Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-14591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Anja Hünerbein
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Florian Filipitsch
German Weather Service (DWD), Meteorological Observatory Lindenberg, Tauche, Germany
Stefan Wacker
German Weather Service (DWD), Meteorological Observatory Lindenberg, Tauche, Germany
Stefanie Meilinger
International Centre for Sustainable Development (IZNE), Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
Hartwig Deneke
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Related authors
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Zili He, Quentin Libois, Najda Villefranque, Hartwig Deneke, Jonas Witthuhn, and Fleur Couvreux
Atmos. Chem. Phys., 24, 11391–11408, https://doi.org/10.5194/acp-24-11391-2024, https://doi.org/10.5194/acp-24-11391-2024, 2024
Short summary
Short summary
This study uses observations and simulations to analyze how cumulus clouds affect spacial solar radiation variability on the ground. Results show that the simulations reproduce the observations well and improve understanding of cloud impacts on radiation. The research also indicates that a few strategically placed sensors, capitalizing on measurement timing, can effectively measure these variations, aiding in the development of detailed weather prediction models.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021, https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Short summary
The SEVIRI instrument flown on the European geostationary Meteosat satellites acquires multi-spectral images at a relatively coarse pixel resolution of 3 × 3 km2, but it also has a broadband high-resolution visible channel with 1 × 1 km2 spatial resolution. In this study, the modification of an existing cloud property and solar irradiance retrieval to use this channel to improve the spatial resolution of its output products as well as the resulting benefits for applications are described.
Marcus Klingebiel, André Ehrlich, Micha Gryschka, Nils Risse, Nina Maherndl, Imke Schirmacher, Sophie Rosenburg, Sabine Hörnig, Manuel Moser, Evelyn Jäkel, Michael Schäfer, Hartwig Deneke, Mario Mech, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 25, 9787–9801, https://doi.org/10.5194/acp-25-9787-2025, https://doi.org/10.5194/acp-25-9787-2025, 2025
Short summary
Short summary
Our study is using aircraft measurements from the HALO-(𝒜𝒞)³ campaign to investigate the transition from organized Arctic cloud street structures to more scattered clouds, which we call isotropic cloud patterns. We show that lower wind speeds cause this transition. In addition, we look at the changes in the cloud coverage, the height of the clouds, the cloud particles, and the radiative properties.
Job I. Wiltink, Hartwig Deneke, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 18, 3917–3936, https://doi.org/10.5194/amt-18-3917-2025, https://doi.org/10.5194/amt-18-3917-2025, 2025
Short summary
Short summary
Global horizontal irradiance retrievals from satellite observations are affected by spatial displacements due to parallax and cloud shadows. We assess different approaches to correct for these displacements and quantify their added value by comparison with a network of ground-based pyranometer observations. The corrections are found to become increasingly important at higher spatial resolutions and are most relevant for variable cloud types.
Carola Barrientos-Velasco, Christopher J. Cox, Hartwig Deneke, J. Brant Dodson, Anja Hünerbein, Matthew D. Shupe, Patrick C. Taylor, and Andreas Macke
Atmos. Chem. Phys., 25, 3929–3960, https://doi.org/10.5194/acp-25-3929-2025, https://doi.org/10.5194/acp-25-3929-2025, 2025
Short summary
Short summary
Understanding how clouds affect the climate, especially in the Arctic, is crucial. This study used data from the largest polar expedition in history, MOSAiC, and the CERES satellite to analyse the impact of clouds on radiation. Simulations showed accurate results, aligning with observations. Over the year, clouds caused the atmospheric surface system to lose 5.2 W m−² of radiative energy to space, while the surface gained 25 W m−² and the atmosphere cooled by 30.2 W m−².
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024, https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Short summary
Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) global horizontal irradiance (GHI) retrievals are validated at standard and increased spatial resolution against a network of 99 pyranometers. GHI accuracy is strongly dependent on the cloud regime. Days with variable cloud conditions show significant accuracy improvements when retrieved at higher resolution. We highlight the benefits of dense network observations and a cloud-regime-resolved approach in validating GHI retrievals.
