Articles | Volume 16, issue 11
https://doi.org/10.5194/acp-16-6931-2016
https://doi.org/10.5194/acp-16-6931-2016
Research article
 | 
07 Jun 2016
Research article |  | 07 Jun 2016

Global atmospheric budget of simple monocyclic aromatic compounds

David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer

Related authors

The community atmospheric chemistry box model CAABA/MECCA-4.0
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019,https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02
Yingying Yan, David Cabrera-Perez, Jintai Lin, Andrea Pozzer, Lu Hu, Dylan B. Millet, William C. Porter, and Jos Lelieveld
Geosci. Model Dev., 12, 111–130, https://doi.org/10.5194/gmd-12-111-2019,https://doi.org/10.5194/gmd-12-111-2019, 2019
Short summary
Global impact of monocyclic aromatics on tropospheric composition
David Cabrera-Perez, Domenico Taraborrelli, Jos Lelieveld, Thorsten Hoffmann, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-928,https://doi.org/10.5194/acp-2017-928, 2017
Revised manuscript not accepted
Short summary
Atmospheric chemistry, sources and sinks of carbon suboxide, C3O2
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017,https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024,https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024,https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024,https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024,https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024,https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000.
Baek, S.-O. and Jenkins, R. A.: Characterization of trace organic compounds associated with aged and diluted sidestream tobacco smoke in a controlled atmosphere–volatile organic compounds and polycyclic aromatic hydrocarbons, Atmos. Environ., 38, 6583–6599, 2004.
Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., Blake, D. R., and Rowland, F. S.: Measurements of nonmethane hydrocarbons in 28 United States cities, Atmos. Environ., 42, 170–182, 2008.
Download
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Altmetrics
Final-revised paper
Preprint