Articles | Volume 20, issue 12
https://doi.org/10.5194/acp-20-7179-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-7179-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest
Department of Earth System Science, University of California, Irvine, California 92697, USA
Department of Earth System Science, University of California, Irvine, California 92697, USA
Jeong-Hoo Park
Climate and Air Quality Research Department, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
Roger Seco
Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Eliane Alves
Department of Climate and Environment, National Institute for Amazonian Research, Manaus, 69067-375, Amazonas, Brazil
now at: Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Sarah Batalha
Centro Universitário da Amazônia, Universidade da Amazônia, UNAMA, Santarém, 68010-200, Pará, Brazil
Raoni Santana
Instituto de Engenharia e Geociências, Universidade Federal do Oeste do Pará, Santarém, 68040-255, Pará, Brazil
Saewung Kim
Department of Earth System Science, University of California, Irvine, California 92697, USA
James Smith
Department of Chemistry, University of California, Irvine, California 92697, USA
Julio Tóta
Instituto de Engenharia e Geociências, Universidade Federal do Oeste do Pará, Santarém, 68040-255, Pará, Brazil
Oscar Vega
Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, 05508-000, Brazil
Related authors
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017, https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in the Kathmandu Valley. Combining high-resolution in situ NMVOC data and model analyses, we show that REAS v2.1 and EDGAR v4.2 emission inventories underestimate the contribution of traffic and do not take the contribution of brick kilns into account. Furthermore, REAS v2.1 overestimates the contribution of residential biofuel use and industries.
Chinmoy Sarkar, Vinayak Sinha, Vinod Kumar, Maheswar Rupakheti, Arnico Panday, Khadak S. Mahata, Dipesh Rupakheti, Bhogendra Kathayat, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, https://doi.org/10.5194/acp-16-3979-2016, 2016
Short summary
Short summary
First deployment of PTR-TOF-MS in South Asia. High acetaldehyde and biogenic isoprene concentrations detected even in winter in the Kathmandu Valley. Isocyanic acid, formamide, acetamide, naphthalene and nitromethane were detected for the first time in South Asian air. Oxygenated VOCs and isoprene-dominated OH reactivity and ozone production potentials (> 68 % OPP). Regulation of emissions from biomass co-fired brick kilns' by cleaner technology would improve air quality of the valley.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Qian Li, Maor Gabay, Chen Dayan, Pawel Misztal, Alex Guenther, Erick Fredj, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-717, https://doi.org/10.5194/egusphere-2024-717, 2024
Preprint archived
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) affect the climate and air quality, while their emission from terrestrial vegetation is affected by drought in a way that is not well characterized. Our study reveals that the instantaneous intraday changes in meteorological conditions serve as a better proxy for drought-related variations in BVOCs emission rate than the absolute values of the meteorological parameters, advancing our understanding of BVOCs emission effects under climate change.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Min Huang, Gregory R. Carmichael, James H. Crawford, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
EGUsphere, https://doi.org/10.5194/egusphere-2024-484, https://doi.org/10.5194/egusphere-2024-484, 2024
Short summary
Short summary
This study uses model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutants’ budgets in this area as local emissions go down.
Xiaoxiao Li, Yijing Chen, Yuyang Li, Runlong Cai, Yiran Li, Chenjuan Deng, Jin Wu, Chao Yan, Hairong Cheng, Yongchun Liu, Markku Kulmala, Jiming Hao, James N. Smith, and Jingkun Jiang
Atmos. Chem. Phys., 23, 14801–14812, https://doi.org/10.5194/acp-23-14801-2023, https://doi.org/10.5194/acp-23-14801-2023, 2023
Short summary
Short summary
Near-continuous measurements show the composition, sources, and seasonal variations of ultrafine particles (UFPs) in urban Beijing. Vehicle and cooking emissions and new particle formation are the main sources of UFPs, and aqueous/heterogeneous processes increase UFP mode diameters. UFPs are the highest in winter due to the highest primary particle emission rates and new particle formation rates, and CHO fractions are the highest in summer due to the strongest photooxidation.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022, https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Short summary
We performed chamber experiments to measure the composition of the gas-phase reaction products of nitrate-radical-initiated oxidation of four monoterpenes. The total organic yield, effective oxygen-to-carbon ratio, and dimer-to-monomer ratio were correlated with the observed particle formation for the monoterpene systems with some exceptions. The Δ-carene system produced the most particles, followed by β-pinene, with the α-pinene and α-thujene systems producing no particles.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021, https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary
Short summary
We explored molecular properties affecting atmospheric particle formation efficiency and derived a parameterization between particle formation rate and heterodimer concentration, which showed good agreement to previously reported experimental data. Considering the simplicity of calculating heterodimer concentration, this approach has potential to improve estimates of global cloud condensation nuclei in models that are limited by the computational expense of calculating particle formation rate.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Chen Dayan, Erick Fredj, Pawel K. Misztal, Maor Gabay, Alex B. Guenther, and Eran Tas
Atmos. Chem. Phys., 20, 12741–12759, https://doi.org/10.5194/acp-20-12741-2020, https://doi.org/10.5194/acp-20-12741-2020, 2020
Short summary
Short summary
We studied the emission of biogenic volatile organic compounds from both marine and terrestrial ecosystems in the Eastern Mediterranean Basin, a global warming hot spot. We focused on isoprene and dimethyl sulfide (DMS), which are well recognized for their effect on climate and strong impact on photochemical pollution by the former. We found high emissions of isoprene and a strong decadal decrease in the emission of DMS which can both be attributed to the strong increase in seawater temperature.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Sam J. Silva, Colette L. Heald, and Alex B. Guenther
Geosci. Model Dev., 13, 2569–2585, https://doi.org/10.5194/gmd-13-2569-2020, https://doi.org/10.5194/gmd-13-2569-2020, 2020
Short summary
Short summary
Simulating the influence of the biosphere on atmospheric chemistry has traditionally been computationally intensive. We describe a surrogate canopy physics model parameterized using a statistical learning technique and specifically designed for use in large-scale chemical transport models. Our surrogate model reproduces a more detailed model to within 10 % without a large computational demand, improving the process representation of biosphere–atmosphere exchange.
Hayley S. Glicker, Michael J. Lawler, John Ortega, Suzane S. de Sá, Scot T. Martin, Paulo Artaxo, Oscar Vega Bustillos, Rodrigo de Souza, Julio Tota, Annmarie Carlton, and James N. Smith
Atmos. Chem. Phys., 19, 13053–13066, https://doi.org/10.5194/acp-19-13053-2019, https://doi.org/10.5194/acp-19-13053-2019, 2019
Short summary
Short summary
An understanding of the chemical composition of the smallest particles in the air over the Amazon Basin provides insights into the natural and human-caused influences on particle production in this sensitive region. We present measurements of the composition of sub-100 nm diameter particles performed during the wet season and identify unique constituents that point to both natural and human-caused sources and processes.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019, https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
Nanna Myllys, Jakub Kubečka, Vitus Besel, Dina Alfaouri, Tinja Olenius, James Norman Smith, and Monica Passananti
Atmos. Chem. Phys., 19, 9753–9768, https://doi.org/10.5194/acp-19-9753-2019, https://doi.org/10.5194/acp-19-9753-2019, 2019
Short summary
Short summary
In atmospheric sulfuric-acid-driven particle formation, bases are able to stabilize the initial molecular clusters and thus enhance particle formation. We have investigated the enhancing potential of different bases in atmospheric particle formation. We show that strong bases with low abundance are likely to dominate electrically neutral particle formation, whereas weak bases with high abundance have a larger role in ion-mediated particle formation.
Karena A. McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patricia C. Guimarães, Carla E. Batista, Rodrigo A. F. Souza, Eliane G. Alves, Dasa Gu, Alex B. Guenther, and Scot T. Martin
Atmos. Meas. Tech., 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019, https://doi.org/10.5194/amt-12-3123-2019, 2019
Short summary
Short summary
Volatile organic compound (VOC) emissions influence air quality and particulate distributions, particularly in major source regions such as the Amazon. A sampler for collecting VOCs from an unmanned aerial vehicle (UAV) is described. Field tests of its performance and an initial example data set collected in the Amazon are also presented. The low cost, ease of use, and maneuverability of UAVs give this method the potential to significantly advance knowledge of the spatial distribution of VOCs.
Moshe Shechner, Alex Guenther, Robert Rhew, Asher Wishkerman, Qian Li, Donald Blake, Gil Lerner, and Eran Tas
Atmos. Chem. Phys., 19, 7667–7690, https://doi.org/10.5194/acp-19-7667-2019, https://doi.org/10.5194/acp-19-7667-2019, 2019
Short summary
Short summary
Along with other recent studies, our findings point to strong emission of a suite of volatile halogenated organic compounds (VHOCs) from saline soils and salt lakes. Some emitted VHOCs were not known to be emitted from terrestrial sources, and our observations point to apparent new common controls for the emission of several VHOCs. These findings are an important milestone toward a more complete understanding of the effect of VHOCs on atmospheric ozone concentrations and oxidation capacity.
John T. Sullivan, Thomas J. McGee, Ryan M. Stauffer, Anne M. Thompson, Andrew Weinheimer, Christoph Knote, Scott Janz, Armin Wisthaler, Russell Long, James Szykman, Jinsoo Park, Youngjae Lee, Saewung Kim, Daun Jeong, Dianne Sanchez, Laurence Twigg, Grant Sumnicht, Travis Knepp, and Jason R. Schroeder
Atmos. Chem. Phys., 19, 5051–5067, https://doi.org/10.5194/acp-19-5051-2019, https://doi.org/10.5194/acp-19-5051-2019, 2019
Short summary
Short summary
During the May–June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), pollution reached the remote Taehwa Research Forest (TRF) site. Two case studies are examined and observations clearly identify TRF and the surrounding rural areas as long-term receptor sites for severe urban pollution events. In summary, domestic emissions may be causing more pollution than by transboundary pathways, which have been historically believed to be the major source of air pollution.
