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Abstract. The significance of planetary boundary layer
(PBL) height detection is apparent in various fields, es-
pecially in air pollution dispersion assessments. Numerical
weather models produce a high spatial and temporal reso-
lution of PBL heights; however, their performance requires
validation. This necessity is addressed here by an array of
eight ceilometers; a radiosonde; and two models – the In-
tegrated Forecast System (IFS) global model and COnsor-
tium for Small-scale MOdeling (COSMO) regional model.
The ceilometers were analyzed with the wavelet covari-
ance transform method, and the radiosonde and models with
the parcel method and the bulk Richardson method. Good
agreement for PBL height was found between the ceilome-
ter and the adjacent Bet Dagan radiosonde (33 m a.s.l.) at
11:00 UTC launching time (N = 91 d, ME= 4 m, RMSE=
143 m, R = 0.83). The models’ estimations were then com-
pared to the ceilometers’ results in an additional five di-
verse regions where only ceilometers operate. A correction
tool was established based on the altitude (h) and distance
from shoreline (d) of eight ceilometer sites in various cli-
mate regions, from the shoreline of Tel Aviv (h= 5 m a.s.l.,
d = 0.05 km) to eastern elevated Jerusalem (h= 830 m a.s.l.,
d = 53 km) and southern arid Hazerim (h= 200 m a.s.l., d =
44 km). The tool examined the COSMO PBL height approx-
imations based on the parcel method. Results from a 14 Au-
gust 2015 case study, between 09:00 and 14:00 UTC, showed
the tool decreased the PBL height at the shoreline and in the
inner strip of Israel by ∼ 100 m and increased the elevated
sites of Jerusalem and Hazerim up to∼ 400 m, and∼ 600 m,
respectively. Cross-validation revealed good results without
Bet Dagan. However, without measurements from Jerusalem,

the tool underestimated Jerusalem’s PBL height by up to
∼ 600 m.

1 Introduction

In the era of substantial industrial development, the need to
mitigate the detrimental effects of air pollution exposure is
unquestionable (Anenberg et al., 2019; WHO, 2016; Héroux
et al., 2015; Dockery et al.,1993). However, to regulate and
establish environmental thresholds, a comprehensive under-
standing of the air pollution dispersion processes is neces-
sary (Luo et al., 2014; Seidel et al., 2010, 2012; Ogawa
et al., 1986; Lyons, 1975). One of the critical meteorolog-
ical parameters governing air pollution dispersion is plane-
tary boundary layer (PBL) height (Sharf et al., 1993; Gar-
ratt, 1992; Ludwing, 1983; Dayan et al., 1988). PBL height
is classified as the first level of the atmosphere that dictates
the vertical dispersion extent of air pollution (Stull, 1988).
Hence, the quality of meteorological data provided to these
models is of great importance (Urbanski et al., 2010; Scarino
et al., 2014; Su et al., 2018).

Numerical weather prediction (NWP) models provide a
high temporal and spatial resolution of PBL height based on
mathematical equations with initial assumptions, and bound-
ary conditioned set beforehand. However, the models display
difficulty in accurately simulating the PBL creation and evo-
lution (Luo et al., 2014; Seidel et al., 2010), and validation
against actual measurements is advised. In situ atmospheric
measurements by radiosondes are most efficient but costly
as successive measurements. Remote-sensing measurements
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such as wind profilers and sophisticated lidars are mostly
designated for specific campaigns limited in location and op-
erational time (Manninen et al., 2018; Mamouri et al., 2016).
Ceilometers, on the other hand, are ubiquitous in airports
and meteorological service centers worldwide (TOPROF of
COST Action ES1303 and E-PROFILE of the EUMETNET
Profiling Programme), thus providing an advantage over the
relatively scarce deployment of sophisticated lidars.

Ceilometers are single-wavelength micro-lidars intended
for cloud base height detection. Vaisala ceilometers produce
backscatter profiles every ∼ 15 s with a vertical resolution
of 10 m and a height range up to 8 or 15 km, depending on
the ceilometer type and the atmospheric conditions (Uzan et
al., 2018). Unlike sophisticated lidars, ceilometers are not
equipped to provide aerosol properties such as size distri-
bution, scattering, and absorption coefficients (Ansmann et
al., 2003, 2011; Papayannis et al., 2008). Nevertheless, their
advantages have been recognized as low cost, easy mainte-
nance, and continuous unattended operation under diverse
meteorological conditions (Kotthaus and Grimmond, 2018).
Over the years, several studies have assigned ceilometers as
PBL height detectors (Eresmaa et al., 2006; Van der Kamp
and McKendry, 2010; Haeffelin and Angelini, 2012; Wiegner
et al., 2014) and compared them to NWP models (Collaud et
al., 2014; Ketterer et al., 2014; Gierens et al., 2018). How-
ever, scarce attention has been paid to designating ceilome-
ters as a correction tool for NWP PBL heights. The main
goal of this study is to create this tool and improve the input
data for air pollution dispersion evaluations. A description of
the models and instruments applied is given in Sects. 2 and
3, respectively. Section 4 presents the PBL height detection
methods. Spatial and temporal analysis of the PBL heights
generated by the models and instruments at six sites is shown
in Sect. 5.1. The PBL height correction tool is explained in
Sect. 5.2 and demonstrated by a case study employing eight
ceilometer sites. A summary is provided and conclusions are
drawn in Sect. 6.

