Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-12177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ceilometers as planetary boundary layer height detectors and a corrective tool for COSMO and IFS models
Leenes Uzan
CORRESPONDING AUTHOR
Porter School of the Environment and Earth Sciences, Raymond and
Beverly Sackler Faculty of Exact Sciences, Dept. of Geophysics, Tel Aviv
University, Tel Aviv, 6997801, Israel
The Israeli Meteorological Service, Bet Dagan, Israel
Smadar Egert
Porter School of the Environment and Earth Sciences, Raymond and
Beverly Sackler Faculty of Exact Sciences, Dept. of Geophysics, Tel Aviv
University, Tel Aviv, 6997801, Israel
Pavel Khain
The Israeli Meteorological Service, Bet Dagan, Israel
Yoav Levi
The Israeli Meteorological Service, Bet Dagan, Israel
Elyakom Vadislavsky
The Israeli Meteorological Service, Bet Dagan, Israel
Pinhas Alpert
Porter School of the Environment and Earth Sciences, Raymond and
Beverly Sackler Faculty of Exact Sciences, Dept. of Geophysics, Tel Aviv
University, Tel Aviv, 6997801, Israel
Related authors
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Chem. Phys., 18, 3203–3221, https://doi.org/10.5194/acp-18-3203-2018, https://doi.org/10.5194/acp-18-3203-2018, 2018
Short summary
Short summary
The extraordinarily extreme dust storm of September 2015 is analyzed using an array of eight ceilometers and auxiliary measurements, revealing the dust plume penetration, ground coverage and gradual dispersion in the first kilometer above Israel. This research emphasized the importance of ceilometer networks as an essential tool in the analysis of meteorological phenomena and aerosol transport as being the most valuable in the mesoscale.
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Meas. Tech., 9, 4387–4398, https://doi.org/10.5194/amt-9-4387-2016, https://doi.org/10.5194/amt-9-4387-2016, 2016
Short summary
Short summary
Compared to other regions, the eastern Mediterranean is rich in aerosol content and dust storms but poor in atmospheric measurements. This research is a first attempt in Israel to estimate the diurnal mixed layer height (MLH) based on CL31 ceilometers using the wavelet covariance transform (WCT) method. Simultaneous measurements, onshore and inland, showed a significant difference of 200 m of the MLH between the two sites, only 7.5 km apart, which complies well with radiosonde profiles.
Uri Dayan, Itamar M. Lensky, Baruch Ziv, and Pavel Khain
Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, https://doi.org/10.5194/nhess-21-1583-2021, 2021
Short summary
Short summary
An intense rainstorm hit the Middle East between 24 and 27 April 2018. The storm reached its peak over Israel on 26 April when a heavy flash flood took the lives of 10 people. The rainfall was comparable to the long-term annual rainfall in the southern Negev. The timing was the end of the rainy season when rain is rare and spotty. The study analyses the dynamic and thermodynamic conditions that made this rainstorm one of the latest spring severe events in the region during the last 3 decades.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Pavel Kishcha, Rachel T. Pinker, Isaac Gertman, Boris Starobinets, and Pinhas Alpert
Nat. Hazards Earth Syst. Sci., 18, 3007–3018, https://doi.org/10.5194/nhess-18-3007-2018, https://doi.org/10.5194/nhess-18-3007-2018, 2018
Short summary
Short summary
Increasing warming of steadily shrinking Dead Sea surface water was observed during the period of 2000–2016. We found that a positive feedback loop between the steady shrinking of the Dead Sea and positive sea surface temperature (SST) trends causes the acceleration of Dead Sea shrinking. Our findings imply the following essential point: any meteorological, hydrological or geophysical process causing steady shrinking of the Dead Sea will contribute to positive trends in SST.