Xiaoxiao Li, Sabrina Chee, Jiming Hao, Jonathan P. D. Abbatt, Jingkun Jiang, and James N. Smith
Atmos. Chem. Phys., 19, 1555–1570, https://doi.org/10.5194/acp-19-1555-2019, https://doi.org/10.5194/acp-19-1555-2019, 2019
Short summary
Short summary
We performed lab experiments to explore the role of relative humidity, RH, in atmospheric monoterpene oxidation and new particle formation. These studies will provide insights into the most important steps in the process, while also more accurately representing the real atmosphere. We found that the detected compounds did not change with RH, and in fact could mostly be fully explained by the autoxidation of organic peroxy radicals followed by bimolecular reactions with other peroxy radicals.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
Eliane G. Alves, Julio Tóta, Andrew Turnipseed, Alex B. Guenther, José Oscar W. Vega Bustillos, Raoni A. Santana, Glauber G. Cirino, Julia V. Tavares, Aline P. Lopes, Bruce W. Nelson, Rodrigo A. de Souza, Dasa Gu, Trissevgeni Stavrakou, David K. Adams, Jin Wu, Scott Saleska, and Antonio O. Manzi
Biogeosciences, 15, 4019–4032, https://doi.org/10.5194/bg-15-4019-2018, https://doi.org/10.5194/bg-15-4019-2018, 2018
Short summary
Short summary
This study shows that leaf quantity and leaf age have an important effect on seasonal changes in isoprene emissions and that these could play an even more important role in regulating ecosystem isoprene fluxes than light and temperature at seasonal timescales in tropical forests. These results bring novelty and new insight for future research because in the past leaf phenology was not considered as an important factor that controls biological processes in the tropics.
Chunxiang Ye, Xianliang Zhou, Dennis Pu, Jochen Stutz, James Festa, Max Spolaor, Catalina Tsai, Christopher Cantrell, Roy L. Mauldin III, Andrew Weinheimer, Rebecca S. Hornbrook, Eric C. Apel, Alex Guenther, Lisa Kaser, Bin Yuan, Thomas Karl, Julie Haggerty, Samuel Hall, Kirk Ullmann, James Smith, and John Ortega
Atmos. Chem. Phys., 18, 9107–9120, https://doi.org/10.5194/acp-18-9107-2018, https://doi.org/10.5194/acp-18-9107-2018, 2018
Short summary
Short summary
Substantial levels of HONO existed during the day throughout the troposphere over the southeastern US during NOMADSS 2013. Particulate nitrate photolysis appeared to be the major volume HONO source, while NOx was an important HONO precursor only in industrial and urban plumes. HONO was not a significant OH radical precursor in the rural troposphere away from the ground surface; however, its production from particulate nitrate photolysis was an important renoxification pathway.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Bert Van Schaeybroeck, Lesley De Cruz, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Quentin Laffineur, Crist Amelynck, Niels Schoon, Bernard Heinesch, Thomas Holst, Almut Arneth, Reinhart Ceulemans, Arturo Sanchez-Lorenzo, and Alex Guenther
Biogeosciences, 15, 3673–3690, https://doi.org/10.5194/bg-15-3673-2018, https://doi.org/10.5194/bg-15-3673-2018, 2018
Short summary
Short summary
Biogenic isoprene fluxes are simulated over Europe with the MEGAN–MOHYCAN model for the recent past and end-of-century climate at high spatiotemporal resolution (0.1°, 3 min). Due to climate change, fluxes increased by 40 % over 1979–2014. Climate scenarios for 2070–2099 suggest an increase by 83 % due to climate, and an even stronger increase when the potential impact of CO2 fertilization is considered (up to 141 %). Accounting for CO2 inhibition cancels out a large part of these increases.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä
Atmos. Chem. Phys., 18, 2363–2380, https://doi.org/10.5194/acp-18-2363-2018, https://doi.org/10.5194/acp-18-2363-2018, 2018
Short summary
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Lukas Pichelstorfer, Dominik Stolzenburg, John Ortega, Thomas Karl, Harri Kokkola, Anton Laakso, Kari E. J. Lehtinen, James N. Smith, Peter H. McMurry, and Paul M. Winkler
Atmos. Chem. Phys., 18, 1307–1323, https://doi.org/10.5194/acp-18-1307-2018, https://doi.org/10.5194/acp-18-1307-2018, 2018
Short summary
Short summary
Quantification of new particle formation as a source of atmospheric aerosol is clearly of importance for climate and health aspects. In our new study we developed two analysis methods that allow retrieval of nanoparticle growth dynamics at much higher precision than it was possible so far. Our results clearly demonstrate that growth rates show much more variation than is currently known and suggest that the Kelvin effect governs growth in the sub-10 nm size range.
Brett B. Palm, Suzane S. de Sá, Douglas A. Day, Pedro Campuzano-Jost, Weiwei Hu, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Joel Brito, Florian Wurm, Paulo Artaxo, Ryan Thalman, Jian Wang, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Allen H. Goldstein, Yingjun Liu, Stephen R. Springston, Rodrigo Souza, Matt K. Newburn, M. Lizabeth Alexander, Scot T. Martin, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, https://doi.org/10.5194/acp-18-467-2018, 2018
Short summary
Short summary
Ambient air was oxidized by OH or O3 in an oxidation flow reactor during both wet and dry seasons in the GoAmazon2014/5 campaign to study secondary organic aerosol (SOA) formation. We investigated how much biogenic, urban, and biomass burning sources contributed to the ambient concentrations of SOA precursor gases and how their contributions changed diurnally and seasonally. SOA yields and hygroscopicity of organic aerosol in the oxidation flow reactor were also studied.
Haihan Chen, Anna L. Hodshire, John Ortega, James Greenberg, Peter H. McMurry, Annmarie G. Carlton, Jeffrey R. Pierce, Dave R. Hanson, and James N. Smith
Atmos. Chem. Phys., 18, 311–326, https://doi.org/10.5194/acp-18-311-2018, https://doi.org/10.5194/acp-18-311-2018, 2018
Short summary
Short summary
Much of what we know about atmospheric new particle formation (NPF) is based on ground-level measurements. We used tethered balloon measurements and remote sensing to study the location in the boundary layer in which NPF events are initiated, the degree to which the boundary layer is well-mixed during NPF, and the potential role that water may play in aerosol particle chemical evolution. This information will improve the representativeness of process level models and laboratory experiments.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 13417–13438, https://doi.org/10.5194/acp-17-13417-2017, https://doi.org/10.5194/acp-17-13417-2017, 2017
Short summary
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured
lightalkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Min Huang, Gregory R. Carmichael, James H. Crawford, Armin Wisthaler, Xiwu Zhan, Christopher R. Hain, Pius Lee, and Alex B. Guenther
Geosci. Model Dev., 10, 3085–3104, https://doi.org/10.5194/gmd-10-3085-2017, https://doi.org/10.5194/gmd-10-3085-2017, 2017
Short summary
Short summary
Various sensitivity simulations during two airborne campaigns were performed to assess the impact of different initialization methods and model resolutions on NUWRF-modeled weather states, heat fluxes, and the follow-on MEGAN isoprene emission calculations. Proper land initialization is shown to be important to the coupled weather modeling and the follow-on emission modeling, which is also critical to accurately representing other processes in air quality modeling and data assimilation.
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017, https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Short summary
This study provides quantitative information regarding the source contributions of the major non-methane volatile organic compound sources in the Kathmandu Valley. Combining high-resolution in situ NMVOC data and model analyses, we show that REAS v2.1 and EDGAR v4.2 emission inventories underestimate the contribution of traffic and do not take the contribution of brick kilns into account. Furthermore, REAS v2.1 overestimates the contribution of residential biofuel use and industries.
Kerneels Jaars, Pieter G. van Zyl, Johan P. Beukes, Heidi Hellén, Ville Vakkari, Micky Josipovic, Andrew D. Venter, Matti Räsänen, Leandra Knoetze, Dirk P. Cilliers, Stefan J. Siebert, Markku Kulmala, Janne Rinne, Alex Guenther, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 16, 15665–15688, https://doi.org/10.5194/acp-16-15665-2016, https://doi.org/10.5194/acp-16-15665-2016, 2016
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) – important in tropospheric ozone and secondary organic aerosol formation – were measured at a savannah grassland in South Africa. Results presented are the most extensive for this type of landscape. Compared to other parts of the world, monoterpene levels were similar, while very low isoprene levels led to significantly lower total BVOC levels. BVOC levels were an order of magnitude lower compared to anthropogenic VOC levels measured at Welgegund.
Michael J. Lawler, Paul M. Winkler, Jaeseok Kim, Lars Ahlm, Jasmin Tröstl, Arnaud P. Praplan, Siegfried Schobesberger, Andreas Kürten, Jasper Kirkby, Federico Bianchi, Jonathan Duplissy, Armin Hansel, Tuija Jokinen, Helmi Keskinen, Katrianne Lehtipalo, Markus Leiminger, Tuukka Petäjä, Matti Rissanen, Linda Rondo, Mario Simon, Mikko Sipilä, Christina Williamson, Daniela Wimmer, Ilona Riipinen, Annele Virtanen, and James N. Smith
Atmos. Chem. Phys., 16, 13601–13618, https://doi.org/10.5194/acp-16-13601-2016, https://doi.org/10.5194/acp-16-13601-2016, 2016
Short summary
Short summary
We present chemical observations of newly formed particles as small as ~ 10 nm from new particle formation experiments using sulfuric acid, dimethylamine, ammonia, and water vapor as gas phase reactants. The nanoparticles were more acidic than expected based on thermodynamic expectations, particularly at the smallest measured sizes. The results suggest rapid surface conversion of SO2 to sulfate and show a marked composition change between 10 and 15 nm, possibly indicating a phase change.