1.1 Study time and region

Located in the eastern Mediterranean, Israel contains various
climate measurement sites within comparatively short dis-
tances (Fig. 1). The ceilometer array (Fig. 1, Table 1) is com-
prised of two coastline sites 40 km apart: Hadera (10 m a.s.l.)
and Tel Aviv (5 m a.s.l.). Further inland, 12 and 23 km south-
east of Tel Aviv, are Bet Dagan (33 m a.s.l.) and Weizmann
(60 m a.s.l.), respectively. About 70 km southwest of the ele-
vated Jerusalem site (830 m a.s.l.) are Hazerim (200 m a.s.l.)
and Nevatim (400 m a.s.l.). Ramat David (50 m a.s.l.) repre-
sents the northern region 24 km inland.

Various institutions operate the ceilometers. In several
cases, the ceilometers’ output files were not methodically
saved. In others, the ceilometers worked for limited peri-
ods. Following Kotthaus and Grimmond (2018), the analy-
sis concentrated on the dry summer season due to the diffi-

culty of evaluating the PBL height from backscatter signals
during precipitation episodes. The database was narrowed
down by removing dates with partial data or during dust
storm events such as the unprecedented extreme dust storm
in September 2015 (Uzan et al., 2018). In general, summer
dust outbreaks in the eastern Mediterranean are quite rare
at the low altitudes (∼ 1–2 km) of the PBL height (Alpert
and Ziv, 1989; Alpert et al., 2000, 2002). Eventually, the
analysis focused on the data available from each ceilometer
within six summer months: July–September 2015 and June–
August 2016.

A characteristic Israeli summer has no precipitation and
mainly sporadic shallow cumulus clouds (Ziv et al., 2004;
Goldreich, 2003; Saaroni and Ziv, 2000). The dominant syn-
optic system is the persistent Persian Trough (deep, shallow,
or medium) followed by a subtropical high aloft (Alpert et
al., 1990, 2004; Feliks, 1994; Dayan et al., 2002). The av-
erage summer PBL height is under 2 km a.s.l. (Dayan et al.,
1988; Feliks 2004). Since backscatter signals decline with
height, the conditions of low PBL heights come as an advan-
tage.

1.2 The summer PBL height

The formation and evolution of the Israeli summer PBL
height are as follows: After sunrise, ∼ 4:00–5:00 local stan-
dard time (LST=UTC+2), clouds initially form over the
Mediterranean Sea, advect eastward to the shoreline. As the
ground warms up, the nocturnal surface boundary layer dis-
sipates, and buoyancy-induced convective updrafts instigate
the formation of the sea breeze circulation (Stull, 1988). Pre-
vious research of the PBL height in Bet Dagan (33 m a.s.l.
and 7.5 km east of the shoreline) has revealed an average
height of∼ 900 m a.g.l. after sunrise (Dayan et al., 1988; Fe-
liks, 1994; Dayan and Rodnizki, 1999; Uzan et al., 2016; Yu-
val et al., 2020). The sea breeze front enters between 07:00
and 09:00 LST (Feliks, 1993; Alpert and Rabinovich-Hadar,
2003; Uzan and Alpert, 2012), depending on the time of sun-
rise and the different synoptic modes of the prevailing sys-
tem – the Persian Trough (Alpert et al., 2004). Cool and hu-
mid marine air hinder the convective updrafts. Clouds dis-
solve, and the height of the shoreline boundary layer lowers
by ∼ 250 m (Feliks, 1993, 1994; Levi et al., 2011; Uzan and
Alpert, 2012). Further inland, the convective thermals con-
tinue to inflate the boundary layer (Hashmonay et al., 1991;
Feliks, 1993; Lieman and Alpert, 1993). West-northwest syn-
optic winds enhance the sea breeze wind as it steers north-
west (Neumann, 1952, 1977; Uzan and Alpert, 2012). By
noontime (∼ 11:00–13:00 LST), maximum wind speeds fur-
ther suppress the boundary layer (Uzan and Alpert, 2012).
In the afternoon (∼ 13:00–14:00 LST), the sea breeze front
reaches ∼ 30–50 km inland to the eastern elevated complex
terrain (Hashmonay et al., 1991; Lieman and Alpert, 1993).
At sunset (∼ 18:00–19:00 LST), as the insolation diminishes,
the potential energy of the convective updrafts weakens, and
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Figure 1. Maps of the eastern Mediterranean (a) and the study region in Israel (b), with indications of the ceilometers’ measurement sites
(red circles; details given in Table 1) on a topography map, adapted from © Israeli meteorological service.

Table 1. Location and type of ceilometers.