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Chem. Phys., 18, 3203–3221, https://doi.org/10.5194/acp-18-3203-2018, https://doi.org/10.5194/acp-18-3203-2018, 2018
Short summary
Short summary
The extraordinarily extreme dust storm of September 2015 is analyzed using an array of eight ceilometers and auxiliary measurements, revealing the dust plume penetration, ground coverage and gradual dispersion in the first kilometer above Israel. This research emphasized the importance of ceilometer networks as an essential tool in the analysis of meteorological phenomena and aerosol transport as being the most valuable in the mesoscale.
Adam Eshel, Hagit Messer, Jonatan Ostrometzky, Roi Raich, Pinhas Alpert, and Jonathan B. Laronne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-963, https://doi.org/10.5194/acp-2017-963, 2017
Revised manuscript not accepted
Short summary
Short summary
The power of a signal between two telecommunication (cellular) towers weakens when rain falls in the medium. Through which, accurate rain intensity at ground level in remote areas can be derived. This unique database, together with weather radar data was used to show the feasibility of its integration into short-term flash flood warning in arid areas, a challenging task using traditional means. Commercial towers are widely spread sensors and were therefore used opportunistically.
Philipp Gasch, Daniel Rieger, Carolin Walter, Pavel Khain, Yoav Levi, Peter Knippertz, and Bernhard Vogel
Atmos. Chem. Phys., 17, 13573–13604, https://doi.org/10.5194/acp-17-13573-2017, https://doi.org/10.5194/acp-17-13573-2017, 2017
Short summary
Short summary
This paper presents simulations of a severe dust event in the Eastern Mediterranean with a weather prediction model using very high spatial resolution. Due to the high resolution, the small-scale features of the event are captured in great detail. Consequently, the previously erroneous forecast of the event is improved drastically. In addition, the interaction of mineral dust with radiation inside the model has been included as a part of this work and is presented here.
Yoav Levi and Itzhak Carmona
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-60, https://doi.org/10.5194/esd-2016-60, 2016
Manuscript not accepted for further review
Short summary
Short summary
Seasonal forecast is a scientific challenge drawing increase attention of both the scientific community and the decision makers. The manuscript deals with evaluation of seasonal forecasts skill taking into account the rapid changes in both climate and socio-economic development. An attempt to give a solution to overcome rapid changes may provide local stakeholders with a new way of using seasonal forecast.
Assaf Hochman, Hadas Saaroni, Miryam Bar-Matthews, Baruch Ziv, and Pinhas Alpert
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-90, https://doi.org/10.5194/cp-2016-90, 2016
Manuscript not accepted for further review
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Meas. Tech., 9, 4387–4398, https://doi.org/10.5194/amt-9-4387-2016, https://doi.org/10.5194/amt-9-4387-2016, 2016
Short summary
Short summary
Compared to other regions, the eastern Mediterranean is rich in aerosol content and dust storms but poor in atmospheric measurements. This research is a first attempt in Israel to estimate the diurnal mixed layer height (MLH) based on CL31 ceilometers using the wavelet covariance transform (WCT) method. Simultaneous measurements, onshore and inland, showed a significant difference of 200 m of the MLH between the two sites, only 7.5 km apart, which complies well with radiosonde profiles.
S. O. Krichak, S. B. Feldstein, P. Alpert, S. Gualdi, E. Scoccimarro, and J.-I. Yano
Nat. Hazards Earth Syst. Sci., 16, 269–285, https://doi.org/10.5194/nhess-16-269-2016, https://doi.org/10.5194/nhess-16-269-2016, 2016
Short summary
Short summary
This paper presents a review of a large number of research studies focused on the investigation of cold season extreme precipitation events (EPEs) in the Mediterranean region (MR) demonstrating an important role of anomalously intense transports of moist air from the tropical and subtropical Atlantic in the occurrence of the MR EPEs. The issue of a possible role of the recent past decline in Arctic sea ice in the climatology of the MR EPEs during the period is also addressed.