Zili He, Quentin Libois, Najda Villefranque, Hartwig Deneke, Jonas Witthuhn, and Fleur Couvreux
Atmos. Chem. Phys., 24, 11391–11408, https://doi.org/10.5194/acp-24-11391-2024, https://doi.org/10.5194/acp-24-11391-2024, 2024
Short summary
Short summary
This study uses observations and simulations to analyze how cumulus clouds affect spacial solar radiation variability on the ground. Results show that the simulations reproduce the observations well and improve understanding of cloud impacts on radiation. The research also indicates that a few strategically placed sensors, capitalizing on measurement timing, can effectively measure these variations, aiding in the development of detailed weather prediction models.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Samer Chaaraoui, Sebastian Houben, and Stefanie Meilinger
Adv. Sci. Res., 20, 129–158, https://doi.org/10.5194/asr-20-129-2024, https://doi.org/10.5194/asr-20-129-2024, 2024
Short summary
Short summary
This method generates probabilistic solar power forecasts of up to 30 min using artificial intelligence and fish eye images of the sky. We investigated the impact of parameters describing the variability of the solar power on the forecast performance and divided the solar power to its direct and diffuse components. The method achieves overall good performance, while variability parameters and dividing the solar power don't show any performance gain. However, training time can be decreased.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023, https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Short summary
Measured power data from solar photovoltaic (PV) systems contain information about the state of the atmosphere. In this work, power data from PV systems in the Allgäu region in Germany were used to determine the solar irradiance at each location, using state-of-the-art simulation and modelling. The results were validated using concurrent measurements of the incoming solar radiation in each case. If applied on a wider scale, this algorithm could help improve weather and climate models.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian M. Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys., 23, 6409–6430, https://doi.org/10.5194/acp-23-6409-2023, https://doi.org/10.5194/acp-23-6409-2023, 2023
Short summary
Short summary
We investigate how mineral dust can lead to the formation of cirrus clouds. Dusty cirrus clouds lead to a reduction in solar radiation at the surface and, hence, a reduced photovoltaic power generation. Current weather prediction systems are not able to predict this interaction between mineral dust and cirrus clouds. We have developed a new physical description of the formation of dusty cirrus clouds. Overall we can show a considerable improvement in the forecast quality of clouds and radiation.
Anja Hünerbein, Sebastian Bley, Stefan Horn, Hartwig Deneke, and Andi Walther
Atmos. Meas. Tech., 16, 2821–2836, https://doi.org/10.5194/amt-16-2821-2023, https://doi.org/10.5194/amt-16-2821-2023, 2023
Short summary
Short summary
The Multi-Spectral Imager (MSI) on board the EarthCARE satellite will provide the information needed for describing the cloud and aerosol properties in the cross-track direction, complementing the measurements from the Cloud Profiling Radar, Atmospheric Lidar and Broad-Band Radiometer. The accurate discrimination between clear and cloudy pixels is an essential first step. Therefore, the cloud mask algorithm provides a cloud flag, cloud phase and cloud type product for the MSI observations.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022, https://doi.org/10.5194/acp-22-9313-2022, 2022
Short summary
Short summary
This article describes an intercomparison of radiative fluxes and cloud properties from satellite, shipborne observations, and 1D radiative transfer simulations. The analysis focuses on research for PS106 expedition aboard the German research vessel, Polarstern. The results are presented in detailed case studies, time series for the PS106 cruise and extended to the central Arctic region. The findings illustrate the main periods of agreement and discrepancies of both points of view.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021, https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Short summary
The SEVIRI instrument flown on the European geostationary Meteosat satellites acquires multi-spectral images at a relatively coarse pixel resolution of 3 × 3 km2, but it also has a broadband high-resolution visible channel with 1 × 1 km2 spatial resolution. In this study, the modification of an existing cloud property and solar irradiance retrieval to use this channel to improve the spatial resolution of its output products as well as the resulting benefits for applications are described.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020, https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
Short summary
Photovoltaic power is one current option to meet the rising energy demand with low environmental impact. Global horizontal irradiance (GHI) is the fuel for photovoltaic power installations and needs to be evaluated to plan and dimension power plants. In this study, 35 years of satellite-based GHI data are analyzed over West Africa to determine their impact on photovoltaic power generation. The major challenges for the development of a solar-based power system in West Africa are then outlined.