Location Terrain Lat, long Distance from Height Ceilometer type
shoreline (m a.s.l.) (resolution, max rangea)

(km)

Ramat David (RD) Plain 32.7◦ N, 35.2◦ E 24 50 CL31 (10 m, 16 s, up to 7.7 km)
Hadera (HD) Coast 32.5◦ N, 34.9◦ E 3.5 10 CL31 (10 m, 16 s, up to 7.7 km)
Tel Aviv (TLV) Coast 32.1◦ N, 34.8◦ E 0.05 5 CL31 (10 m, 16 s, up to 7.7 km)
Bet Dagan (BD)b Plain 32.0◦ N, 34.8◦ E 7.5 33 CL31 (10 m, 15 s, up to 7.7 km)
Weizmann (WZ) Plain 31.9 ◦ N, 34.8◦ E 11.5 60 CL51 (10 m, 16 s, up to 15.4 km)
Jerusalem (JRM) Mount. 31.8◦ N, 35.2◦ E 53 830 CL31 (10 m, 16 s, up to 7.7 km)
Hazerim (HZ) Arid 31.2 ◦ N, 34.6◦ E 44 200 CL31 (10 m, 16 s, up to 7.7 km)
Nevatim (NV) Arid 31.2◦ N, 35.0◦ E 70 400 CL31 (10 m,16 s, up to 7.7 km)

a The maximum height decreases as the atmospheric optical density increases. b Adjacent to the radiosonde launch site.

the boundary layer height drops (Dayan and Rodnizki, 1999).
After sunset, as ground temperature cools down, the bound-
ary layer collapses, and a residual layer is formed above the
surface boundary layer (Stull, 1988). High humidity and a
low residual layer create low condensation levels, and shal-
low evening clouds are produced.

2 IFS and COSMO models

The Israeli meteorological service (IMS) utilizes two op-
erational models: the European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecast System
(IFS) global model and the COnsortium for Small-scale
MOdeling (COSMO) regional model (Table 2).

IFS consists of 137 vertical levels. In the years 2015 and
2016, relevant to this study, the grid resolution was ∼ 13
and ∼ 10 km, respectively. IFS applies a turbulent diffusion
scheme representing the vertical exchange of heat, momen-
tum, and moisture through the sub-grid turbulence scale. A
first-order K-diffusion closure based on the Monin–Obukhov
similarity theory represents the surface layer turbulent fluxes.
The eddy-diffusivity mass-flux framework (Koehler et al.,
2011) describes the unstable conditions above the surface
layer.
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Table 2. Description of the NWP models.

Model IFS COSMO

Operation center ECMWF IMS

Global/regional Global Regional, boundary conditions from IFS

Horizontal grid resolution 0.125◦ in 2015 (∼ 13 km)
0.1◦ in 2016 (∼ 9 km)

0.025◦ (∼ 2.5 km)

Vertical grid resolution 137 layers up to ∼ 79 km;
23 lie within the first 3 km

60 layers up to 23.5 km;
20 lie within the first 3 km

Temporal resolution of the output Hourly profiles 15 min profiles

Convection parametrization Tiedtke–Bechtold mass flux
(Bechtold, 2008)

Deep convection resolved;
parametrization of mass flux shallow con-
vection (Tiedtke, 1989)

IMS has run COSMO over the eastern Mediterranean do-
main (26–36◦ N, 25–39◦ E) since 2013 with boundary and
initial conditions from IFS. It consists of 60 vertical lev-
els up to 23.5 km and a horizontal grid spacing of 2.5 km
(Table 2). Primitive thermo-hydrodynamic equations repre-
sent the non-hydrostatic compressible flow in a moist atmo-
sphere (Steppeler et al., 2003; Doms et al., 2011; Baldauf
et al., 2011). The model runs a two-time-level integration
scheme, based on a third-order Runge–Kutta method and a
fifth-order upwind scheme for horizontal advection. Unlike
in the IFS model, in the COSMO model only shallow con-
vection is parameterized, and the deep convection is switched
off (Tiedtke, 1989). The turbulence scheme of Mellor and Ya-
mada (1982) at level 2.5 uses a reduced second-order closure
with a prognostic equation for the turbulent kinetic energy.
Transport and local time tendency terms in the second-order
momentum equations are neglected, and the vertical turbu-
lent fluxes are derived diagnostically (Cerenzia, 2017).

Both models estimate the PBL height by the bulk Richard-
son number method (described in Sect. 4.1). IFS pro-
duced hourly results, while COSMO generated profiles every
15 min. A series of trials showed that the COSMO profiles of
the last 15 min within an hour best represent the hourly val-
ues of the IFS model.

3 Instruments

3.1 Ceilometers

Vaisala Ceilometer CL31 is the primary research tool in this
study (Fig. 1, Table 1). CL31 is a pulsed, elastic micro-lidar
employing an indium gallium arsenide (InGaAs) laser diode
transmitter of 910 nm±10 nm near-infrared wavelength at
25 ◦C and a high pulse repetition rate of 10 kHz every 2 s
(Vaisala Ceilometer CL31 user’s guide: http://www.vaisala.
com, last access: 24 September 2015). The backscatter sig-
nals are collected by an avalanche photodiode receiver and

designed as attenuated backscatter profiles at intervals of
2–120 s (determined by the user). This study applied CL31
ceilometers except for ceilometer CL51 stationed in Weiz-
mann Institute (Fig. 1, Table 1). CL51 consists of a higher
signal and signal-to-noise ratio (SNR). Hence the backscatter
profile measurement reaches ∼ 15 km, compared to ∼ 8 km
of CL31. The ceilometers produce 10 m vertical resolution
profiles every 15 or 16 s. Half-hourly backscatter profiles im-
proved SNR. The second half-hour profile within each hour
defined the hourly profiles.

