Res. Lett.,
30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Wang, Y., Xin, J., Li, Z., Wang, S., Wang, P., Hao, W. M., Nordgren, B. L., Chen, H., Wang, L., and Sun, Y.:
Seasonal variations in aerosol optical properties over China,
J. Geophys. Res.-Atmos.,
116, D18209, https://doi.org/10.1029/2010JD015376, 2011.
Wang, Z., Chen, L., Tao, J., Liu, Y., Hu, X., and Tao, M.:
An empirical method of RH correction for satellite estimation of ground-level PM concentrations,
Atmos. Environ.,
95, 71–81, 2014.
Xin, J., Zhang, Q., Wang, L., Gong, C., Wang, Y., Liu, Z., and Gao, W.:
The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011,
Atmos. Res.,
138, 179–188, 2014.
Xin, J., Gong, C., Liu, Z., Cong, Z., Gao, W., Song, T., Pan, Y., Sun, Y., Ji, D., and Wang, L.:
The observation-based relationships between PM2.5 and AOD over China,
J. Geophys. Res.-Atmos.,
121, 10701–10716, https://doi.org/10.1002/2015JD024655, 2016.
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L.:
The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations,
Environ. Pollut.,
248, 526–535, https://doi.org/10.1016/j.envpol.2019.02.071, 2019.
Yang, X., Jiang, L., Zhao, W., Xiong, Q., Zhao, W., and Yan, X.:
Comparison of ground-based PM2.5 and PM10 concentrations in China, India, and the US, International Journal of Environmental Research and Public Health, 15, 1382, https://doi.org/10.3390/ijerph15071382, 2018.
Yang, Y., Zheng, X., Gao, Z., Wang, H., Wang, T., Li, Y., Lau, G. N. C., and Yim, S. H. L.:
Long-Term Trends of Persistent Synoptic Circulation Events in Planetary Boundary Layer and Their Relationships With Haze Pollution in Winter Half Year Over Eastern China,
J. Geophys. Res.-Atmos.,
123, 10991–11007, https://doi.org/10.1029/2018JD028982, 2018.
Yang, Y., Yim, S. H. L., Haywood, J., Osborne, M., Chan, J. C. S., Zeng, Z., and Cheng, J. C. H.:
Characteristics of Heavy Particulate Matter Pollution Events Over Hong Kong and Their Relationships With Vertical Wind Profiles Using High-Time-Resolution Doppler Lidar Measurements,
J. Geophys. Res.-Atmos.,
124, 9609–9623, https://doi.org/10.1029/2019JD031140, 2019.
Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., Wang, T., Li, Q., Shi, C., Ning, G., and Li, Y.:
PM2.5 Pollution Modulates Wintertime Urban Heat Island Intensity in the Beijing–Tianjin–Hebei Megalopolis, China,
Geophys. Res. Lett.,
47, e2019GL084288, https://doi.org/10.1029/2019GL084288, 2020.
Yim, S. H. L.:
Development of a 3D Real-Time Atmospheric Monitoring System (3DREAMS) Using Doppler LiDARs and Applications for Long-Term Analysis and Hot-and-Polluted Episodes,
Remote Sens.-Basel,
12, 1036, https://doi.org/10.3390/rs12061036, 2020.
Yim, S. H. L., Lee, G. L., Lee, I. H., Allroggen, F., Ashok, A., Caiazzo, F., Eastham, S. D., Malina, R., and Barrett, S. R. H.:
Global, regional and local health impacts of civil aviation emissions,
Environ. Res. Lett.,
10, 034001, https://doi.org/10.1088/1748-9326/10/3/034001, 2015.
Yim, S. H. L., Gu, Y., Shapiro, M. A., and Stephens, B.: Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea, Atmos. Chem. Phys., 19, 13309–13323, https://doi.org/10.5194/acp-19-13309-2019, 2019a.
Yim, S. H. L., Hou, X., Guo, J., and Yang, Y.:
Contribution of local emissions and transboundary air pollution to air quality in Hong Kong during El Niño-Southern Oscillation and heatwaves,
Atmos. Res.,
218, 50–58, https://doi.org/10.1016/j.atmosres.2018.10.021, 2019b.
Zhang, W., Guo, J., Miao, Y., Liu, H., Song, Y., Fang, Z., He, J., Lou, M., Yan, Y., Li, Y., and Zhai, P.:
On the Summertime Planetary Boundary Layer with Different Thermodynamic Stability in China: A Radiosonde Perspective,
J. Climate,
31, 1451–1465, https://doi.org/10.1175/JCLI-D-17-0231.1, 2018.
Zhang, Y. and Li, Z.:
Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation,
Remote Sens. Environ.,
160, 252–262, https://doi.org/10.1016/j.rse.2015.02.005, 2015.
Zhang, Y.-L. and Cao, F.:
Fine particulate matter (PM2.5) in China at a city level, Scientific Reports, 5, 2015.
Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., and Wang, Q.:
Evaluation of MAIAC aerosol retrievals over China,
Atmos. Environ,
202, 8–16, 2019.
Zhao, C., Liu, Z., Wang, Q., Ban, J., Chen, N. X., and Li, T.:
High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing–Tianjin–Hebei region,
Atmos. Environ.,
203, 70–78, 2019.
Zheng, Z., Zhao, C., Lolli, S., Wang, X., Wang, Y., Ma, X., Li, Q., and Yang, Y.:
Diurnal variation of summer precipitation modulated by air pollution: observational evidences in the beijing metropolitan area,
Environ. Res. Lett.,
15, 094053, https://doi.org/10.1088/1748-9326/ab99fc, 2020.
Zhu, J., Xia, X., Wang, J., Zhang, J., Wiedinmyer, C., Fisher, J. A., and Keller, C. A.:
Impact of Southeast Asian smoke on aerosol properties in Southwest China: First comparison of model simulations with satellite and ground observations,
J. Geophys. Res.-Atmos.,
122, 3904–3919, 2017.
Zou, B., You, J., Lin, Y., Duan, X., Zhao, X., Fang, X., Campen, M. J., and Li, S.:
Air pollution intervention and life-saving effect in China,
Environ. Int.,
125, 529–541, 2019.
Short summary
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale analysis with MODIS MAIAC 1 km aerosol observations and ground measurements. The impact factors (vertical distribution, relative humidity and terrain) on the relationship are quantitatively studied. Our results provide significant information on PM2.5 and AOD, which is informative for mapping high-resolution PM2.5 and furthering the understanding of aerosol properties and the PM2.5 pollution status.
We explore the spatiotemporal relationship between PM2.5 and AOD over China using a multi-scale...
Altmetrics
Final-revised paper
Preprint