Cited articles
Alia-Martinez, M., Antonanzas, J., Urraca, R., de Pison, F. J. M., and
Antonanzas-Torres, F.: Benchmark of algorithms for solar clear-sky detection,
J. Renew. Sustain. Ener., 8, 033703,
https://doi.org/10.1063/1.4950948, 2016. a
Ansmann, A., Rittmeister, F., Engelmann, R., Basart, S., Jorba, O., Spyrou, C., Remy, S., Skupin, A., Baars, H., Seifert, P., Senf, F., and Kanitz, T.: Profiling of Saharan dust from the Caribbean to western Africa – Part 2: Shipborne lidar measurements versus forecasts, Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017, 2017. a
Atwater, M. A. and Ball, J. T.: A numerical solar radiation model based on
standard meteorological observations, Sol. Energy, 21, 163–170,
https://doi.org/10.1016/0038-092x(78)90018-x, 1978. a, b, c
Atwater, M. A. and Brown, P. S.: Numerical Computations of the Latitudinal
Variation of Solar Radiation for an Atmosphere of Varying Opacity, J.
Appl. Meteorol., 13, 289–297, https://doi.org/10.1175/1520-0450-13.2.289, 1974. a
Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET, Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, 2019. a
Badescu, V., Gueymard, C. A., Cheval, S., Oprea, C., Baciu, M., Dumitrescu, A.,
Iacobescu, F., Milos, I., and Rada, C.: Accuracy analysis for fifty-four
clear-sky solar radiation models using routine hourly global irradiance
measurements in Romania, Renew. Energ., 55, 85–103,
https://doi.org/10.1016/j.renene.2012.11.037, 2013. a
Barlakas, V., Deneke, H., and Macke, A.: The sub-adiabatic model as a concept for evaluating the representation and radiative effects of low-level clouds in a high-resolution atmospheric model, Atmos. Chem. Phys., 20, 303–322, https://doi.org/10.5194/acp-20-303-2020, 2020. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification maps
at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. a, b, c
Becker, R. and Behrens, K.: Quality assessment of heterogeneous surface radiation network data, Adv. Sci. Res., 8, 93–97, https://doi.org/10.5194/asr-8-93-2012, 2012. a
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis
and forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: 2. Data assimilation, J. Geophys.
Res., 114, D13205, https://doi.org/10.1029/2008jd011115, 2009. a
Bird, R. E. and Hulstrom, R. L.: Simplified Clear Sky Model for Direct and
Diffuse Insolation on Horizontal Surfaces, techreport SERI/TR-642-761, Solar
Energy Research Institute,
available at: https://www.nrel.gov/grid/solar-resource/assets/data/tr-642-761.pdf
(last access: 17 January 2021), 1981. a, b, c, d
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013 – The Physical Science Basis, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., chap. 7, 571–658, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.016, 2014. a
Bozzo, A., Benedetti, A., Flemming, J., Kipling, Z., and Rémy, S.: An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF, Geosci. Model Dev., 13, 1007–1034, https://doi.org/10.5194/gmd-13-1007-2020, 2020a. a, b, c, d
Bozzo, A., Benedetti, A., Flemming, J., Kipling, Z., and Rémy, S.: An aerosol
climatology for global models based on the tropospheric aerosol scheme in the
Integrated Forecasting System of ECMWF, CAMS data archive [data set], https://doi.org/10.24380/jgs8-sc58, 2020b. a, b, c
Bright, J. M. and Gueymard, C. A.: Climate-specific and global validation of
MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations, Sol.