One drawback is that calibration procedures were nonex-
istent at all sites. In most cases, maintenance procedures
(cleaning of the ceilometer window) were not regularly car-
ried out, except for the IMS Bet Dagan ceilometer. In the
case of the backscatter coefficient detection, signal calibra-
tions and water vapor corrections are necessary (Wiegner and
Gasteiger, 2015). However, the PBL height detection method
employed here (Sect. 4.3) locates the height of a pronounced
change in the attenuated backscatter profile rather than a spe-
cific value. Therefore, calibration procedures are not manda-
tory (Wiegner et al., 2014; Gierens et al., 2018).

3.2 Radiosonde

IMS obtains systematic radiosonde atmospheric observations
twice daily, at 23:00 and 11:00 UTC. The radiosonde launch-
ing site is adjacent to the Bet Dagan ceilometer (34.8◦ N,
32.0◦ E, 33 m a.s.l., 7.5 km east of the shoreline, 12 km south-
east of Tel Aviv, 45 km northwest of Jerusalem; see Fig.1
and Table 1). The radiosonde, type Vaisala RS41-SG, re-
trieves profiles of relative humidity, temperature, pressure,
wind speed, and wind direction every 10 s (∼ every 45 m),
rising to ∼ 25 km. Here, we refer to the first 2 km for the de-
tection of the midday summer PBL height. At this height,
the average wind speed at 11:00 UTC is ∼ 5 m s−1 (Uzan
et al., 2012). Therefore, the horizontal displacement is rela-
tively low (∼ 2.5 km) and neglected. Moreover, previous re-
search has shown the midday PBL height in Bet Dagan is
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below 1 km (Dayan and Rodnizki, 1999; Uzan et al., 2016;
Yuval et al., 2020), corresponding to horizontal displacement
of∼ 0.01◦, which is well under the grid resolution of the IFS
and the COSMO models.

4 Methods

4.1 The bulk Richardson number method

The COSMO and IFS schemes calculate the PBL height
by the bulk Richardson number (Rb) method (Hanna, 1969;
Zhang et al., 2014), given in the formula below:

Rb =

g
θv
(θvz− θv0)(Z−Z0)

U2+V 2 , (1)

where g is the gravitational force, θvz is the virtual potential
temperature at height Z, θv0 is the virtual potential temper-
ature at ground level (Z0), and U and V are the horizontal
wind speed components at height Z (assuming U and V at
surface height are insignificant and therefore negligible).

The Rb threshold determines the PBL height. The IFS
model has a single threshold of 0.25 (Seidel et al., 2012).
The COSMO model refers to 0.33 for stable atmospheric
conditions (Wetzel, 1982) and 0.22 for unstable conditions
(Vogelezang and Holtslag, 1996) in the first four levels of
the model (10, 34.2, 67.9, 112.3 m a.g.l.). Linear interpola-
tion determines the height if the detection is between two
model levels. The height is assigned with a missing value if
the thresholds were not reached. The models’ PBL heights
(given as m a.g.l.) are adjusted to the actual altitude of the
ceilometer sites (Table 1). The radiosonde 11:00 UTC PBL
heights were defined where the Rb profile values (derived
every 10 s, corresponding to ∼ 45 m) altered from negative
to positive. In all the dates studied, the first positive value
was well above the thresholds for unstable conditions by both
models (0.25 and 0.33). Therefore the PBL height was de-
fined at the height point of the last negative value.

4.2 The parcel method

The parcel method defines the PBL height where the vir-
tual potential temperature aloft reaches the value evaluated
at the surface level (Holzworth 1964; Stull, 1988; Seidel et
al., 2010). The description of the virtual potential tempera-
ture is as follows:

θv = Tv

(
P0

P

)Rd
Cp
, (2)

where P0 is the ground level pressure, P is the pressure at
height Z, Rd is the dry-air gas constant, and Cp is the heat
capacity of dry air. The virtual temperature (Tv) is obtained
by

Tv =
T

1− e
P
(1− ε)

, (3)

where T is the temperature at height Z, e is the actual vapor
pressure, and ε is the ratio of molecular weights of water
vapor and dry air (ε = 0.622).

The virtual potential temperature profiles were computed
based on the available meteorological parameters from the
models and radiosonde: mixing ratio, pressure, and tempera-
ture profiles from the IFS model, and relative humidity, pres-
sure, and temperature profiles from the COSMO model and
the radiosonde. The virtual potential temperature profiles of
the models at ground level were obtained by the tempera-
ture and dew point temperature at 2 m a.g.l. These parame-
ters were derived from the models by the similarity theory.
Finally, the PBL heights (given in m a.s.l.) were adjusted to
the actual altitude of the ceilometer sites (Table 1).