Y. Liberman, R. Samuels, P. Alpert, and H. Messer
Atmos. Meas. Tech., 7, 3549–3563, https://doi.org/10.5194/amt-7-3549-2014, https://doi.org/10.5194/amt-7-3549-2014, 2014
P. Kishcha, A. M. da Silva, B. Starobinets, C. N. Long, O. Kalashnikova, and P. Alpert
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23309-2014, https://doi.org/10.5194/acpd-14-23309-2014, 2014
Revised manuscript not accepted
A. Jansa, P. Alpert, P. Arbogast, A. Buzzi, B. Ivancan-Picek, V. Kotroni, M. C. Llasat, C. Ramis, E. Richard, R. Romero, and A. Speranza
Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, https://doi.org/10.5194/nhess-14-1965-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Meteorological modeling sensitivity to parameterizations and satellite-derived surface datasets during the 2017 Lake Michigan Ozone Study
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Lagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
Determination of the chemical equator from GEOS-Chem model simulation: a focus on the tropical western Pacific region
Uncertainty in parameterized convection remains a key obstacle for estimating surface fluxes of carbon dioxide
Antarctic atmospheric Richardson number from radiosonde measurements and AMPS
Divergent convective outflow in large-eddy simulations
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Evaluation and bias correction of probabilistic volcanic ash forecasts
The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
The Sun's role in decadal climate predictability in the North Atlantic
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Convective self–aggregation in a mean flow
The potential for geostationary remote sensing of NO2 to improve weather prediction
Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
Parameterizing the vertical downward dispersion of ship exhaust gas in the near field
Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions
The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America
Very long-period oscillations in the atmosphere (0–110 km)
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
The “urban meteorology island”: a multi-model ensemble analysis
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
Atmos. Chem. Phys., 23, 7589–7609, https://doi.org/10.5194/acp-23-7589-2023, https://doi.org/10.5194/acp-23-7589-2023, 2023
Short summary
Short summary
Atmospheric convection plays a key role in tracer transport in the troposphere. Global meteorological forecasts and reanalyses typically have a coarse spatiotemporal resolution that does not adequately resolve the dynamics, transport, and mixing of air associated with storm systems or deep convection. We discuss the application of the extreme convection parameterization in a Lagrangian transport model to improve simulations of tracer transport from the boundary layer into the free troposphere.
Angshuman Modak and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 7535–7549, https://doi.org/10.5194/acp-23-7535-2023, https://doi.org/10.5194/acp-23-7535-2023, 2023
Short summary
Short summary
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental temperature record including the corrections for the pattern effect. The improved estimate factors in the uncertainty caused by the underlying sea-surface temperature datasets used in the estimates of pattern effect. This together with the inter-model spread lifts the corresponding IPCC AR6 estimate to 3.2 K [1.8 to 11.0], which is lower and better constrained than in past studies.
Xiaoyu Sun, Mathias Palm, Katrin Müller, Jonas Hachmeister, and Justus Notholt
Atmos. Chem. Phys., 23, 7075–7090, https://doi.org/10.5194/acp-23-7075-2023, https://doi.org/10.5194/acp-23-7075-2023, 2023
Short summary
Short summary
The tropical western Pacific (TWP) is an active interhemispheric transport region contributing significantly to the global climate. A method to determine the chemical equator was developed by model simulations of a virtual passive tracer to analyze transport in the tropics, with a focus on the TWP region. We compare the chemical equator with tropical rain belts and wind fields and obtain a vertical pattern of interhemispheric transport processes which shows tilt structure in certain seasons.
Andrew E. Schuh and Andrew R. Jacobson
Atmos. Chem. Phys., 23, 6285–6297, https://doi.org/10.5194/acp-23-6285-2023, https://doi.org/10.5194/acp-23-6285-2023, 2023
Short summary
Short summary
A comparison of atmospheric carbon dioxide concentrations resulting from two different atmospheric transport models showed large differences in predicted concentrations with significant space–time correlations. The vertical mixing of long-lived trace gases by convection was determined to be the main driver of these differences. The resulting uncertainty was deemed significant to the application of using atmospheric gradients of carbon dioxide to estimate surface fluxes of carbon dioxide.