Energy, 183, 594–605, https://doi.org/10.1016/j.solener.2019.03.043, 2019. a
Bright, J. M., Babacan, O., Kleissl, J., Taylor, P. G., and Crook, R.: A
synthetic, spatially decorrelating solar irradiance generator and application
to a LV grid model with high PV penetration, Sol. Energy, 147, 83–98,
https://doi.org/10.1016/j.solener.2017.03.018, 2017. a
Bright, J. M., Sun, X., Gueymard, C. A., Acord, B., Wang, P., and Engerer,
N. A.: Bright-Sun: A globally applicable 1-min irradiance clear-sky
detection model, Renew. Sustain. Energ. Rev., 121, 109706,
https://doi.org/10.1016/j.rser.2020.109706, 2020 (code available at: https://github.com/JamieMBright/csd-library, last access: 10 June 2021). a, b, c
Brine, D. and Iqbal, M.: Diffuse and global solar spectral irradiance under
cloudless skies, Sol. Energy, 30, 447–453,
https://doi.org/10.1016/0038-092x(83)90115-9, 1983. a
Chaibou, A. A. S., Ma, X., and Sha, T.: Dust radiative forcing and its impact
on surface energy budget over West Africa, Sci. Rep.-UK, 10,
https://doi.org/10.1038/s41598-020-69223-4, 2020. a
Davies, J. A. and McKay, D. C.: Estimating solar irradiance and components,
Sol. Energy, 29, 55–64, https://doi.org/10.1016/0038-092x(82)90280-8, 1982. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J.
Geophys. Res.-Atmos., 105, 20673–20696,
https://doi.org/10.1029/2000jd900282, 2000. a, b
Ellis, B. H., Deceglie, M., and Jain, A.: Automatic Detection of Clear-sky
Periods Using Ground and Satellite Based Solar Resource Data, in: 2018 IEEE
7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint
Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC),
IEEE, https://doi.org/10.1109/pvsc.2018.8547877, 2018. a
Esteve, A. R., Highwood, E. J., and Ryder, C. L.: A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX, Atmos. Chem. Phys., 16, 7639–7651, https://doi.org/10.5194/acp-16-7639-2016, 2016. a, b, c
Flyamer, I., Weber, S., Gwendal, D., Xue, Z.,
Colin, Li, A., Van Neste, C.,
Espinoza, J. L., Morshed, N., Vazquez, V., Neff, R., mski_iksm and
scaine1: Phlya/adjustText – A small library for automatically
adjustment of text position in matplotlib plots to minimize overlaps,
Zenodo [code], https://doi.org/10.5281/zenodo.3924114, 2018. a
Giles, D. M. and Holben, B. N.:
Aerosol Robotic Network (AERONET) Homepage, available at:
https://aeronet.gsfc.nasa.gov/, last access: 17 September 2021. a
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019. a, b, c, d
Gueymard, C.: Critical analysis and performance assessment of clear sky solar
irradiance models using theoretical and measured data, Sol. Energy, 51,
121–138, https://doi.org/10.1016/0038-092x(93)90074-x, 1993. a
Gueymard, C. and Jimenez, P.: Validation of Real-Time Solar Irradiance
Simulations Over Kuwait Using WRF-Solar, in: Proceedings of EuroSun
2018, International Solar Energy Society, Freiburg, Germany, https://doi.org/10.18086/eurosun2018.09.14,
2018. a
Gueymard, C. A.: Direct solar transmittance and irradiance predictions with
broadband models. Part I: detailed theoretical performance assessment, Sol.
Energy, 74, 355–379, https://doi.org/10.1016/s0038-092x(03)00195-6, 2003. a, b, c
Gueymard, C. A.: Interdisciplinary applications of a versatile spectral solar
irradiance model: A review, Energy, 30, 1551–1576,
https://doi.org/10.1016/j.energy.2004.04.032, 2005. a
Gueymard, C. A.: A review of validation methodologies and statistical
performance indicators for modeled solar radiation data: Towards a better
bankability of solar projects, Renew. Sustain. Energ. Rev., 39,
1024–1034, https://doi.org/10.1016/j.rser.2014.07.117, 2014. a
Gueymard, C. A., Bright, J. M., Lingfors, D., Habte, A., and Sengupta, M.: A
posteriori clear-sky identification methods in solar irradiance time series:
Review and preliminary validation using sky imagers, Renew.