4.3 The wavelet covariance transform method

The wavelet covariance transform (WCT) method (Baars et
al., 2008; Brooks, 2003) is implemented on backscatter pro-
files by the formula given in Eq. (4):

Wf (a,b) =
1
a

∫ Zt

Zb

f (z)h

(
z− b

a

)
dz, (4)

where Wf (a,b) is the local maximum of the backscatter pro-
file (f (z)) determined within the range of step (a) by the
Haar step function (h). The length of the step is the number
of height levels (n) multiplied by the profile height resolution
(1z) from ground level (Zb) and up (Zt ). In this study, Zb
was defined as the height above the perturbation of the over-
lap function (∼ 100 m), and Zt as the height with the most
significant signal variance or the first appearance of nega-
tive values. Both thresholds indicate a low SNR. Zb is the
lowest height among the two options. These thresholds apply
under clear-sky conditions. On cloudy days, the PBL height
is determined within the cloud, above the cloud base height
(Wang et al., 2012; Stull, 1988).

The Haar step function given in Eq. (5) is equivalent to
a derivative at height z, representing the value difference of
each step (a) above and beneath a point of interest (b). In
this study, b is the measurement height of the ceilometer
backscatter profile. The value of the step (a) varied for each
ceilometer, depending on the site location.

h

(
z− b

a

)
=

 +1, b− a
2 ≤ z ≤ b,

−1, b ≤ z ≤ b+ a
2

0, elsewhere

 (5)

In arid and dusty areas such as Nevatim and Hazerim,
specifically on clear days, the WCT method failed to distin-
guish the PBL height (Van der Kamp and McKendry, 2010;
Gierens et al., 2018). Therefore, the analysis excluded these
cases. The last stage consisted of manual inspection of the
WCT results.
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Figure 2. PBL height from the Bet Dagan site at 11:00 UTC on 91 d for the periods of July–September 2015 and June–September 2016.
Ceilometer profiles were analyzed with the WCT method. The IFS and COSMO models and the radiosonde profiles were analyzed with
the bulk Richardson method (RS-ri, IFS-ri, COSMO-ri) and the parcel method (RS-pm, IFS-pm, COSMO-pm). The results were compared
to the radiosonde (RS-ri and RS-pm produced the same heights). Statistical analysis of the scatterplot (a) is given in Table 3. PBL height
difference is presented by boxplots and histograms (b). The edges of the boxplot are the 25th and 75th percentiles (q1 and q3); the whiskers
enclose all data points not considered outliers (red crosses). A central red line indicates the median. Each boxplot is described by a histogram
beneath.

Table 3. Statistical analysis of Bet Dagan PBL heights (N = 91, Fig. 2a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer RS

Mean error (m) 346 −52 366 57 4 –
RMSE (m) 494 146 579 193 143 –
R 0.14 0.84 −0.13 0.7 0.83 –
Mean (m a.s.l.) 1236 838 1255 947 894 890
SD (m) 290 237 346 232 239 245

5 Results

In the Israeli summer season, stable PBL conditions are gen-
erated from sunset to an hour after sunrise (Stull, 1988). Dur-
ing this period the models’ Rb profiles do not exceed the rel-
evant thresholds, and a missing value is assigned (Sect. 4.1).
Additionally, the difficulty of estimating the surface bound-
ary layer by ceilometers (Gierens et al., 2018) was associated
with a constant perturbation within the first range gates due
to the overlap of the emitted laser beam and the receiver’s
field of view (Wiegner et al., 2014). Hence, the analysis fo-
cused on the midday summer PBL heights.

5.1 Spatial and temporal analysis

The analysis was performed based on six ceilometers with
available data of at least 50 d within the study period: Bet
Dagan, Tel Aviv, Ramat David, Weizmann, Jerusalem, and
Nevatim. In Bet Dagan, the results were compared to the
radiosonde; thereupon, the analysis focused on 11:00 UTC
launching time. At the remaining five sites, the models were
compared to the ceilometers. Statistical analysis for each site
presents the mean error (ME), root mean square (RMSE),

correlation (R), mean, and standard deviation (SD) given in
tables and plots.

Good agreement was found between the ceilometer and
the radiosonde (RS) in Bet Dagan (Fig. 2 and Table 3,
ME= 4, RMSE= 143, R = 0.83). The IFS analyzed with
the parcel method (IFS-pm) appears to overestimate the PBL
height (ME= 346, RMSE= 494, R = 0.14), as does the IFS
analyzed with the Richardson method (IFS-ri, ME= 366,
RMSE= 579,R =−0.13). Among the models and methods,
the COSMO model by the parcel method derived the best re-
sults (COSMO-pm, ME=−52, RMSE= 146, R = 0.84).