Ivan Kourtchev, Ricardo H. M. Godoi, Sarah Connors, James G. Levine, Alex T. Archibald, Ana F. L. Godoi, Sarah L. Paralovo, Cybelli G. G. Barbosa, Rodrigo A. F. Souza, Antonio O. Manzi, Roger Seco, Steve Sjostedt, Jeong-Hoo Park, Alex Guenther, Saewung Kim, James Smith, Scot T. Martin, and Markus Kalberer
Atmos. Chem. Phys., 16, 11899–11913, https://doi.org/10.5194/acp-16-11899-2016, https://doi.org/10.5194/acp-16-11899-2016, 2016
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Michel Van Roozendael, Guido R. van der Werf, Christine Wiedinmyer, Johannes W. Kaiser, Katerina Sindelarova, and Alex Guenther
Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, https://doi.org/10.5194/acp-16-10133-2016, 2016
Short summary
Short summary
Relying on a 9-year record of satellite observations of formaldehyde, we use inverse techniques to derive global top–down hydrocarbon fluxes over 2005–2013, infer seasonal and interannual variability, and detect emission trends. Our results suggest changes in fire seasonal patterns, a stronger contribution of agricultural burning, overestimated isoprene flux rates in the tropics, overly decreased isoprene emissions due to soil moisture stress in arid areas, and enhanced isoprene trends.
Pawel K. Misztal, Jeremy C. Avise, Thomas Karl, Klaus Scott, Haflidi H. Jonsson, Alex B. Guenther, and Allen H. Goldstein
Atmos. Chem. Phys., 16, 9611–9628, https://doi.org/10.5194/acp-16-9611-2016, https://doi.org/10.5194/acp-16-9611-2016, 2016
Short summary
Short summary
In this study, for the first time regional BVOC models are compared with direct regional measurements of fluxes from aircraft, allowing assessment of model accuracy at scales relevant to air quality modeling. We directly assess modeled isoprene emission inventories which are important for regional air quality simulations of ozone and secondary particle concentrations.
Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. McMurry, James N. Smith, and Jeffery R. Pierce
Atmos. Chem. Phys., 16, 9321–9348, https://doi.org/10.5194/acp-16-9321-2016, https://doi.org/10.5194/acp-16-9321-2016, 2016
Short summary
Short summary
Processes that control the growth of newly formed particles are not well understood and limit predictions of aerosol climate impacts. We combine state-of-the-art measurements at a central-US site with a particle-growth model to investigate the species and processes contributing to growth. Observed growth was dominated by organics, sulfate salts, or a mixture of these two. The model qualitatively captures the variability between different days.
Albert Rivas-Ubach, Yina Liu, Jordi Sardans, Malak M. Tfaily, Young-Mo Kim, Eric Bourrianne, Ljiljana Paša-Tolić, Josep Peñuelas, and Alex Guenther
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-209, https://doi.org/10.5194/amt-2016-209, 2016
Revised manuscript not accepted
Luping Su, Edward G. Patton, Jordi Vilà-Guerau de Arellano, Alex B. Guenther, Lisa Kaser, Bin Yuan, Fulizi Xiong, Paul B. Shepson, Li Zhang, David O. Miller, William H. Brune, Karsten Baumann, Eric Edgerton, Andrew Weinheimer, Pawel K. Misztal, Jeong-Hoo Park, Allen H. Goldstein, Kate M. Skog, Frank N. Keutsch, and John E. Mak
Atmos. Chem. Phys., 16, 7725–7741, https://doi.org/10.5194/acp-16-7725-2016, https://doi.org/10.5194/acp-16-7725-2016, 2016
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Chun Zhao, Maoyi Huang, Jerome D. Fast, Larry K. Berg, Yun Qian, Alex Guenther, Dasa Gu, Manish Shrivastava, Ying Liu, Stacy Walters, Gabriele Pfister, Jiming Jin, John E. Shilling, and Carsten Warneke
Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, https://doi.org/10.5194/gmd-9-1959-2016, 2016
Short summary
Short summary
In this study, the latest version of MEGAN is coupled within CLM4 in WRF-Chem. In this implementation, MEGAN shares a consistent vegetation map with CLM4. This improved modeling framework is used to investigate the impact of two land surface schemes on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models.
Dominique E. Young, Hwajin Kim, Caroline Parworth, Shan Zhou, Xiaolu Zhang, Christopher D. Cappa, Roger Seco, Saewung Kim, and Qi Zhang
Atmos. Chem. Phys., 16, 5427–5451, https://doi.org/10.5194/acp-16-5427-2016, https://doi.org/10.5194/acp-16-5427-2016, 2016
Short summary
Short summary
Aerosol chemistry and the sources and processes driving the observed temporal and diurnal variations of PM were studied in a polluted urban environment during winter 2013. These results were compared to a similar campaign from winter 2010. Meteorology strongly influenced PM composition, both directly and indirectly. Nighttime reactions played a more important role in 2013 and the influence from a nighttime formed residual layer that mixed down in the morning was also much more intense in 2013.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
Chinmoy Sarkar, Vinayak Sinha, Vinod Kumar, Maheswar Rupakheti, Arnico Panday, Khadak S. Mahata, Dipesh Rupakheti, Bhogendra Kathayat, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, https://doi.org/10.5194/acp-16-3979-2016, 2016
Short summary
Short summary
First deployment of PTR-TOF-MS in South Asia. High acetaldehyde and biogenic isoprene concentrations detected even in winter in the Kathmandu Valley. Isocyanic acid, formamide, acetamide, naphthalene and nitromethane were detected for the first time in South Asian air. Oxygenated VOCs and isoprene-dominated OH reactivity and ozone production potentials (> 68 % OPP). Regulation of emissions from biomass co-fired brick kilns' by cleaner technology would improve air quality of the valley.
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
F. Yu, G. Luo, S. C. Pryor, P. R. Pillai, S. H. Lee, J. Ortega, J. J. Schwab, A. G. Hallar, W. R. Leaitch, V. P. Aneja, J. N. Smith, J. T. Walker, O. Hogrefe, and K. L. Demerjian
Atmos. Chem. Phys., 15, 13993–14003, https://doi.org/10.5194/acp-15-13993-2015, https://doi.org/10.5194/acp-15-13993-2015, 2015
Short summary
Short summary
The role of low-volatility organics in new particle formation (NPF) in the atmosphere is assessed. An empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics significantly overpredicts NPF in the summer.
Two different schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America.
R. Gonzalez-Abraham, S. H. Chung, J. Avise, B. Lamb, E. P. Salathé Jr., C. G. Nolte, D. Loughlin, A. Guenther, C. Wiedinmyer, T. Duhl, Y. Zhang, and D. G. Streets
Atmos. Chem. Phys., 15, 12645–12665, https://doi.org/10.5194/acp-15-12645-2015, https://doi.org/10.5194/acp-15-12645-2015, 2015
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, M. De Mazière, C. Vigouroux, F. Hendrick, M. George, C. Clerbaux, P.-F. Coheur, and A. Guenther
Atmos. Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015, https://doi.org/10.5194/acp-15-11861-2015, 2015
Short summary
Short summary
Formaldehyde columns from two space sensors, GOME-2 and OMI, constrain by inverse modeling the global emissions of HCHO precursors in 2010. The resulting biogenic and pyrogenic fluxes from both optimizations show a very good degree of consistency. The isoprene fluxes are reduced globally by ca. 10%, and emissions from fires decrease by ca. 35%, compared to the prior. Anthropogenic emissions are weakly constrained except over China. Sensitivity inversions show robustness of the inferred fluxes.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy
Atmos. Chem. Phys., 15, 8643–8656, https://doi.org/10.5194/acp-15-8643-2015, https://doi.org/10.5194/acp-15-8643-2015, 2015
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
S. Kim, S.-Y. Kim, M. Lee, H. Shim, G. M. Wolfe, A. B. Guenther, A. He, Y. Hong, and J. Han
Atmos. Chem. Phys., 15, 4357–4371, https://doi.org/10.5194/acp-15-4357-2015, https://doi.org/10.5194/acp-15-4357-2015, 2015
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
L. Q. Hao, A. Kortelainen, S. Romakkaniemi, H. Portin, A. Jaatinen, A. Leskinen, M. Komppula, P. Miettinen, D. Sueper, A. Pajunoja, J. N. Smith, K. E. J. Lehtinen, D. R. Worsnop, A. Laaksonen, and A. Virtanen
Atmos. Chem. Phys., 14, 13483–13495, https://doi.org/10.5194/acp-14-13483-2014, https://doi.org/10.5194/acp-14-13483-2014, 2014
Short summary
Short summary
Positive matrix factorization (PMF) was applied to the unified high-resolution mass spectra organic species with NO+ and NO2+ ions from the measurement in a mixed region between the boreal forestland and the urban area. The PMF analysis succeeded in separating the mixed spectra into three distinct organic factors and one inorganic factor. The particulate organic nitrate was distinguished by PMF for the first time, with a contribution of one-third of the total nitrate mass.
C. S. Brauer, T. A. Blake, A. B. Guenther, S. W. Sharpe, R. L. Sams, and T. J. Johnson
Atmos. Meas. Tech., 7, 3839–3847, https://doi.org/10.5194/amt-7-3839-2014, https://doi.org/10.5194/amt-7-3839-2014, 2014
Y. You, V. P. Kanawade, J. A. de Gouw, A. B. Guenther, S. Madronich, M. R. Sierra-Hernández, M. Lawler, J. N. Smith, S. Takahama, G. Ruggeri, A. Koss, K. Olson, K. Baumann, R. J. Weber, A. Nenes, H. Guo, E. S. Edgerton, L. Porcelli, W. H. Brune, A. H. Goldstein, and S.-H. Lee
Atmos. Chem. Phys., 14, 12181–12194, https://doi.org/10.5194/acp-14-12181-2014, https://doi.org/10.5194/acp-14-12181-2014, 2014
Short summary
Short summary
Amiens play important roles in atmospheric secondary aerosol formation and human health, but the fast response measurements of amines are lacking. Here we show measurements in a southeastern US forest and a moderately polluted midwestern site. Our results show that gas to particle conversion is an important process that controls ambient amine concentrations and that biomass burning is an important source of amines.