Qike Yang, Xiaoqing Wu, Xiaodan Hu, Zhiyuan Wang, Chun Qing, Tao Luo, Pengfei Wu, Xianmei Qian, and Yiming Guo
Atmos. Chem. Phys., 23, 6339–6355, https://doi.org/10.5194/acp-23-6339-2023, https://doi.org/10.5194/acp-23-6339-2023, 2023
Short summary
Short summary
The AMPS-forecasted Richardson number was first comprehensively validated over the Antarctic continent. Some potential underlying reasons for the discrepancies between the forecasts and observations were analyzed. The underlying physical processes of triggering atmospheric turbulence in Antarctica were investigated. Our results suggest that the estimated Richardson number by the AMPS is reasonable and the turbulence conditions in Antarctica are well revealed.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023, https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021, https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary
Short summary
We analyze the behavior of organized convection in a large-scale flow by imposing a mean flow to idealized simulations. In the mean flow, organized convection initially propagates slower than the mean wind speed and becomes stationary. The initial upstream and downstream difference in surface fluxes becomes symmetric as the surface momentum flux acts as a drag, resulting in the stationarity. Meanwhile, the surface enthalpy flux has a minor role in the propagation of the convection.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Taufiq Hassan, Robert J. Allen, Wei Liu, and Cynthia A. Randles
Atmos. Chem. Phys., 21, 5821–5846, https://doi.org/10.5194/acp-21-5821-2021, https://doi.org/10.5194/acp-21-5821-2021, 2021
Short summary
Short summary
State-of-the-art climate models yield robust, externally forced changes in the Atlantic meridional overturning circulation (AMOC), the bulk of which are due to anthropogenic aerosol perturbations to net surface shortwave radiation and sea surface temperature. AMOC-related feedbacks act to reinforce this aerosol-forced response, largely due to changes in sea surface salinity (and hence sea surface density), with temperature- and cloud-related feedbacks acting to mute the initial response.
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford
Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, https://doi.org/10.5194/acp-21-2781-2021, 2021
Short summary
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021, https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Short summary
Cities are characterized by their impact on various meteorological variables. Our study aims to generalize these modifications into a single phenomenon – the urban meteorology island (UMI). A wide ensemble of Weather Research and Forecasting (WRF) and Regional Climate Model (RegCM) simulations investigated urban-induced modifications as individual UMI components. Significant changes are found in most of the discussed meteorological variables with a strong impact of specific model simulations.
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020, https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Short summary
Reanalysis products are an invaluable tool for representing variability and long-term trends in regions with limited in situ data. However, validation of these products is difficult because of that lack of station data. Here we present a novel assessment of eight reanalyses over the polar Southern Ocean, leveraging the close relationship between trends in sea ice cover and surface air temperature, that provides clear guidance on the most reliable product for Antarctic research.
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020, https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary
Short summary
The recent increasing trend of "warm Arctic, cold continents" has attracted much attention, but it remains debatable as to what forces are behind this phenomenon. Sea surface temperature (SST) over the central North Pacific and the North Atlantic oceans influences the trend. On an interdecadal timescale, the recent increase in the occurrences of the warm Arctic–cold Eurasia pattern is a fragment of the interdecadal variability of SST over the Atlantic Ocean and over the central Pacific Ocean.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Cited articles
Alpert, P. and Neumann, J.: On the enhanced smoothing over topography in some
mesometeorological models, Bound. Lay.-Meteorol., 30,
293–312, 1984.
Alpert, P. and Rabinovich-Hadar, M.: Pre- and post-frontal lines – A meso
gamma scale analysis over south Israel, J. Atmos. Sci., 60, 2994–3008, 2003.
Alpert, P. and Ziv, B.: The Sharav cyclone observations and some theoretical
considerations, J. Geophys. Res., 94, 18495–18514, 1989.