At the shoreline site of Tel Aviv (Fig. 3, Table 4),
COSMO-pm displayed good agreement with the ceilome-
ter measurements (ME= 17, RMSE= 183, R = 0.74), sim-
ilar to COSMO-ri (ME= 18, RMSE= 187, R = 0.7). IFS-ri
produced the highest overestimations (ME= 436, RMSE=
616, R =−0.03).

In Ramat David, stationed in the northern inner plain
of Israel, the parcel method derived better results than the
Richardson method in both models (Fig. 4, Table 5). Among
the models, COSMO displayed better results (ME= 40,
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Figure 3. Same as Fig. 2 but for Tel Aviv on 122 d. The models were compared to the ceilometer.

Table 4. Statistical analysis of Tel Aviv PBL heights (N = 122, Fig. 3a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer

Mean error (m) 14 17 436 18 –
RMSE (m) 256 183 616 180 –
R 0.47 0.74 −0.03 0.73 –
Mean (m a.s.l.) 702 706 1124 707 674
SD (m) 224 238 337 211 258

Figure 4. Same as Fig. 2 but for Ramat David on 123 d. The models were compared to the ceilometer.

RMSE= 245, R = 0.55). IFS-ri generated the poorest cor-
relation (ME= 446, RMSE= 745, R =−0.08).

In Weizmann (Fig. 5, Table 6), 11 km southeast of Bet
Dagan, IFS-ri produced poor results (ME= 430, RMSE=
604, R =−0.01), conversely to the good results by the
parcel method (ME= 67, RMSE= 162, R = 0.85). The
COSMO model derived similar results using both meth-

ods (COSMO-pm: ME=−106, RMSE= 207, R = 0.76,
COSMO-ri: ME= 21, RMSE= 192, R = 0.72).

At the mountainous site of Jerusalem, the bulk Richard-
son method produced better results than the parcel method
in both models (Fig. 6, Table 7). COSMO-pm derived good
results (ME=−44, RMSE= 239, R = 0.70), and IFS-ri the
poorest (ME= 366, RMSE= 498, R = 0.18).
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Table 5. Statistical analysis of Ramat David PBL heights (N=123, Fig. 4a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer

Mean error (m) 4 40 446 123 –
RMSE (m) 347 245 745 313 –
R 0.14 0.55 −0.08 0.39 –
Mean (m a.s.l.) 995 1031 1437 1114 991
STD (m) 276 256 521 268 253

Figure 5. Same as Fig. 2 but for Weizmann on 55 d. The models were compared to the ceilometer.

Table 6. Statistical analysis of Weizmann PBL heights (N = 55, Fig. 5a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer

Mean error (m) 67 −106 430 21 –
RMSE (m) 162 207 604 192 –
R 0.85 0.76 −0.01 0.72 –
Mean (m a.s.l.) 892 719 1256 846 825
SD (m) 186 193 322 219 271

Table 7. Statistical analysis of Jerusalem PBL heights (N = 53, Fig. 6a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer

Mean error (m) 366 −129 117 −44 –
RMSE (m) 498 252 257 239 –
R 0.18 0.63 0.59 0.70 –
Mean (a.s.l.) 2239 1744 1991 1830 1874
SD (m) 276 253 258 328 250

At the elevated and arid site of Nevatim (Fig. 7, Table 8),
overall correlations were weak (0.1–0.3) with a high RMSE
(369–488).

The main conclusions derived from Figs. 2–7 are summa-
rized below:

– Low correlation in Nevatim (0.1–0.3) demonstrates
models’ difficulty to assess the PBL height over com-
plex terrain. Evaluation of PBL heights in complex ter-
rain was studies by Ketterer et al. (2014) in the Swiss
Alps using a ceilometer, wind profiler, and in situ con-
tinuous aerosol measurements. The ceilometers were
analyzed with the gradient and STRAT-2D algorithms,
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Figure 6. Same as Fig. 2 but for Jerusalem on 53 d. The models were compared to the ceilometer.

Table 8. Statistical analysis of Nevatim PBL heights (N = 72, Fig. 7a).

PBL detection IFS-pm COSMO-pm IFS-ri COSMO-ri Ceilometer

Mean error (m) 149 186 214 264 –
RMSE (m) 423 436 369 488 –
R 0.1 0.15 0.30 0.23 –
Mean PBL (m a.s.l.) 1728 1756 1792 1843 1579
STD PBL (m) 341 352 268 394 237

and the wind profiler with the range-corrected SNR
method. The results were compared to the COSMO-2
regional model. The results showed good agreement be-
tween the heights derived by the ceilometer and wind
profiler during the daytime under cloud-free conditions
(R2
= 0.81). However, in most cases, the model under-

estimated the PBL height. The researchers presumed the
grid resolution, parametrization schemes, and surface
type did not match the real topography. The comparison
between a single measurement point and a grid point is
not straightforward.

– The parcel method achieved better results in Ramat
David, Tel Aviv, Bet Dagan, and Weizmann. At the el-
evated site of Jerusalem, the correlation of COSMO-ri
was the highest (R = 0.7).

– The COSMO model produced better results in the
shoreline and plain regions (Ramat David, Tel Aviv, Bet
Dagan) except for Weizmann (60 m a.s.l., 11.5 km from
the coastline), where IFS-pm obtained the highest cor-
relation (R = 0.85).