M. J. Lawler, J. Whitehead, C. O'Dowd, C. Monahan, G. McFiggans, and J. N. Smith
Atmos. Chem. Phys., 14, 11557–11569, https://doi.org/10.5194/acp-14-11557-2014, https://doi.org/10.5194/acp-14-11557-2014, 2014
Short summary
Short summary
This work describes the chemical and physical characterization of very small (< 100 nm diameter) particles in the marine atmosphere. We show that sea salt is present even at very small sizes and present evidence that organic species are important contributors to apparent new particle formation events over the ocean.
Y. Y. Cui, A. Hodzic, J. N. Smith, J. Ortega, J. Brioude, H. Matsui, E. J. T. Levin, A. Turnipseed, P. Winkler, and B. de Foy
Atmos. Chem. Phys., 14, 11011–11029, https://doi.org/10.5194/acp-14-11011-2014, https://doi.org/10.5194/acp-14-11011-2014, 2014
P. K. Misztal, T. Karl, R. Weber, H. H. Jonsson, A. B. Guenther, and A. H. Goldstein
Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, https://doi.org/10.5194/acp-14-10631-2014, 2014
S. Smolander, Q. He, D. Mogensen, L. Zhou, J. Bäck, T. Ruuskanen, S. Noe, A. Guenther, H. Aaltonen, M. Kulmala, and M. Boy
Biogeosciences, 11, 5425–5443, https://doi.org/10.5194/bg-11-5425-2014, https://doi.org/10.5194/bg-11-5425-2014, 2014
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr
Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, https://doi.org/10.5194/acp-14-9317-2014, 2014
R. J. Park, S. K. Hong, H.-A. Kwon, S. Kim, A. Guenther, J.-H. Woo, and C. P. Loughner
Atmos. Chem. Phys., 14, 7929–7940, https://doi.org/10.5194/acp-14-7929-2014, https://doi.org/10.5194/acp-14-7929-2014, 2014
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
J. P. Greenberg, J. Peñuelas, A. Guenther, R. Seco, A. Turnipseed, X. Jiang, I. Filella, M. Estiarte, J. Sardans, R. Ogaya, J. Llusia, and F. Rapparini
Atmos. Meas. Tech., 7, 2263–2271, https://doi.org/10.5194/amt-7-2263-2014, https://doi.org/10.5194/amt-7-2263-2014, 2014
K. Jaars, J. P. Beukes, P. G. van Zyl, A. D. Venter, M. Josipovic, J. J. Pienaar, V. Vakkari, H. Aaltonen, H. Laakso, M. Kulmala, P. Tiitta, A. Guenther, H. Hellén, L. Laakso, and H. Hakola
Atmos. Chem. Phys., 14, 7075–7089, https://doi.org/10.5194/acp-14-7075-2014, https://doi.org/10.5194/acp-14-7075-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
D. R. Gentner, E. Ormeño, S. Fares, T. B. Ford, R. Weber, J.-H. Park, J. Brioude, W. M. Angevine, J. F. Karlik, and A. H. Goldstein
Atmos. Chem. Phys., 14, 5393–5413, https://doi.org/10.5194/acp-14-5393-2014, https://doi.org/10.5194/acp-14-5393-2014, 2014
M. Liu, K. Rajagopalan, S. H. Chung, X. Jiang, J. Harrison, T. Nergui, A. Guenther, C. Miller, J. Reyes, C. Tague, J. Choate, E. P. Salathé, C. O. Stöckle, and J. C. Adam
Biogeosciences, 11, 2601–2622, https://doi.org/10.5194/bg-11-2601-2014, https://doi.org/10.5194/bg-11-2601-2014, 2014
P. Boylan, D. Helmig, and J.-H. Park
Atmos. Meas. Tech., 7, 1231–1244, https://doi.org/10.5194/amt-7-1231-2014, https://doi.org/10.5194/amt-7-1231-2014, 2014
G. M. Wolfe, C. Cantrell, S. Kim, R. L. Mauldin III, T. Karl, P. Harley, A. Turnipseed, W. Zheng, F. Flocke, E. C. Apel, R. S. Hornbrook, S. R. Hall, K. Ullmann, S. B. Henry, J. P. DiGangi, E. S. Boyle, L. Kaser, R. Schnitzhofer, A. Hansel, M. Graus, Y. Nakashima, Y. Kajii, A. Guenther, and F. N. Keutsch
Atmos. Chem. Phys., 14, 4715–4732, https://doi.org/10.5194/acp-14-4715-2014, https://doi.org/10.5194/acp-14-4715-2014, 2014
R. Zhang, T. Duhl, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D. Gilliland, A. Guenther, S. H. Chung, B. K. Lamb, and T. M. VanReken
Biogeosciences, 11, 1461–1478, https://doi.org/10.5194/bg-11-1461-2014, https://doi.org/10.5194/bg-11-1461-2014, 2014
E. J. T. Levin, A. J. Prenni, B. B. Palm, D. A. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. L. Jimenez, and J. N. Smith
Atmos. Chem. Phys., 14, 2657–2667, https://doi.org/10.5194/acp-14-2657-2014, https://doi.org/10.5194/acp-14-2657-2014, 2014
J.-H. Park, S. Fares, R. Weber, and A. H. Goldstein
Atmos. Chem. Phys., 14, 231–244, https://doi.org/10.5194/acp-14-231-2014, https://doi.org/10.5194/acp-14-231-2014, 2014
L. Kaser, T. Karl, A. Guenther, M. Graus, R. Schnitzhofer, A. Turnipseed, L. Fischer, P. Harley, M. Madronich, D. Gochis, F. N. Keutsch, and A. Hansel
Atmos. Chem. Phys., 13, 11935–11947, https://doi.org/10.5194/acp-13-11935-2013, https://doi.org/10.5194/acp-13-11935-2013, 2013
S. Situ, A. Guenther, X. Wang, X. Jiang, A. Turnipseed, Z. Wu, J. Bai, and X. Wang
Atmos. Chem. Phys., 13, 11803–11817, https://doi.org/10.5194/acp-13-11803-2013, https://doi.org/10.5194/acp-13-11803-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
M. R. Pennington, B. R. Bzdek, J. W. DePalma, J. N. Smith, A.-M. Kortelainen, L. Hildebrandt Ruiz, T. Petäjä, M. Kulmala, D. R. Worsnop, and M. V. Johnston
Atmos. Chem. Phys., 13, 10215–10225, https://doi.org/10.5194/acp-13-10215-2013, https://doi.org/10.5194/acp-13-10215-2013, 2013
J. E. Mak, L. Su, A. Guenther, and T. Karl
Atmos. Meas. Tech., 6, 2703–2712, https://doi.org/10.5194/amt-6-2703-2013, https://doi.org/10.5194/amt-6-2703-2013, 2013
J. Zhao, J. Ortega, M. Chen, P. H. McMurry, and J. N. Smith
Atmos. Chem. Phys., 13, 7631–7644, https://doi.org/10.5194/acp-13-7631-2013, https://doi.org/10.5194/acp-13-7631-2013, 2013
X. Tie, F. Geng, A. Guenther, J. Cao, J. Greenberg, R. Zhang, E. Apel, G. Li, A. Weinheimer, J. Chen, and C. Cai
Atmos. Chem. Phys., 13, 5655–5669, https://doi.org/10.5194/acp-13-5655-2013, https://doi.org/10.5194/acp-13-5655-2013, 2013
S. Lance, T. Raatikainen, T. B. Onasch, D. R. Worsnop, X.-Y. Yu, M. L. Alexander, M. R. Stolzenburg, P. H. McMurry, J. N. Smith, and A. Nenes
Atmos. Chem. Phys., 13, 5049–5062, https://doi.org/10.5194/acp-13-5049-2013, https://doi.org/10.5194/acp-13-5049-2013, 2013
R. Seco, J. Peñuelas, I. Filella, J. Llusia, S. Schallhart, A. Metzger, M. Müller, and A. Hansel
Atmos. Chem. Phys., 13, 4291–4306, https://doi.org/10.5194/acp-13-4291-2013, https://doi.org/10.5194/acp-13-4291-2013, 2013
T. R. Duhl, R. Zhang, A. Guenther, S. H. Chung, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D. Gilliland, B. K. Lamb, T. M. VanReken, Y. Zhang, and E. Salathé
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-2325-2013, https://doi.org/10.5194/gmdd-6-2325-2013, 2013
Revised manuscript not accepted
L. Kaser, T. Karl, R. Schnitzhofer, M. Graus, I. S. Herdlinger-Blatt, J. P. DiGangi, B. Sive, A. Turnipseed, R. S. Hornbrook, W. Zheng, F. M. Flocke, A. Guenther, F. N. Keutsch, E. Apel, and A. Hansel
Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, https://doi.org/10.5194/acp-13-2893-2013, 2013
J.-H. Park, A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger
Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, https://doi.org/10.5194/acp-13-1439-2013, 2013
T. R. Duhl, D. Gochis, A. Guenther, S. Ferrenberg, and E. Pendall
Biogeosciences, 10, 483–499, https://doi.org/10.5194/bg-10-483-2013, https://doi.org/10.5194/bg-10-483-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Interannual variability in the ecosystem CO2 fluxes at a paludified spruce forest and ombrotrophic bog in the southern taiga
Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective
Volatile organic compound fluxes over a winter wheat field by PTR-Qi-TOF-MS and eddy covariance
Volatile organic compound fluxes in a subarctic peatland and lake
OH and HO2 radical chemistry in a midlatitude forest: measurements and model comparisons
Consumption of CH3Cl, CH3Br, and CH3I and emission of CHCl3, CHBr3, and CH2Br2 from the forefield of a retreating Arctic glacier
Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment
Plant assemblages in atmospheric deposition
Emission of trace gases and aerosols from biomass burning – an updated assessment
Investigation of coastal sea-fog formation using the WIBS (wideband integrated bioaerosol sensor) technique
Soil–atmosphere exchange of carbonyl sulfide in a Mediterranean citrus orchard
Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign
Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air
Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
Impacts of an intense wildfire smoke episode on surface radiation, energy and carbon fluxes in southwestern British Columbia, Canada
Surface–atmosphere exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural grassland pre- and postfertilisation
Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland
Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK
Annual cycle of Scots pine photosynthesis
Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation
Adverse effects of increasing drought on air quality via natural processes
A synthesis of research needs for improving the understanding of atmospheric mercury cycling
Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft
Effect of mid-term drought on Quercus pubescens BVOCs' emission seasonality and their dependency on light and/or temperature
Field observations of volatile organic compound (VOC) exchange in red oaks
Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season
A top-down approach of surface carbonyl sulfide exchange by a Mediterranean oak forest ecosystem in southern France
Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l.) and remote site in the central Qinghai–Tibet Plateau
Imbalanced phosphorus and nitrogen deposition in China's forests
Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes
Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy
Methanol and isoprene emissions from the fast growing tropical pioneer species Vismia guianensis (Aubl.) Pers. (Hypericaceae) in the central Amazon forest
Future vegetation–climate interactions in Eastern Siberia: an assessment of the competing effects of CO2 and secondary organic aerosols
Conceptual design of a measurement network of the global change
Effects of global change during the 21st century on the nitrogen cycle
Introduction: The Pan-Eurasian Experiment (PEEX) – multidisciplinary, multiscale and multicomponent research and capacity-building initiative