Sustain. Energ. Rev., 109, 412–427, https://doi.org/10.1016/j.rser.2019.04.027,
2019. a, b
Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Müller, R.,
and Beyer, H. G.: Solar energy assessment using remote sensing technologies,
Remote Sens. Environ., 86, 423–432,
https://doi.org/10.1016/s0034-4257(03)00083-x, 2003. a, b, c, d
Heuklon, T. K. V.: Estimating atmospheric ozone for solar radiation models,
Sol. Energy, 22, 63–68, https://doi.org/10.1016/0038-092x(79)90060-4, 1979. a
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A.,
Vermote, E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak,
I., and Smirnov, A.: AERONET – A Federated Instrument Network and
Data Archive for Aerosol Characterization, Remote Sens. Environ., 66,
1–16, https://doi.org/10.1016/s0034-4257(98)00031-5, 1998. a
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I.,
Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F.,
Kaufman, Y. J., Castle, J. V., Setzer, A., Markham, B., Clark, D., Frouin,
R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C.,
Pinker, R. T., Voss, K., and Zibordi, G.: An emerging ground-based aerosol
climatology: Aerosol optical depth from AERONET, J. Geophys.
Res.-Atmos., 106, 12067–12097, https://doi.org/10.1029/2001jd900014,
2001. a
Holben, B. N., Eck, T. F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer, J.,
Giles, D., and Dubovik, O.: Aeronet's Version 2.0 quality
assurance criteria, in: Remote Sensing of the Atmosphere and Clouds, edited
by: Tsay, S.-C., Nakajima, T., Singh, R. P., and Sridharan, R., SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE), Event: SPIE Asia-Pacific Remote Sensing, 2006, Goa, India,
https://doi.org/10.1117/12.706524, 2006. a
Ineichen, P.: A broadband simplified version of the Solis clear sky model,
Solar Energy, 82, 758–762, https://doi.org/10.1016/j.solener.2008.02.009,
2008a. a, b, c, d
Ineichen, P.: Conversion function between the Linke turbidity and the
atmospheric water vapor and aerosol content, Sol. Energy, 82, 1095–1097,
https://doi.org/10.1016/j.solener.2008.04.010, 2008b. a
Ineichen, P.: Long Term Satellite Global, Beam and Diffuse Irradiance
Validation, Enrgy. Proced., 48, 1586–1596,
https://doi.org/10.1016/j.egypro.2014.02.179, 2014. a
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019a. a, b, c, d, e, f, g
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A.,
Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J.,
Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch,
V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: CAMS global
reanalysis (EAC4), European Union, available at:
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview,
(last access: 3 August 2020), 2019b. a
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A.: The Delta-Eddington
Approximation for Radiative Flux Transfer, J. Atmos.
Sci., 33, 2452–2459,
https://doi.org/10.1175/1520-0469(1976)033<2452:tdeafr>2.0.co;2, 1976. a
Kambezidis, H. D., Psiloglou, B. E., Karagiannis, D., Dumka, U. C., and
Kaskaoutis, D. G.: Meteorological Radiation Model (MRM v6.1): Improvements
in diffuse radiation estimates and a new approach for implementation of cloud
products, Renew. Sustain. Energ. Rev., 74, 616–637,
https://doi.org/10.1016/j.rser.2017.02.058, 2017. a, b, c, d
Kasten, F.: A new table and approximation formula for the relative optial air
mass, Arch. Meteor. Geophy. B, 14,
206–223, https://doi.org/10.1007/bf02248840, 1965. a
Kasten, F.: Parametrisierung der Globalstrahlung durch Bedeckungsgrad und
Trübungsfaktor, in: Annalen der Meteorologie (Neue Folge), vol. 20,