– The IFS model based on the bulk Richardson method
overestimated the PBL heights (∼ 420 m) at the plain
sites of Bet Dagan, Tel Aviv, Weizmann, and Ramat
David. The bulk Richardson evaluation (see Sect. 4.1)

includes horizontal wind speed profiles that are less ac-
curate and may contribute to the discrepancies. Col-
laud et al. (2014) referred to the limitations of the bulk
Richardson method of the COSMO-2 regional model
(2.2 km resolution), which overestimated the convective
boundary layer by 500–1000 m. They explained that the
Richardson method is sensitive to the surface tempera-
ture, and errors and uncertainties in the model’s temper-
ature and relative humidity profiles could explain the
significant bias. Also, the occurrence of clouds, which
may be missing from the model, can lead to lower PBL
heights.

5.2 COSMO PBL height correction

A correction formula for the models’ PBL height employing
ceilometers is given below:

dHst = αhst+βdst+ γ, (6)

where dHst is the PBL height difference between the
ceilometer and the model, the altitude (hst), and distance
from the shoreline (dst) for each measurement site (st). The
formula runs simultaneously for all ceilometer sites to derive
the dependent variables α and β, and the constant γ . The
formula is suitable for both models

A case study demonstrates the correction formula on
14 August 2015, from the COSMO model based on the
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Figure 7. Same as Fig. 2 but for Nevatim on 72 d. The models were compared to the ceilometer.

parcel method (COSMO-pm) that derived good results in
Sect. 5.1. The formula runs for each hour between 09:00 and
14:00 UTC for the daytime PBL height (see Sect. 5). Results
are portrayed for each hour by a 2-D plot of the height correc-
tion within the area of ceilometers’ deployment, along with
an east–west cross-section plot, corresponding to the location
of the ceilometers. Cross-validation tests for Bet Dagan and
Jerusalem show the effectivity of the correction formula. The
main findings for each hour are as follows:

– 09:00 UTC (Fig. 8): Along the coast, the correction tool
lowers the PBL height by 70 to 670 m and increases by
90 m in the inner strip of Israel to ∼ 890 m a.s.l. Cross-
validation for Bet Dagan (CV-BD) shows good results,
whereas cross-validation for Jerusalem (CV-JRM) re-
duced the height by 600 m.

– 10:00 UTC (Fig. 9): The correction tool distinguishes
between the coastal sites of Tel Aviv and Hadera, and
the inland locations of Bet Dagan and Weizmann, only
∼ 10 km away from Tel Aviv. While the correction tool
increased the height of the coastal stations, a slight
height decrease was performed at the inner sites. In arid
southern Hazerim, the correction tool lowered the PBL
height by 400 m. In the desert south of Nevatim, the cor-
rection tool decreased the PBL height by 200 m. CV-
JRM underestimates the PBL height in Jerusalem by
400 m.

– 11:00 UTC (Fig. 10): A distinction between the shore-
line and the inner sites is more evident, as the PBL
height of Tel Aviv and Hadera is increased by ∼ 100 m
to∼ 700 m a.s.l., whereas Bet Dagan and Weizmann re-
mained ∼ 800 m a.s.l. This finding corresponds to the
analysis by Uzan et al. (2016) of the mean diurnal cy-
cle of the PBL height from July to August 2014, based
on ceilometer measurements. A pronounced correction

is visible at the elevated southern site of Hazerim by
550 m down to 1120 m a.s.l. This gap is not surprising
since NWP models have difficulty assessing the mete-
orological conditions over complex terrain. Here, CV-
JRM underestimates the PBL height by a comparatively
lower range of 200 m.

– 12:00 UTC (Fig. 11): The correction tool increased the
PBL height at the coast and inland stations, but in fact
the height is lower than an hour before. The PBL height
in Hazerim is decreased by 300 m. CV-JRM underesti-
mates the PBL height in Jerusalem by 600 m.

– 13:00 UTC (Fig. 12): The correction tool increased
the PBL heights. A substantial increase of 380 m in
Jerusalem generates a height of ∼ 1750 m a.s.l. CV-
JRM underestimates the PBL height by 550 m.

– 14:00 UTC (Fig. 13): Similar to an hour before, the cor-
rection increases the PBL height at all sites, but in fact
the PBL heights are lower than an hour earlier, except
for a mild increase at the coastal locations of Tel Aviv
and Hadera. CV-JRM underestimates the PBL height by
∼ 300 m.