The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols
An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements
Arctic microbial and next-generation sequencing approach for bacteria in snow and frost flowers: selected identification, abundance and freezing nucleation
Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest
Sources and fluxes of organic nitrogen in precipitation over the southern East Sea/Sea of Japan
Influence of local air pollution on the deposition of peroxyacetyl nitrate to a nutrient-poor natural grassland ecosystem
Variability of BVOC emissions from a Mediterranean mixed forest in southern France with a focus on Quercus pubescens
Forest canopy interactions with nucleation mode particles
The balances of mixing ratios and segregation intensity: a case study from the field (ECHO 2003)
Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest
From emissions to ambient mixing ratios: online seasonal field measurements of volatile organic compounds over a Norway spruce-dominated forest in central Germany
Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013
Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NOx
Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux–gradient similarity methods
Vadim Mamkin, Vitaly Avilov, Dmitry Ivanov, Andrey Varlagin, and Julia Kurbatova
Atmos. Chem. Phys., 23, 2273–2291, https://doi.org/10.5194/acp-23-2273-2023, https://doi.org/10.5194/acp-23-2273-2023, 2023
Short summary
Short summary
We collected 6 years of flux measurements at two southern taiga peatland ecosystems, namely a paludified spruce forest and ombrotrophic bog located in the same landscape in western Russia, which showed that the interannual variability in the environmental conditions affect CO2 ecosystem–atmosphere exchange differently in forest and non-forest peatlands. We observed that an anomalously warm winter and spring led to increasing CO2 uptake at the paludified forest (more than at the bog).
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Benjamin Loubet, Pauline Buysse, Lais Gonzaga-Gomez, Florence Lafouge, Raluca Ciuraru, Céline Decuq, Julien Kammer, Sandy Bsaibes, Christophe Boissard, Brigitte Durand, Jean-Christophe Gueudet, Olivier Fanucci, Olivier Zurfluh, Letizia Abis, Nora Zannoni, François Truong, Dominique Baisnée, Roland Sarda-Estève, Michael Staudt, and Valérie Gros
Atmos. Chem. Phys., 22, 2817–2842, https://doi.org/10.5194/acp-22-2817-2022, https://doi.org/10.5194/acp-22-2817-2022, 2022
Short summary
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Michelle M. Lew, Pamela S. Rickly, Brandon P. Bottorff, Emily Reidy, Sofia Sklaveniti, Thierry Léonardis, Nadine Locoge, Sebastien Dusanter, Shuvashish Kundu, Ezra Wood, and Philip S. Stevens
Atmos. Chem. Phys., 20, 9209–9230, https://doi.org/10.5194/acp-20-9209-2020, https://doi.org/10.5194/acp-20-9209-2020, 2020
Short summary
Short summary
The OH radical is the primary oxidant in the atmosphere, and measurements of its concentration provide a rigorous test of our understanding of atmospheric chemistry. Previous measurements of OH concentrations in forest environments have shown large discrepancies with model predictions. In this paper, we present measurements of OH in a forest in Indiana, USA, and compare the results to model predictions to test our understanding of this important chemistry.
Moya L. Macdonald, Jemma L. Wadham, Dickon Young, Chris R. Lunder, Ove Hermansen, Guillaume Lamarche-Gagnon, and Simon O'Doherty
Atmos. Chem. Phys., 20, 7243–7258, https://doi.org/10.5194/acp-20-7243-2020, https://doi.org/10.5194/acp-20-7243-2020, 2020
Short summary
Short summary
Climate change has caused glaciers in the Arctic to shrink, uncovering new soils. We used field measurements to study the exchange of a group of gases involved in ozone destruction, called halocarbons, between these new soils and the atmosphere. We found that mats of cyanobacteria, early colonisers of soils, are linked to a larger-than-expected exchange of halocarbons with the atmosphere. We also found that gases which are commonly thought to be marine in origin were released from these soils.
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020, https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary
Short summary
There are several widely grown tree species whose BVOC emission potentials are still unknown. Studies over the Amazon rainforest have reported presence of terrestrial dimethyl sulfide sources. Here, we show that mahogany, which is grown widely in several regions of the world, is a high emitter of dimethyl sulfide and monoterpenes. With future land use and land cover changes promoting plantations of this tree for economic purposes, its impact on air quality could be quite significant.
Ke Dong, Cheolwoon Woo, and Naomichi Yamamoto
Atmos. Chem. Phys., 19, 11969–11983, https://doi.org/10.5194/acp-19-11969-2019, https://doi.org/10.5194/acp-19-11969-2019, 2019
Short summary
Short summary
The work reported here is the first, the most comprehensive molecularly based study of atmospheric deposition of plants. Plants disperse spores, pollen, and fragments into the atmosphere. The emitted plant particles return to the pedosphere by sedimentation (dry deposition) and/or by precipitation (wet deposition), comprising part of the Earth's cycling of substances. This study reports plant assemblages in dry and wet atmospheric deposits collected together at the same sampling point.
Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, https://doi.org/10.5194/acp-19-8523-2019, 2019
Short summary
Short summary
Biomass burning is one of the largest sources of atmospheric pollutants worldwide. This paper presents an up-to-date compilation of emission factors for over 120 trace gas and aerosol species from the different forms of open vegetation fires and domestic biofuel use, based on an analysis of over 370 published studies. Using these emission factors and current global burning activity data, the annual emissions of important species released by the various types of biomass burning are estimated.
Shane M. Daly, David J. O'Connor, David A. Healy, Stig Hellebust, Jovanna Arndt, Eoin J. McGillicuddy, Patrick Feeney, Michael Quirke, John C. Wenger, and John R. Sodeau
Atmos. Chem. Phys., 19, 5737–5751, https://doi.org/10.5194/acp-19-5737-2019, https://doi.org/10.5194/acp-19-5737-2019, 2019
Short summary
Short summary
For a long time sea-salt particles were considered the only types of particles that drive sea-fog formation but recently iodine oxide particles released from kelp have been identified as a source. There are no previous field studies to provide a direct timeline link between molecular iodine release, particle formation and sea-fog formation. The present observations from Cork Harbour provide such a link. A stabilizing mechanism enhancing distribution of iodine in the troposphere is suggested.
Fulin Yang, Rafat Qubaja, Fyodor Tatarinov, Rafael Stern, and Dan Yakir
Atmos. Chem. Phys., 19, 3873–3883, https://doi.org/10.5194/acp-19-3873-2019, https://doi.org/10.5194/acp-19-3873-2019, 2019
Short summary
Short summary
The contribution of soil carbonyl sulfate (COS) flux is probably the major limitation to the application of COS as a novel tracer of canopy-scale CO2 uptake. We provide new, field-based high-resolution results on the spatial and temporal variations in soil COS flux, its relationships to CO2 exchange and the key factors influencing it. We furthermore provide the only study, to our knowledge, that validate the surface dynamic chamber approach, increasingly used, with soil concentration profiles.
Federica Pacifico, Claire Delon, Corinne Jambert, Pierre Durand, Eleanor Morris, Mat J. Evans, Fabienne Lohou, Solène Derrien, Venance H. E. Donnou, Arnaud V. Houeto, Irene Reinares Martínez, and Pierre-Etienne Brilouet
Atmos. Chem. Phys., 19, 2299–2325, https://doi.org/10.5194/acp-19-2299-2019, https://doi.org/10.5194/acp-19-2299-2019, 2019
Short summary
Short summary
Biogenic fluxes from soil at a local and regional scale are crucial to study air pollution and climate. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field, and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in
June and July 2016.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Ian G. McKendry, Andreas Christen, Sung-Ching Lee, Madison Ferrara, Kevin B. Strawbridge, Norman O'Neill, and Andrew Black
Atmos. Chem. Phys., 19, 835–846, https://doi.org/10.5194/acp-19-835-2019, https://doi.org/10.5194/acp-19-835-2019, 2019
Short summary
Short summary
Wildfire smoke in July 2015 had a significant impact on air quality, radiation, and energy budgets across British Columbia. With lighter smoke, a wetland and forested site showed enhanced photosynthetic activity (taking in carbon dioxide). However, with dense smoke the forested site became a strong source. These results suggest that smoke during the growing season potentially plays an important role in the carbon budget, and this effect will likely increase as climate changes.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Marsailidh M. Twigg, Nicholas Cowan, Matthew R. Jones, Sarah R. Leeson, William J. Bloss, Louisa J. Kramer, Leigh Crilley, Matthias Sörgel, Meinrat Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 18, 16953–16978, https://doi.org/10.5194/acp-18-16953-2018, https://doi.org/10.5194/acp-18-16953-2018, 2018
Short summary
Short summary
Understanding the impact of agricultural activities on the atmosphere requires more measurements of inorganic trace gases and associated aerosol counterparts. This research presents 1 month of measurements above agricultural grassland during a period of fertiliser application. It was found that emissions of the important trace gases ammonia and nitrous acid peaked after fertiliser use and that the velocity at which the measured aerosols were deposited was dependent upon their size.