Alpert, P., Abramsky, R., and Neeman, B. U.: The prevailing summer synoptic
system in Israel-Subtropical high, not Persian Trough, Isr. J. Earth Sci.,
39, 93–102, 1990.
Alpert, P., Herman, J., Kaufman, Y. J., and Carmona, I.: Response of the
climatic temperature to dust forcing, inferred from TOMS Aerosol Index and
the NASA assimilation model, J. Atmos. Res., 53, 3–14, 2000.
Alpert, P., Krichak, S. O., Tsidulko, M., Shafir, H., and Joseph, J. H.: A
Dust Prediction System with TOMS Initialization, Mon. Weather Rev., 130,
2335–2345, 2002.
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: Semi-objective classification
for daily synoptic systems: Application to the eastern Mediterranean climate
change, Int. J. Climatol., 24, 1001–1011, 2004.
Anenberg, S., Miller, J., Henze, D., and Minjares, R.: A global snapshot of
the air pollution-related health impacts of transportation sector emissions
in 2010 and 2015, ICCT report, Washington, D.C., 2019.
Ansmann, A., Bösenberg, J., Chaikovsky, A., Comerón, A., Eckhardt, S., Eixmann, R., Freudenthaler, V., Ginoux P., Komguem, L., Linné, H., Márquez, M. A. L., Matthias, V., Mattis, I., Mitev, V., Müller, D., Music, S., Nickovic, S., Pelon, J., Sauvage, L., Sobolewsky, P., Srivastava, M. K., Stohl, A., Torres, O., Vaughan, G., Wandinger, U., and Wiegner, M.: Long-range transport of Saharan dust to northern Europe: The
11–16 October 2001 outbreak observed with EARLINET, J. Geophys.
Res., 108, 4783, https://doi.org/10.1029/2003JD003757, 2003.
Ansmann, A., Petzold, A., Kandler, K., Tegen, I. N. A., Wendisch, M., Mueller,
D., Weinzierl, B., Mueller, T., and Heintzenberg, J.: Saharan Mineral Dust
Experiments SAMUM–1 and SAMUM–2: what have we learned?, Tellus B, 63,
403–429, 2011.
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and
Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with
the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139,
3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.
Bechtold, P.: Convection parametrization, ECMWF Seminar proceedings on “The
parametrization of subgrid physical processes”, 1–4 September 2008, 63–85, available at: https://www.ecmwf.int/sites/default/files/elibrary/2009/8008-convection-parametrization.pdf (last access: 21 July 2020), 2008.
Brooks, I.: Finding Boundary Layer Top: Application of a wavelet covariance
transform to lidar backscatter profiles, J. Atmos. Ocean. Tech., 20,
1092–1105, 2003.
Cerenzia I.: Challenges and critical aspects in stable boundary layer
representation in numerical weather prediction modeling: diagnostic analyses
and proposals for improvement, PhD thesis, University of Bologna, Bolonga, Italy, 2017.
Collaud Coen, M., Praz, C., Haefele, A., Ruffieux, D., Kaufmann, P., and Calpini, B.: Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model, Atmos. Chem. Phys., 14, 13205–13221, https://doi.org/10.5194/acp-14-13205-2014, 2014.
Dayan, U. and Rodnizki, J.: The temporal behavior of the atmospheric boundary
layer in Israel, J. Appl. Meteorol., 38, 830–836, 1999.
Dayan, U., Shenhav, R., and Graber, M.: The Spatial and temporal behavior of the
mixed layer in Israel, J. Appl. Meteorol., 27, 1382–1394, 1988.
Dayan, U., Lifshitz-Goldreich B., and Pick, K.: Spatial and structural
variation of the atmospheric boundary layer during summer in Israel-Pro?ler
and rawinsonde measurements, J. Appl. Meteorol., 41, 447–457, 2002.