6 Summary and conclusions

The primary purpose of this study was to improve the per-
formance of air pollution dispersion models by providing
applicable data of PBL heights from NWP models employ-
ing ceilometers. A correction tool using ceilometer measure-
ments was established to validate the models’ PBL height
assessments. The study focused on the summer PBL heights
(July–September 2015, June–August 2016) during daytime
hours (09:00–14:00 UTC). During this period, the highest-
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Figure 8. PBL heights on 14 August 2015 at 09:00 UTC. The left panel (a) presents an east–west cross-section map, according to the
ceilometers’ distance from the Mediterranean shoreline. The results of the correction formula are presented; based on eight sites (1HCR),
cross-validation for Bet Dagan (1HCV-BD), and cross-validation for Jerusalem (1HCV-JRM). The PBL heights were derived from COSMO-
pm (pink line), the ceilometers (black line), the correction tool for COSMO-pm (CR, green line), cross-validation for Bet Dagan (CV-BD,
dashed blue line), and cross-validation for Jerusalem (CV-JRM, unbroken blue line with circles). The right panel (b) shows a 2-D map of the
height correction range, corresponding to panel (a).

Figure 9. Same as Fig. 8 but for 10:00 UTC.

Figure 10. Same as Fig. 8 but for 11:00 UTC and including the PBL height estimation from the radiosonde (red star).
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Figure 11. Same as Fig. 8 but for 12:00 UTC.

Figure 12. Same as Fig. 8 but for 13:00 UTC.

Figure 13. Same as Fig. 8 but for 14:00 UTC.
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air-pollution events occur in Israel from tall stacks (Dayan et
al., 1988; Uzan and Alpert, 2012).

The study contained eight ceilometers; a radiosonde; two
models: IFS and COSMO; and three PBL height analysis
methods: the bulk Richardson method, the parcel method
for the models and radiosonde, and the WCT method for
the ceilometers. At the Bet Dagan radiosonde launching
site, results revealed good agreement between the ceilome-
ter’s PBL heights and the radiosonde (N = 91 d, ME= 4 m,
RMSE= 143 m,R = 0.83). In Ramat David, Tel Aviv, Weiz-
mann, Jerusalem, and Nevatim, the models were compared to
the ceilometers. The COSMO model performed better in the
plain areas of Tel Aviv (10 m a.s.l.), Bet Dagan (33 m a.s.l.),
and Ramat David (50 m a.s.l.) and in mountainous Jerusalem
(830 m a.s.l.). The IFS model showed good agreement with
the ceilometer in Weizmann (60 m a.s.l., N = 55 d, ME=
67 m, RMSE= 162 m, R = 0.85). At the arid southern site
of Nevatim (400 m a.s.l.), overall correlations were poor. The
IFS-pm produced better in Bet Dagan, Ramat David, Tel
Aviv, and Weizmann (four out of five sites, except for Neva-
tim). The COSMO-pm produced better results in Bet Dagan
and Ramat David, while in Tel Aviv the results generated by
both methods were similar (N = 123 d; COSMO-pm: ME=
17 m, RMSE= 183 m, R = 0.74; COSMO-ri: ME= 18 m,
RMSE= 180 m, R = 0.80).

The PBL height correction tool for the NWP models is
based on the altitude and the distance from the shoreline of
the ceilometers’ measurement sites. A case study demon-
strated the tool’s feasibility on 14 August 2015. Moving
from 09:00 to 14:00 UTC, the correction decreased the PBL
height in flat terrain (Tel Aviv, Hadera, Bet Dagan, and Ra-
mat David). This finding corresponds with Uzan et al. (2016),
analyzing the diurnal PBL height of Bet Dagan and Tel
Aviv in the summer of 2014. Similar results produced in
Hadera describe the summer PBL height between the period
of 1997–1999 and the period of 2002–2005 based on mea-
surements from a wind profiler (Uzan et al., 2012). Koch and
Dayan (1992) revealed that air pollution episodes of sulfur
dioxide increased at shallow PBL heights in the coastal plain
of Israel. Uzan and Alpert (2012) showed that an average
decrease of ∼ 100 m at the coastal PBL height resulted in
an average increase of ∼ 200 air pollution episodes of sulfur
dioxide.

The tool increased the PBL height at the elevated site
of Jerusalem (830 m a.s.l.) by ∼ 380 m. In the arid south in
Hazerim (200 m a.s.l.), the tool lowered the PBL height by
∼ 550 m. These significant height corrections at the elevated
sites are attributed to the models’ difficulty in imitating local
meteorological processes in complex terrain (e.g., Alpert and
Neumann, 1984). Dayan et al. (1988) presumed the diurnal
cycle and the prevailing synoptic systems govern the tem-
poral behavior of the Israeli summer PBL height, while the
strength of the sea breeze determines significant variations at
the inner heights.

Cross-validation for Bet Dagan produced excellent re-
sults. Bet Dagan is located in flat terrain 11 km north of
the Weizmann site and 12 km southeast of the Tel Aviv site.
On the other hand, without the single-measurement site in
Jerusalem (830 m a.s.l.), the correction tool failed to gener-
ate Jerusalem’s PBL height and produced lower values up to
a 600 m difference. This finding shows the process of cross-
validation can assist in defining the required ceilometers’ de-
ployment in the future.

In summary, our results offer a preview of the great poten-
tial of ceilometers as a correction tool for PBL heights de-
rived from NWP models. This tool demonstrates the benefit
of deploying ceilometers, specifically in complex terrain. Fu-
ture research should include a larger dataset to create a sys-
tematic correction process and produce sufficient input data
for mandatory air pollution dispersion assessments.
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