49–50, Deutscher Wetterdienst,
available at: http://nbn-resolving.de/urn:nbn:de:101:1-201708172392 (last access: 30 September 2021), ISBN
978-3-88148-207-3, 1983. a
Kasten, F.: The linke turbidity factor based on improved values of the integral
Rayleigh optical thickness, Sol. Energy, 56, 239–244,
https://doi.org/10.1016/0038-092x(95)00114-7, 1996. a
Kasten, F. and Young, A. T.: Revised optical air mass tables and approximation
formula, Appl. Optics, 28, 4735, https://doi.org/10.1364/ao.28.004735, 1989. a
Kinne, S.: Aerosol radiative effects with MACv2, Atmos. Chem. Phys., 19, 10919–10959, https://doi.org/10.5194/acp-19-10919-2019, 2019. a, b, c
Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T., Berglen, T. F., Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Feichter, J., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M., Horowitz, L., Isaksen, I., Iversen, T., Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Lesins, G., Liu, X., Lohmann, U., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: An AeroCom initial assessment – optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815–1834, https://doi.org/10.5194/acp-6-1815-2006, 2006. a
Larrañeta, M., Reno, M., Lillo-Bravo, I., and Silva-Pérez, M.:
Identifying periods of clear sky direct normal irradiance, Renew. Energ.,
113, 756–763, https://doi.org/10.1016/j.renene.2017.06.011, 2017. a
Long, C. N. and Ackerman, T. P.: Identification of clear skies from broadband
pyranometer measurements and calculation of downwelling shortwave cloud
effects, J. Geophys. Res.-Atmos., 105, 15609–15626,
https://doi.org/10.1029/2000jd900077, 2000. a, b, c
Long, C. N. and Shi, Y.: An Automated Quality Assessment and Control Algorithm
for Surface Radiation Measurements, Open Atmos. Sci. J., 2,
23–37, https://doi.org/10.2174/1874282300802010023, 2008. a
Louche, A., Peri, G., and Iqbal, M.: An analysis of linke turbidity factor,
Sol. Energy, 37, 393–396, https://doi.org/10.1016/0038-092x(86)90028-9, 1986. a, b
Marchand, M., Saint-Drenan, Y.-M., Saboret, L., Wey, E., and Wald, L.: Performance of CAMS Radiation Service and HelioClim-3 databases of solar radiation at surface: evaluating the spatial variation in Germany, Adv. Sci. Res., 17, 143–152, https://doi.org/10.5194/asr-17-143-2020, 2020. a
Maxwell, E. L.: METSTAT – The solar radiation model used in the
production of the National Solar Radiation Data Base (NSRDB), Sol.
Energy, 62, 263–279, https://doi.org/10.1016/s0038-092x(98)00003-6, 1998. a, b
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005. a
Met Office: Cartopy: a cartographic python library with a matplotlib
interface, Exeter, Devon, available at: https://scitools.org.uk/cartopy (last access: 30 September 2021),
2010–2015. a
Mueller, R. W., Dagestad, K. F., Ineichen, P., Schroedter-Homscheidt, M., Cros,
S., Dumortier, D., Kuhlemann, R., Olseth, J. A., Piernavieja, G., Reise, C.,
Wald, L., and Heinemann, D.: Rethinking satellite-based solar irradiance
modelling: The SOLIS clear-sky module, Remote Sens. Environ., 91,
160–174, https://doi.org/10.1016/j.rse.2004.02.009, 2004. a
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing, in: Climate Change 2013 – The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., chap. 8, 659–740, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/cbo9781107415324.018, 2014. a
Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.:
Direct and semi-direct aerosol radiative effect on the Mediterranean climate
variability using a coupled regional climate system model, Clim. Dynam.,