Wu Sun, Linda M. J. Kooijmans, Kadmiel Maseyk, Huilin Chen, Ivan Mammarella, Timo Vesala, Janne Levula, Helmi Keskinen, and Ulli Seibt
Atmos. Chem. Phys., 18, 1363–1378, https://doi.org/10.5194/acp-18-1363-2018, https://doi.org/10.5194/acp-18-1363-2018, 2018
Short summary
Short summary
Most soils consume carbonyl sulfide (COS) and CO due to microbial uptake, but whether boreal forest soils act like this is uncertain. We measured growing season soil COS and CO fluxes in a Finnish pine forest. The soil behaved as a consistent and relatively invariant sink of COS and CO. Uptake rates of COS and CO decrease with soil moisture due to diffusion limitation and increase with respiration because of microbial control. Using COS to infer photosynthesis is not affected by soil COS flux.
Yuk S. Tang, Christine F. Braban, Ulrike Dragosits, Anthony J. Dore, Ivan Simmons, Netty van Dijk, Janet Poskitt, Gloria Dos Santos Pereira, Patrick O. Keenan, Christopher Conolly, Keith Vincent, Rognvald I. Smith, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 18, 705–733, https://doi.org/10.5194/acp-18-705-2018, https://doi.org/10.5194/acp-18-705-2018, 2018
Short summary
Short summary
A unique long-term dataset of NH3 and NH4+ data from the NAMN is used to assess spatial, seasonal and long-term variability across the UK. NH3 is spatially variable, with distinct temporal profiles according to source types. NH4+ is spatially smoother, with peak concentrations in spring from long-range transport. Decrease in NH3 is smaller than emissions, but NH4+ decreased faster than NH3, due to a shift from stable (NH4)2SO4 to semi-volatile NH4NO3, increasing the atmospheric lifetime of NH3.
Pertti Hari, Veli-Matti Kerminen, Liisa Kulmala, Markku Kulmala, Steffen Noe, Tuukka Petäjä, Anni Vanhatalo, and Jaana Bäck
Atmos. Chem. Phys., 17, 15045–15053, https://doi.org/10.5194/acp-17-15045-2017, https://doi.org/10.5194/acp-17-15045-2017, 2017
Short summary
Short summary
We developed a theory on the seasonal behaviour of photosynthesis in natural conditions and tested the theory with intensive measurements. Light, temperature, water vapor and CO2 concentration explained the daily variation in photosynthesis, and the physiological state of the photosynthetic machinery explained the annual pattern of photosynthesis. The theory explained about 95 % of the variance of photosynthesis measured with chambers in the field in northern Finland.
Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw
Atmos. Chem. Phys., 17, 13417–13438, https://doi.org/10.5194/acp-17-13417-2017, https://doi.org/10.5194/acp-17-13417-2017, 2017
Short summary
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured
lightalkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Yuxuan Wang, Yuanyu Xie, Wenhao Dong, Yi Ming, Jun Wang, and Lu Shen
Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, https://doi.org/10.5194/acp-17-12827-2017, 2017
Short summary
Short summary
Besides the well-known large impact on agriculture and water resources, drought is associated with significant adverse effects on air quality. Drought-induced degradation of air quality is largely due to natural processes, offsetting the effort of anthropogenic emission reduction during the past decades. Such adverse impacts should be included in modeling processes under current and future climate for mitigation policy.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
David S. Sayres, Ronald Dobosy, Claire Healy, Edward Dumas, John Kochendorfer, Jason Munster, Jordan Wilkerson, Bruce Baker, and James G. Anderson
Atmos. Chem. Phys., 17, 8619–8633, https://doi.org/10.5194/acp-17-8619-2017, https://doi.org/10.5194/acp-17-8619-2017, 2017
Short summary
Short summary
Arctic temperatures have risen faster than the global average, causing the depth of melting of the frozen ground to increase. Previously frozen organic carbon, once exposed to air, water, and microbes, is turned into carbon dioxide and methane, both of which are important greenhouse gases. Due to the large and varied surface area of the Arctic and the difficulty of making measurements there we use a low flying aircraft (<25 m) to measure the amount of methane released from different regions.
Amélie Saunier, Elena Ormeño, Christophe Boissard, Henri Wortham, Brice Temime-Roussel, Caroline Lecareux, Alexandre Armengaud, and Catherine Fernandez
Atmos. Chem. Phys., 17, 7555–7566, https://doi.org/10.5194/acp-17-7555-2017, https://doi.org/10.5194/acp-17-7555-2017, 2017
Short summary
Short summary
We investigated the BVOC emissions variations of Quercus Pubescens, under natural and amplified drought, in situ, in order to determine the dependency to light and/or temperature of these emissions. Our results showed that all BVOC emissions were reduced with amplified drought.
Moreover, we highlighted two dependences: (i) light and temperature and (ii) light and temperature during the day and to temperature during the night. These results can be useful to enhance emission models.
Luca Cappellin, Alberto Algarra Alarcon, Irina Herdlinger-Blatt, Juaquin Sanchez, Franco Biasioli, Scot T. Martin, Francesco Loreto, and Karena A. McKinney
Atmos. Chem. Phys., 17, 4189–4207, https://doi.org/10.5194/acp-17-4189-2017, https://doi.org/10.5194/acp-17-4189-2017, 2017
Short summary
Short summary
The role of volatile organic compounds (VOCs) in plant interactions with the atmosphere is investigated through field observations of branch-level VOC exchange in a New England forest. The data reveal previously unknown sources and sinks of oxygenated VOCs. The emission of methyl ethyl ketone is linked to uptake of methyl vinyl ketone, suggesting the possibility of within-leaf isoprene oxidation. Bidirectional fluxes of some VOCs are also reported, including for benzaldehyde for the first time.
Hannele Hakola, Virpi Tarvainen, Arnaud P. Praplan, Kerneels Jaars, Marja Hemmilä, Markku Kulmala, Jaana Bäck, and Heidi Hellén
Atmos. Chem. Phys., 17, 3357–3370, https://doi.org/10.5194/acp-17-3357-2017, https://doi.org/10.5194/acp-17-3357-2017, 2017
Short summary
Short summary
We present spring and summer VOC emission rate measurements from Norway spruce using an in situ gas chromatograph. Monoterpene and C4–C10 aldehyde emission rates reached maxima in July. SQT emissions increased at the end of July and in August SQT were the most abundant group. The MT emission pattern varied a lot from tree to tree and therefore emission fluxes on canopy level should be conducted for more representative measurements. However, leaf level measurements produce more reliable SQT data.
Sauveur Belviso, Ilja Marco Reiter, Benjamin Loubet, Valérie Gros, Juliette Lathière, David Montagne, Marc Delmotte, Michel Ramonet, Cerise Kalogridis, Benjamin Lebegue, Nicolas Bonnaire, Victor Kazan, Thierry Gauquelin, Catherine Fernandez, and Bernard Genty
Atmos. Chem. Phys., 16, 14909–14923, https://doi.org/10.5194/acp-16-14909-2016, https://doi.org/10.5194/acp-16-14909-2016, 2016
Short summary
Short summary
The role that soil, foliage, and atmospheric dynamics have on surface OCS exchange in a Mediterranean forest ecosystem in southern France (O3HP) was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating GPP directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling NEE to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime.
Zhijia Ci, Fei Peng, Xian Xue, and Xiaoshan Zhang
Atmos. Chem. Phys., 16, 14741–14754, https://doi.org/10.5194/acp-16-14741-2016, https://doi.org/10.5194/acp-16-14741-2016, 2016
Short summary
Short summary
We performed field measurements and controlled field experiments to examine the flux, temporal variation and influencing factors of air–surface Hg(0) exchange at a high-altitude and remote site in the central Qinghai–Tibet Plateau. We found that the environmental conditions greatly influenced the air–surface Hg dynamics. Our results have important implications for the Hg biogeochemical cycle in the soils of Qinghai–Tibet Plateau under rapid climate warming and environmental change.
Enzai Du, Wim de Vries, Wenxuan Han, Xuejun Liu, Zhengbing Yan, and Yuan Jiang
Atmos. Chem. Phys., 16, 8571–8579, https://doi.org/10.5194/acp-16-8571-2016, https://doi.org/10.5194/acp-16-8571-2016, 2016
Short summary
Short summary
Accelerated N emissions in China may lead to an imbalance of atmospheric nutrient inputs in various ecosystems. Our assessment of P and N deposition in China's forests showed relatively high rates of P deposition, but they were accompanied by even much higher N deposition, resulting in high N : P deposition ratios. P and N deposition both showed a power-law increase with closer distance to the nearest large cities. Our results suggest an anthropogenic imbalance of regional N and P cycling.