Dockery, D. W., Pope III, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay,
M. E., Ferris, Jr., B. G., and Speizer, F. E.: An association between air
pollution and mortality in six U.S. cities, New Engl. J. Med.,
329, 1753–1759, 1993.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D.,
Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.: A description of the nonhydrostatic regional COSMO model. Part II:
Physical parameterization, Deutscher Wetterdienst, Ofenbach, 154 pp., 2011.
Eresmaa, N., Karppinen, A., Joffre, S. M., Räsänen, J., and Talvitie, H.: Mixing height determination by ceilometer, Atmos. Chem. Phys., 6, 1485–1493, https://doi.org/10.5194/acp-6-1485-2006, 2006.
Feliks, Y.: A numerical model for estimation of the diurnal fluctuation of
the inversion height due to a sea breeze, Bound. Layer-Meteorol., 62, 151–161.
1993.
Feliks, Y: An analytical model of the diurnal oscillation of the inversion
base due to sea breeze, J. Atmos. Sci., 51, 991–998, 1994.
Feliks, Y.: Nonlinear dynamics and chaos in the sea and land breeze, J.
Atmos. Sci., 61, 2169–2187, 2004.
Garratt, J. R.: The Atmospheric Boundary Layer, Cambridge Univ. Press,
Cambridge, UK, 335 pp., 1992.
Gierens, R. T., Henriksson, S., Josipovic, M., Vakkari, V., Van Zyl, P. G.,
Beukes J. P., Wood, C. R., and O'Connor, E. J.: Observing continental boundary
layer structure and evolution over the South African savannah using a
ceilometer, Theor. Appl. Climatol., 136, 333–346,
https://doi.org/10.1007/s00704-018-2484-7, 2018.
Goldreich, Y.: The climate of Israel-Observations, research and
applications, Springer Science and business media, New York, USA, chap. 5, 2003.
Haeffelin, M. and Angelini, F.: Evaluation of mixing height retrievals from
automatic profiling lidars and ceilometers in view of future integrated
networks in Europe, Bound. Lay.-Meteorol., 143, 49–75, 2012.
Hanna, S. R.: The thickness of the planetary boundary layer, Atmos.
Environ., 3, 519–536, 1969.
Hashmonay, R., Cohen, A., and Dayan, U.: Lidar observations of the
atmospheric boundary layer in Jerusalem, J. Appl. Meteorol, 30, 1228–1236,
1991.
Héroux, E., Brunekreef, B., Anderson, H. R., Atkinson, R., Cohen, A.,
Forastiere, F.,
Hurley, F., Katsouyanni, K., Krewski, D., Krzyzanowski, M., Künzli, N., Mills, I., Querol, X., Ostro, B., and Walton, H.: Quantifying the health
impacts of ambient air pollutants: Recommendations of a WHO/Europe project,
Int. J. Public Health, 60, 619–627, 2015.
Holzworth, C. G.: Estimates of mean maximum mixing depths in the contiguous
United States, Mon. Weather Rev., 92, 235–242, 1964.
Israel Meteorological Service: Climate Reports, available at: https://ims.gov.il/en/ClimateReports, last access: 25 July 2020a.
Israel Meteorological Service: Climate Analysis, available at: https://ims.gov.il/he/node/920, last access: 25 July 2020b (in Hebrew).
Ketterer, C., Zieger, P., and Bukowiecki, N.: Investigation of the planetary boundary layer in the Swiss Alps using remote sensing and in situ measurements, Bound. Lay.-Meteol., 151, 317–334,
https://doi.org/10.1007/s10546-013-9897-8, 2014.
Koch, J. and Dayan, U.: A synoptic analysis of the meteorological conditions
affecting dispersion of pollutants emitted from tall stacks in the coastal
plain of Israel, Atmos. Environ., 26, 2537–2543, 1992.
Koehler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry
convective and stratocumulus-topped boundary layers in the ECMWF model, Q.