44, 1127–1155, https://doi.org/10.1007/s00382-014-2205-6, 2014. a
Neher, I., Buchmann, T., Crewell, S., Pospichal, B., and Meilinger, S.: Impact
of atmospheric aerosols on solar power, Meteorol. Z., 28,
305–321, https://doi.org/10.1127/metz/2019/0969, 2019. a, b
Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., and Schöne, T.:
Homogenized Time Series of the Atmospheric Water Vapor Content Obtained from
the GNSS Reprocessed Data, J. Climate, 29, 2443–2456,
https://doi.org/10.1175/jcli-d-15-0158.1, 2016. a
Ohneiser, K., Ansmann, A., Baars, H., Seifert, P., Barja, B., Jimenez, C., Radenz, M., Teisseire, A., Floutsi, A., Haarig, M., Foth, A., Chudnovsky, A., Engelmann, R., Zamorano, F., Bühl, J., and Wandinger, U.: Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm, Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, 2020. a
Papadimas, C. D., Hatzianastassiou, N., Matsoukas, C., Kanakidou, M., Mihalopoulos, N., and Vardavas, I.: The direct effect of aerosols on solar radiation over the broader Mediterranean basin, Atmos. Chem. Phys., 12, 7165–7185, https://doi.org/10.5194/acp-12-7165-2012, 2012. a
Popp, T., de Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klüser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei, L.,
North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva, L.,
Stebel, K., Zweers, D. S., Thomas, G., Tilstra, L., Vandenbussche, S.,
Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European Satellite
Observations (Aerosol_cci), Remote Sensing, 8, 421,
https://doi.org/10.3390/rs8050421, 2016. a
Psiloglou, B. E. and Kambezidis, H. D.: Performance of the meteorological radiation model during the solar eclipse of 29 March 2006, Atmos. Chem. Phys., 7, 6047–6059, https://doi.org/10.5194/acp-7-6047-2007, 2007. a
Psiloglou, B. E., Santamouris, M., and Asimakopoulos, D. N.: On broadband
Rayleigh scattering in the atmosphere for solar radiation modelling,
Renew. Energ., 6, 429–433, https://doi.org/10.1016/0960-1481(94)00084-j, 1995. a
Quesada-Ruiz, S., Linares-Rodríguez, A., Ruiz-Arias, J.,
Pozo-Vázquez, D., and Tovar-Pescador, J.: An advanced ANN-based
method to estimate hourly solar radiation from multi-spectral MSG imagery,
Sol. Energy, 115, 494–504, https://doi.org/10.1016/j.solener.2015.03.014, 2015. a
Räisänen, P. and Lindfors, A. V.: On the Computation of Apparent Direct
Solar Radiation, J. Atmos. Sci., 76, 2761–2780,
https://doi.org/10.1175/jas-d-19-0030.1, 2019. a
Reno, M. J. and Hansen, C. W.: Identification of periods of clear sky
irradiance in time series of GHI measurements, Renew. Energ., 90,
520–531, https://doi.org/10.1016/j.renene.2015.12.031, 2016. a, b, c
Rochford, P.: SkillMetrics Project – A Python library for calculating and
displaying the skill of model predictions against observations, GitHub,
available at: https://github.com/PeterRochford/SkillMetrics (last access:
13 October 2020), 2019. a
Ruiz-Arias, J. A. and Gueymard, C. A.: Worldwide inter-comparison of clear-sky
solar radiation models: Consensus-based review of direct and global
irradiance components simulated at the earth surface, Sol. Energy, 168,
10–29, https://doi.org/10.1016/j.solener.2018.02.008, 2018. a
Schmithüsen, H., Sieger, R., and König-Langlo, G.: BSRN Toolbox V2.0 – a
tool to create quality checked output files from BSRN datasets and
station-to-archive files, PANGAEA [code], https://doi.org/10.1594/PANGAEA.774827, 2012. a
Schroedter-Homscheidt, M., Oumbe, A., Benedetti, A., and Morcrette, J.-J.:
Aerosols for concentrating solar electricity production forecasts:
requirement quantification and ECMWF/MACC aerosol forecast assessment,
B. Am. Meteorol. Soc., 94, 903–914,
https://doi.org/10.1175/BAMS-D-11-00259.1, 2013. a
Shell, K. M., Kiehl, J. T., and Shields, C. A.: Using the Radiative Kernel
Technique to Calculate Climate Feedbacks in NCAR's Community Atmospheric
Model, J. Climate, 21, 2269–2282, https://doi.org/10.1175/2007jcli2044.1,
2008. a
Shen, Y., Wei, H., Zhu, T., Zhao, X., and Zhang, K.: A Data-driven Clear Sky
Model for Direct Normal Irradiance, J. Phys. Conf. Ser.,
1072, 012004, https://doi.org/10.1088/1742-6596/1072/1/012004, 2018. a
Sinyuk, A., Dubovik, O., Holben, B., Eck, T. F., Breon, F.-M., Martonchik, J.,
Kahn, R., Diner, D. J., Vermote, E. F., Roger, J.-C., Lapyonok, T., and
Slutsker, I.: Simultaneous retrieval of aerosol and surface properties from a
combination of AERONET and satellite data, Remote Sens. Environ.,
107, 90–108, https://doi.org/10.1016/j.rse.2006.07.022, 2007. a, b
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, 2020. a, b, c, d, e, f
Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields,
C. A.: Quantifying Climate Feedbacks Using Radiative Kernels, J.
Climate, 21, 3504–3520, https://doi.org/10.1175/2007jcli2110.1, 2008. a
Sun, X., Bright, J. M., Gueymard, C. A., Acord, B., Wang, P., and Engerer,
N. A.: Worldwide performance assessment of 75 global clear-sky irradiance
models using Principal Component Analysis, Renew. Sustain. Energ.
Rev., 111, 550–570, https://doi.org/10.1016/j.rser.2019.04.006, 2019 (code available at: https://github.com/JamieMBright/clear-sky-models, last access: 10 June 2021). a, b, c, d, e, f, g, h, i, j, k, l
Sun, Z., Li, J., He, Y., Li, J., Liu, A., and Zhang, F.: Determination of
direct normal irradiance including circumsolar radiation in climate/NWP
models, Q. J. Roy. Meteor. Soc., 142,
2591–2598, https://doi.org/10.1002/qj.2848, 2016. a
Toledano, C., Torres, B., Velasco-Merino, C., Althausen, D., Groß, S., Wiegner, M., Weinzierl, B., Gasteiger, J., Ansmann, A., González, R., Mateos, D., Farrel, D., Müller, T., Haarig, M., and Cachorro, V. E.: Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE, Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, 2019. a
Trigo, I. F., Dacamara, C. C., Viterbo, P., Roujean, J.-L., Olesen, F.,
Barroso, C., de Coca, F. C., Carrer, D., Freitas, S. C., García-Haro,
J., Geiger, B., Gellens-Meulenberghs, F., Ghilain, N., Meliá, J.,
Pessanha, L., Siljamo, N., and Arboleda, A.: The Satellite Application
Facility for Land Surface Analysis, Int. J. Remote Sens.,
32, 2725–2744, https://doi.org/10.1080/01431161003743199, 2011 (data available at: http://lsa-saf.eumetsat.int, last access: 14 October 2020). a, b
Unsworth, M. H. and Monteith, J. L.: Aerosol and solar radiation in Britain,
Q. J. Roy. Meteor. Soc., 98, 778–797,
https://doi.org/10.1002/qj.49709841806, 1972. a
Witthuhn, J.: jonas-witthuhn/Aerosol-REari-Germany-2015: Source
code for the publication: “Aerosol properties and
aerosol-radiation interactions in clear sky
conditions over Germany”, Zenodo [code], https://doi.org/10.5281/zenodo.5347706, 2021. a
Witthuhn, J., Hünerbein, A., and Deneke, H.: Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations, Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020, 2020. a, b
Witthuhn, J., Hünerbein, A., Filipitsch, F., Wacker, S., Meilinger, S., and
Deneke, H.: Dataset for the publication: “Aerosol properties and
aerosol-radiation interactions in clear sky conditions over Germany”, Zenodo [data set],
https://doi.org/10.5281/ZENODO.4892729, 2021.
a
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006. a
Zhang, T., Zang, L., Mao, F., Wan, Y., and Zhu, Y.: Evaluation of
Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over China, Remote
Sensing, 12, 1684, https://doi.org/10.3390/rs12101684, 2020. a, b
Short summary
Knowledge of aerosol–radiation interactions is important for understanding the climate system and for the renewable energy sector. Here, two complementary approaches are used to assess the consistency of the underlying aerosol properties and the resulting radiative effect in clear-sky conditions over Germany in 2015. An approach based on clear-sky models and broadband irradiance observations is contrasted to the use of explicit radiative transfer simulations using CAMS reanalysis data.
Knowledge of aerosol–radiation interactions is important for understanding the climate system...
Altmetrics
Final-revised paper
Preprint