Johanna Joensuu, Nuria Altimir, Hannele Hakola, Michael Rostás, Maarit Raivonen, Mika Vestenius, Hermanni Aaltonen, Markus Riederer, and Jaana Bäck
Atmos. Chem. Phys., 16, 7813–7823, https://doi.org/10.5194/acp-16-7813-2016, https://doi.org/10.5194/acp-16-7813-2016, 2016
Short summary
Short summary
Plants produce volatile compounds (BVOCs) that have a major role in atmospheric chemistry. Our aim was to see if terpenes, a key group of BVOCs, can be found on surfaces of pine needles and, if so, how they compare with the emissions of the same tree. Both emissions and wax extracts were clearly dominated by monoterpenes, but there were also differences in the emission and wax spectra. The results support the existence of BVOCs on needle surfaces, with possible implications for air chemistry.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Kolby J. Jardine, Angela B. Jardine, Vinicius F. Souza, Vilany Carneiro, Joao V. Ceron, Bruno O. Gimenez, Cilene P. Soares, Flavia M. Durgante, Niro Higuchi, Antonio O. Manzi, José F. C. Gonçalves, Sabrina Garcia, Scot T. Martin, Raquel F. Zorzanelli, Luani R. Piva, and Jeff Q. Chambers
Atmos. Chem. Phys., 16, 6441–6452, https://doi.org/10.5194/acp-16-6441-2016, https://doi.org/10.5194/acp-16-6441-2016, 2016
Short summary
Short summary
In this study, high light-dependent isoprene emissions were observed from mature V. guianensis leaves in the central Amazon. As predicted by energetic models, isoprene emission increased nonlinearly with net photosynthesis. High leaf temperatures resulted in the classic uncoupling of net photosynthesis from isoprene emissions. Finally, leaf phenology differentially controlled methanol and isoprene emissions.
Almut Arneth, Risto Makkonen, Stefan Olin, Pauli Paasonen, Thomas Holst, Maija K. Kajos, Markku Kulmala, Trofim Maximov, Paul A. Miller, and Guy Schurgers
Atmos. Chem. Phys., 16, 5243–5262, https://doi.org/10.5194/acp-16-5243-2016, https://doi.org/10.5194/acp-16-5243-2016, 2016
Short summary
Short summary
We study the potentially contrasting effects of enhanced ecosystem CO2 release in response to warmer temperatures vs. emissions of biogenic volatile organic compounds and their formation of secondary organic aerosol through a combination of measurements and modelling at a remote location in Eastern Siberia. The study aims to highlight the number of potentially opposing processes and complex interactions between vegetation physiology, soil processes and trace-gas exchanges in the climate system.
P. Hari, T. Petäjä, J. Bäck, V.-M. Kerminen, H. K. Lappalainen, T. Vihma, T. Laurila, Y. Viisanen, T. Vesala, and M. Kulmala
Atmos. Chem. Phys., 16, 1017–1028, https://doi.org/10.5194/acp-16-1017-2016, https://doi.org/10.5194/acp-16-1017-2016, 2016
Short summary
Short summary
This manuscript introduces a conceptual design of a global, hierarchical observation network which provides tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. Each ecosystem type on the globe has its own characteristic features that need to be taken into consideration. The hierarchical network is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity.
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
M. Kulmala, H. K. Lappalainen, T. Petäjä, T. Kurten, V.-M. Kerminen, Y. Viisanen, P. Hari, S. Sorvari, J. Bäck, V. Bondur, N. Kasimov, V. Kotlyakov, G. Matvienko, A. Baklanov, H. D. Guo, A. Ding, H.-C. Hansson, and S. Zilitinkevich
Atmos. Chem. Phys., 15, 13085–13096, https://doi.org/10.5194/acp-15-13085-2015, https://doi.org/10.5194/acp-15-13085-2015, 2015
Short summary
Short summary
The Pan-European Experiment (PEEX) is introduced. PEEX is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. This paper outlines the mission, vision and objectives of PEEX and introduces its main components, including the research agenda, research infrastructure, knowledge transfer and potential impacts on society. The paper also summarizes the main scientific questions that PEEX is going to tackle in the future.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
R. Mortazavi, S. Attiya, and P. A. Ariya
Atmos. Chem. Phys., 15, 6183–6204, https://doi.org/10.5194/acp-15-6183-2015, https://doi.org/10.5194/acp-15-6183-2015, 2015
Short summary
Short summary
Next-generation sequencing revealed the existence of diverse community of bacteria in the Arctic samples with many originating from distinct ecological environments. The observed varied range in ice nucleation of cultivable bacteria and in all of the melted samples further revealed the existence of the heterogeneous pool of bacteria. Changes in the microbial pool and its impact on the freezing and melting process may potentially lead to changing the Arctic environment and thus global climate.
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
G. Yan and G. Kim
Atmos. Chem. Phys., 15, 2761–2774, https://doi.org/10.5194/acp-15-2761-2015, https://doi.org/10.5194/acp-15-2761-2015, 2015
A. Moravek, P. Stella, T. Foken, and I. Trebs
Atmos. Chem. Phys., 15, 899–911, https://doi.org/10.5194/acp-15-899-2015, https://doi.org/10.5194/acp-15-899-2015, 2015
A.-C. Genard-Zielinski, C. Boissard, C. Fernandez, C. Kalogridis, J. Lathière, V. Gros, N. Bonnaire, and E. Ormeño
Atmos. Chem. Phys., 15, 431–446, https://doi.org/10.5194/acp-15-431-2015, https://doi.org/10.5194/acp-15-431-2015, 2015
S. C. Pryor, K. E. Hornsby, and K. A. Novick
Atmos. Chem. Phys., 14, 11985–11996, https://doi.org/10.5194/acp-14-11985-2014, https://doi.org/10.5194/acp-14-11985-2014, 2014
Short summary
Short summary
What role do forests play in determining the concentration (and composition) of climate-relevant aerosol particles? This study seeks to address two aspects of this question. Firstly, we document high in-canopy removal of recently formed particles. Then we show evidence that growth rates of particles are a function of soil water availability via a reduction in canopy emissions of gases responsible for particle growth to climate-relevant sizes during drought conditions.
R. Dlugi, M. Berger, M. Zelger, A. Hofzumahaus, F. Rohrer, F. Holland, K. Lu, and G. Kramm
Atmos. Chem. Phys., 14, 10333–10362, https://doi.org/10.5194/acp-14-10333-2014, https://doi.org/10.5194/acp-14-10333-2014, 2014
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
E. Bourtsoukidis, J. Williams, J. Kesselmeier, S. Jacobi, and B. Bonn
Atmos. Chem. Phys., 14, 6495–6510, https://doi.org/10.5194/acp-14-6495-2014, https://doi.org/10.5194/acp-14-6495-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
K.-E. Min, S. E. Pusede, E. C. Browne, B. W. LaFranchi, and R. C. Cohen
Atmos. Chem. Phys., 14, 5495–5512, https://doi.org/10.5194/acp-14-5495-2014, https://doi.org/10.5194/acp-14-5495-2014, 2014
J.-H. Park, S. Fares, R. Weber, and A. H. Goldstein
Atmos. Chem. Phys., 14, 231–244, https://doi.org/10.5194/acp-14-231-2014, https://doi.org/10.5194/acp-14-231-2014, 2014
Cited articles
Acton, W. J. F., Schallhart, S., Langford, B., Valach, A., Rantala, P., Fares, S., Carriero, G., Tillmann, R., Tomlinson, S. J., Dragosits, U., Gianelle, D., Hewitt, C. N., and Nemitz, E.: Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy, Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, 2016. a, b
Alves, E. G., Jardine, K., Tota, J., Jardine, A., Yãnez-Serrano, A. M., Karl, T., Tavares, J., Nelson, B., Gu, D., Stavrakou, T., Martin, S., Artaxo, P., Manzi, A., and Guenther, A.: Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia, Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, 2016. a, b, c
Andreae, M. O., Artaxo, P., Brandão, C., Carswell, F. E., Ciccioli, P., da Costa, A. L., Culf, A. D., Esteves, J. L., Gash, J. H. C., Grace, J., Kabat, P., Lelieveld, J., Malhi, Y., Manzi, A. O., Meixner, F. X., Nobre, A. D., Nobre, C., Ruivo, M. d. L. P., Silva-Dias, M. A., Stefani, P., Valentini, R., von Jouanne, J., and Waterloo, M. J.: Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments, J. Geophys. Res.-Atmos., 107, 1–25, https://doi.org/10.1029/2001jd000524, 2002. a, b, c
Batalha, S., Park, J.-H., Alves, E., Santana, R., Seco, R., Bustillos, J. O. V., Smith, J., Guenther, A. B., and Tóta, J.: Aspectos micrometeorológicos da emissão de monoterpenos em uma floresta na Amazônia central, Ciência e Natura, 40, 1–6, https://doi.org/10.5902/2179460x30729, 2018. a
Bauwens, M., Stavrakou, T., Müller, J. F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and Guenther, A.: Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations, Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, 2016. a
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.: Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene, Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004. a
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, https://doi.org/10.1038/35041539, 2000. a
da Rocha, H. R., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L., Saleska, S. R., R.-Coupe, N., Wofsy, S. C., Borma, L. S., Artaxo, P., Vourlitis, G., Nogueira, J. S., Cardoso, F. L., Nobre, A. D., Kruijt, B., Freitas, H. C., von Randow, C., Aguiar, R. G., and Maia, J. F.: Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil, J. Geophys. Res.-Biogeo., 114, 1–8, https://doi.org/10.1029/2007jg000640, 2009. a
de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev., 26, 223–257, https://doi.org/10.1002/mas.20119, 2007. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. d., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017. a
Gonçalves, F. G. and dos Santos, J. R.: Floristic composition and structure of a sustainable forest management unit in the Tapajós National Forest, Pará, Acta Amazon., 38, 229–244, https://doi.org/10.1590/S0044-59672008000200006, 2008. a