J. Roy. Meteorol. Soc., 137, 43–57, 2011.
Kotthaus, S. and Grimmond, C. S. B.: Atmospheric boundary-layer
characteristics from ceilometer measurements. Part 1: a new method to track
mixed layer height and classify clouds, Q. J. Roy. Meteorol. Soc., 144,
1525–1538, https://doi.org/10.1002/qj.3299, 2018.
Levi, Y., Shilo, E., and Setter, I.: Climatology of a summer coastal boundary
layer with 1290-MHz wind profiler radar and a WRF simulation, J. Appl.
Meteorol. Clim., 50, 1815–1826, https://doi.org/10.1175/2011JAMC2598.1,
2011.
Lieman, R. and Alpert, P.: Investigation of the planetary boundary layer
height variations over complex terrain, Bound. Lay.-Meteorol., 62, 129–142,
1993.
Ludwing, F. L.: A review of coastal zone meteorological processes important
to the modeling of air pollution, Air pollution modeling and its application
IV, edited by: De Wispelaere, C., NATO, Challenges of modern society, 7,
1983.
Luo, T., Yuan, R., and Wang, Z.: On factors controlling marine boundary layer
aerosol optical depth, J. Geophys. Res.-Atmos., 119, 3321–3334,
https://doi.org/10.1002/2013JD020936, 2014.
Lyons, W. A.: Turbulent diffusion and pollutant transport in shoreline
environments. Lectures on air pollution and environmental impact analysis,
edited by: Haugen, D. A., American Meteorological Society, 136–208, 1975.
Mamouri, R.-E., Ansmann, A., Nisantzi, A., Solomos, S., Kallos, G., and Hadjimitsis, D. G.: Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region, Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, 2016.
Manninen A. J., Marke T., Tuononen M. J., and O'Connor E. J.: Atmospheric
boundary layer classification with Doppler lidar, J. Geophys.
Res.-Atmos., 123, 8172–8189,
https://doi.org/10.1029/2017JD028169, 2018.
Mellor, M. J. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys. Space Ge., 20,
851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Neumann, J.: Diurnal variations of the subsidence inversion and associated radio wave propagation phenomena over the coastal area of Israel. Israeli Meteorological Service, Bet Dagan, Israel, Series A, Meteorological Notes No. 6, 16 pp., 1952.
Neumann, J.: On the rotation rate of the direction of sea and land breezes,
J. Atmos. Sci., 34, 1913–1917, 1977.
Ogawa, Y., Ohara, T., Wakamatsu, S., Diosey, P. G., and Uno, I.: Observations of
lake breeze penetration and subsequent development of the thermal internal
boundary layer for the Nontecore II shoreline diffusion
experiment, Bound. Lay.-Meteorol., 35, 207–230, 1986.
Papayannis, A., Amiridis, V., Mona, L., Tsaknakis, G., Balis, D.,
Bösenberg, J., Chaikovski, A., De Tomasi, F., Grigorov, I., Mattis, I.,
and Mitev, V.: Systematic lidar observations of Saharan dust over Europe in
the frame of EARLINET (2000–2002), J. Geophys. Res.-Atmos., 113, D10204, https://doi.org/10.1029/2007JD009028, 2008.
Saaroni, H. and Ziv B.: Summer Rainfall in a Mediterranean Climate – The
Case of Israel: Climatological – Dynamical Analysis, Int. J. Climatol., 20,
191–209, 2000.
Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L. K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D. B.: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES, Atmos. Chem. Phys., 14, 5547–5560, https://doi.org/10.5194/acp-14-5547-2014, 2014.
Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., and Medeiros, B.:
Climatology of the planetary boundary layer over continental United States
and Europe, J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143, 2012.
Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary
boundary layer heights from radiosonde observations: Comparison of methods
and uncertainty analysis, J. Geophys. Res., 115, D16113,
https://doi.org/10.1029/2009JD013680, 2010.
Sharf, G., Peleg, M., Livnat, M., and Luria, M.: Plume rise measurements from
large point sources in Israel, Atmos. Environ., 27,
1657–1663, 1993.
