Articles | Volume 18, issue 5
Research article
13 Mar 2018
Research article |  | 13 Mar 2018

In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013

Jean-Baptiste Renard, François Dulac, Pierre Durand, Quentin Bourgeois, Cyrielle Denjean, Damien Vignelles, Benoit Couté, Matthieu Jeannot, Nicolas Verdier, and Marc Mallet

Related authors

Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jégou, Jean-Baptiste Renard, and Bernard Legras
Atmos. Chem. Phys., 21, 535–560,,, 2021
Short summary
The complex origin and spatial distribution of non-pure sulfate particles (NSPs) in the stratosphere
Jean-Baptiste Renard, Gwenaël Berthet, Anny-Chantal Levasseur-Regourd, Sergey Beresnev, Alain Miffre, Patrick Rairoux, Damien Vignelles, and Fabrice Jégou
Atmos. Chem. Phys. Discuss.,,, 2019
Revised manuscript not accepted
Short summary
Measurements of aerosols and charged particles on the BEXUS18 stratospheric balloon
Erika Brattich, Encarnación Serrano Castillo, Fabrizio Giulietti, Jean-Baptiste Renard, Sachi N. Tripathi, Kunal Ghosh, Gwenael Berthet, Damien Vignelles, and Laura Tositti
Ann. Geophys., 37, 389–403,,, 2019
Short summary
How much of the global aerosol optical depth is found in the boundary layer and free troposphere?
Quentin Bourgeois, Annica M. L. Ekman, Jean-Baptiste Renard, Radovan Krejci, Abhay Devasthale, Frida A.-M. Bender, Ilona Riipinen, Gwenaël Berthet, and Jason L. Tackett
Atmos. Chem. Phys., 18, 7709–7720,,, 2018
Short summary
Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247,,, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005,,, 2024
Short summary
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357,,, 2024
Short summary
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712,,, 2024
Short summary
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494,,, 2024
Short summary
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388,,, 2024
Short summary

Cited articles

Alfaro, S. C. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas, J. Geophys. Res., 106, 18075–18084,, 2001. 
Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M.: Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, Geophys. Res. Lett., 25, 991–994,, 1998. 
Alpert, P., Kaufman, Y. J., Shay-El, Y., Tanré, D., da Silva, A., Schubert, S., and Joseph, J. H.: Quantification of dust-forced heating of the lower troposphere, Nature, 395, 367–370,, 1998. 
Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., and Mallet, M.: Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin, Atmos. Chem. Phys., 16, 4725–4742,, 2016. 
Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller, D., Weinzierl, B., Müller, T., and Heintzenberg, J.: Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned?, Tellus B, 63, 403–429,, 2011. 

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A campaign was performed in the summer of 2013 above the Mediterranean basin, including in situ counting balloon-borne aerosol measurements (LOAC), for the detection of mineral dust. Three modes in the dust particle volume size distributions were detected, at roughly 0.2, 4, and 30 mm. Particles larger than 40 mm were often observed. They were lifted several days before and their persistence after transport over long distances is in conflict with dust sedimentation calculations.
Final-revised paper