Gu, D., Guenther, A. B., Shilling, J. E., Yu, H., Huang, M., Zhao, C., Yang, Q., Martin, S. T., Artaxo, P., Kim, S., Seco, R., Stavrakou, T., Longo, K. M., Tóta, J., de Souza, R. A. F., Vega, O., Liu, Y., Shrivastava, M., Alves, E. G., Santos, F. C., Leng, G., and Hu, Z.: Airborne observations reveal elevational gradient in tropical forest isoprene emissions, Nat. Commun., 8, 15541, https://doi.org/10.1038/ncomms15541, 2017. a, b
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a, b, c, d
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. a, b, c, d, e, f, g, h, i, j, k
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Harley, P., Vasconcellos, P., Vierling, L., Pinheiro, C. C. d. S., Greenberg, J., Guenther, A., Klinger, L., Almeida, S. S. d., Neill, D., Baker, T., Phillips, O., and Malhi, Y.: Variation in potential for isoprene emissions among Neotropical forest sites, Glob. Change Biol., 10, 630–650, https://doi.org/10.1111/j.1529-8817.2003.00760.x, 2004. a, b, c, d, e
Helmig, D., Balsley, B., Davis, K., Kuck, L. R., Jensen, M., Bognar, J., Smith, T., Arrieta, R. V., Rodríguez, R., and Birks, J. W.: Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon, J. Geophys. Res.-Atmos., 103, 25519–25532, https://doi.org/10.1029/98jd01023, 1998. a, b
Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, 2015. a
Jardine, A. B., Jardine, K. J., Fuentes, J. D., Martin, S. T., Martins, G., Durgante, F., Carneiro, V., Higuchi, N., Manzi, A. O., and Chambers, J. Q.: Highly reactive light-dependent monoterpenes in the Amazon, Geophys. Res. Lett., 42, 1576–1583, https://doi.org/10.1002/2014gl062573, 2015. a, b
Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J. D., and Geron, C.: Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation, J. Geophys. Res.-Atmos., 109, 1–19, https://doi.org/10.1029/2004jd004738, 2004. a, b, c
Karl, T., Guenther, A., Yokelson, R. J., Greenberg, J., Potosnak, M., Blake, D. R., and Artaxo, P.: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, J. Geophys. Res.-Atmos., 112, 1–17, https://doi.org/10.1029/2007jd008539, 2007. a, b, c, d, e
Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C., Turnipseed, A., and Jardine, K.: Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation, Science, 330, 816–819, https://doi.org/10.1126/science.1192534, 2010. a, b
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology, J. Atmos. Chem., 33, 23–88, https://doi.org/10.1023/a:1006127516791, 1999. a
Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Brancaleoni, E., Frattoni, M., Tavares, T. M., and Kesselmeier, J.: Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species, Glob. Change Biol., 10, 663–682, https://doi.org/10.1111/j.1529-8817.2003.00771.x, 2004. a, b
Kuhn, U., Andreae, M. O., Ammann, C., Araújo, A. C., Brancaleoni, E., Ciccioli, P., Dindorf, T., Frattoni, M., Gatti, L. V., Ganzeveld, L., Kruijt, B., Lelieveld, J., Lloyd, J., Meixner, F. X., Nobre, A. D., Pöschl, U., Spirig, C., Stefani, P., Thielmann, A., Valentini, R., and Kesselmeier, J.: Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget, Atmos. Chem. Phys., 7, 2855–2879, https://doi.org/10.5194/acp-7-2855-2007, 2007. a, b
Langford, B., Misztal, P. K., Nemitz, E., Davison, B., Helfter, C., Pugh, T. A. M., MacKenzie, A. R., Lim, S. F., and Hewitt, C. N.: Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest, Atmos. Chem. Phys., 10, 8391–8412, https://doi.org/10.5194/acp-10-8391-2010, 2010. a, b, c
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, Int. J. Mass Spectrom., 173, 191–241, https://doi.org/10.1016/S0168-1176(97)00281-4, 1998. a
Liu, Y., Brito, J., Dorris, M. R., Rivera-Rios, J. C., Seco, R., Bates, K. H., Artaxo, P., Duvoisin, S., Keutsch, F. N., Kim, S., Goldstein, A. H., Guenther, A. B., Manzi, A. O., Souza, R. A. F., Springston, S. R., Watson, T. B., McKinney, K. A., and Martin, S. T.: Isoprene photochemistry over the Amazon rainforest, P. Natl. Acad. Sci. USA, 113, 6125–6130, https://doi.org/10.1073/pnas.1524136113, 2016. a
Liu, Y., Seco, R., Kim, S., Guenther, A. B., Goldstein, A. H., Keutsch, F. N., Springston, S. R., Watson, T. B., Artaxo, P., Souza, R. A. F., McKinney, K. A., and Martin, S. T.: Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia, Sci. Adv., 4, eaar2547, https://doi.org/10.1126/sciadv.aar2547, 2018. a
Longo, M., Knox, R. G., Levine, N. M., Alves, L. F., Bonal, D., Camargo, P. B., Fitzjarrald, D. R., Hayek, M. N., Restrepo-Coupe, N., Saleska, S. R., da Silva, R., Stark, S. C., Tapajós, R. P., Wiedemann, K. T., Zhang, K., Wofsy, S. C., and Moorcroft, P. R.: Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts, New Phytol., 219, 914–931, https://doi.org/10.1111/nph.15185, 2018. a, b
Müller, J. F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J., Munger, B., Goldstein, A., and Guenther, A. B.: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model, Atmos. Chem. Phys., 8, 1329–1341, https://doi.org/10.5194/acp-8-1329-2008, 2008. a, b
Müller, M., Graus, M., Ruuskanen, T. M., Schnitzhofer, R., Bamberger, I., Kaser, L., Titzmann, T., Hörtnagl, L., Wohlfahrt, G., Karl, T., and Hansel, A.: First eddy covariance flux measurements by PTR-TOF, Atmos. Meas. Tech., 3, 387–395, https://doi.org/10.5194/amt-3-387-2010, 2010. a, b
Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., and Vieira, S.: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures, Nature, 372, 666–669, https://doi.org/10.1038/372666a0, 1994. a
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial ecoregions of the world: a new map of life on Earth, Bioscience, 51, 933–938, 2001. a
Park, J. H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and Holzinger, R.: Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes, Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, 2013. a, b, c
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P., and Andreae, M. O.: Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon, Science, 329, 1513–1516, https://doi.org/10.1126/science.1191056, 2010. a
Reichle, R. H., Koster, R. D., Lannoy, G. J. M. D., Forman, B. A., Liu, Q., Mahanama, S. P. P., and Touré, A.: Assessment and Enhancement of MERRA Land Surface Hydrology Estimates, J. Clim., 24, 6322–6338, https://doi.org/10.1175/jcli-d-10-05033.1, 2011. a
Rinne, H. J. I., Guenther, A. B., Greenberg, J. P., and Harley, P. C.: Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature, Atmos. Environ., 36, 2421–2426, https://doi.org/10.1016/S1352-2310(01)00523-4, 2002. a, b, c
Rizzo, L. V., Artaxo, P., Karl, T., Guenther, A. B., and Greenberg, J.: Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia, Atmos. Environ., 44, 503–511, https://doi.org/10.1016/j.atmosenv.2009.11.002, 2010. a
Ruuskanen, T. M., Müller, M., Schnitzhofer, R., Karl, T., Graus, M., Bamberger, I., Hörtnagl, L., Brilli, F., Wohlfahrt, G., and Hansel, A.: Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF, Atmos. Chem. Phys., 11, 611–625, https://doi.org/10.5194/acp-11-611-2011, 2011. a
Sakulyanontvittaya, T., Guenther, A., Helmig, D., Milford, J., and Wiedinmyer, C.: Secondary Organic Aerosol from Sesquiterpene and Monoterpene Emissions in the United States, Environ. Sci. Technol., 42, 8784–8790, https://doi.org/10.1021/es800817r, 2008. a
Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., and Silva, H.: Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses, Science, 302, 1554–1557, https://doi.org/10.1126/science.1091165, 2003.
a, b, c
Sarkar, C., Sinha, V., Kumar, V., Rupakheti, M., Panday, A., Mahata, K. S., Rupakheti, D., Kathayat, B., and Lawrence, M. G.: Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley, Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, 2016. a, b, c, d
Schallhart, S., Rantala, P., Kajos, M. K., Aalto, J., Mammarella, I., Ruuskanen, T. M., and Kulmala, M.: Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest, Atmos. Chem. Phys., 18, 815–832, https://doi.org/10.5194/acp-18-815-2018, 2018. a
Serça, D., Guenther, A., Klinger, L., Vierling, L., Harley, P., Druilhet, A., Greenberg, J., Baker, B., Baugh, W., Bouk-Biona, C., and Loemba-Ndembi, J.: EXPRESSO flux measurements at upland and lowland Congo tropical forest site, Tellus B, 53, 220–234, https://doi.org/10.3402/tellusb.v53i3.16593, 2001. a
Stavrakou, T., Müller, J. F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., and Xia, X.: Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes, Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, 2014.
Tani, A., Hayward, S., Hansel, A., and Hewitt, C. N.: Effect of water vapour pressure on monoterpene measurements using proton transfer reaction-mass spectrometry (PTR-MS), Int. J. Mass Spectrom., 239, 161–169, https://doi.org/10.1016/j.ijms.2004.07.020, 2004. a
Yáñez-Serrano, A. M., Nölscher, A. C., Williams, J., Wolff, S., Alves, E., Martins, G. A., Bourtsoukidis, E., Brito, J., Jardine, K., Artaxo, P., and Kesselmeier, J.: Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest, Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, 2015. a, b
Zimmerman, P. R., Greenberg, J. P., and Westberg, C. E.: Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary layer, J. Geophys. Res.-Atmos., 93, 1407–1416, https://doi.org/10.1029/JD093iD02p01407, 1988. a
Short summary
Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to their contribution to atmospheric chemistry and biogeochemical cycles. In this study, we report major BVOCs, e.g. isoprene and total monoterpene flux measurements with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) using the eddy covariance (EC) method at a primary rainforest in eastern Amazonia. We used the measured data to evaluate the MEGAN2.1 model for the emission site.
Biogenic volatile organic compounds (BVOCs) are important components of the atmosphere due to...
Altmetrics
Final-revised paper
Preprint