Steppeler, J., Doms, G., Schattler, U., Bitzer, H. W., Gassmann, A., Damrath, U., and Gregoric, G.: Meso gamma scale forecasts by nonhydrostatic model LM,
Meteorological Atmospheric Physics, 82, 75–96, 2003.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic
Publishers, the Netherlands, 666 pp., 1988.
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus
Parameterization in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
1989.
Urbanski, S., Kovalev, V. A., Hao, W. M., Wold, C., and Petkov, A.: Lidar and
airborne investigation of smoke plume characteristics: Kootenai Creek Fire
case study, Proceedings of 25th International Laser Radar Conference, St.
Petersburg, Russia, Tomsk. Publishing House of IAO SB RAS,
1051–1054, 2010.
Uzan, L. and Alpert, P.: The coastal boundary layer and air pollution – a
high temporal resolution analysis in the East Mediterranean Coast, The Open
Atmospheric Science Journal, 6, 9–18, 2012.
Uzan, L., Egert, S., and Alpert, P.: Ceilometer evaluation of the eastern Mediterranean summer boundary layer height – first study of two Israeli sites, Atmos. Meas. Tech., 9, 4387–4398, https://doi.org/10.5194/amt-9-4387-2016, 2016.
Uzan, L., Egert, S., and Alpert, P.: New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel, Atmos. Chem. Phys., 18, 3203–3221, https://doi.org/10.5194/acp-18-3203-2018, 2018.
Van der Kamp, D. and McKendry, I.: Diurnal and seasonal trends in convective
mixed-layer heights estimated from two years of continuous ceilometer
observations in Vancouver, BC, Bound. Lay.-Meteorol., 137, 459–475, 2010.
Vogelezang, D. H. P. and Holtslag, A. A. M.: Evaluation and model impacts of
alternative boundary-layer height formulations, Bound.-Lay. Meteorol., 81,
245–269, 1996.
Wang, Z., Cao, X., Zhang, L., Notholt, J., Zhou, B., Liu, R., and Zhang, B.: Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation, Atmos. Meas. Tech., 5, 1965–1972, https://doi.org/10.5194/amt-5-1965-2012, 2012.
Wetzel, P. J.: Toward parametrization of the stable boundary layer, J. Appl.
Meteorol., 21, 7–13, 1982.
World Health Organization: Ambient air pollution – a global assessment of exposure and burden of disease, 1–122, available at: https://www.who.int/phe/publications/air-pollution-global-assessment/en/ (last access: 30 July 2020), 2016.
Wiegner, M. and Gasteiger, J.: Correction of water vapor absorption for aerosol remote sensing with ceilometers, Atmos. Meas. Tech., 8, 3971–3984, https://doi.org/10.5194/amt-8-3971-2015, 2015.
Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, A., Pappalardo, G., Schäfer, K., and Thomas, W.: What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET, Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, 2014.
Yuval, Levi, I., Dayan, U., Levy, I., and Broday, D. M.: On the association between characteristics of the atmospheric boundary layer and air pollution concentrations, Atmos. Res., 231, 104675, https://doi.org/10.1016/j.atmosres.2019.104675, 2020.
Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., and Chen, J.: On the computation of planetary boundary-layer height using the bulk Richardson number method, Geosci. Model Dev., 7, 2599–2611, https://doi.org/10.5194/gmd-7-2599-2014, 2014.
Ziv, B., Saaroni, H., and Alpert, P.: The factors governing the summer regime
of the eastern Mediterranean, Int. J. Climatol., 24, 1859–1871, 2004.
Short summary
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air pollution assessment to weather prediction. We examined the diurnal summer PBL height by eight ceilometers in Israel, radiosonde profiles, the global IFS, and regional COSMO models. Our analysis utilized the bulk Richardson number method, the parcel method, and the wavelet covariance transform method. A novel correction tool to improve model results against in-situ ceilometer measurements is introduced.
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air...
Altmetrics
Final-revised paper
Preprint