Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3383-2016
https://doi.org/10.5194/acp-16-3383-2016
Research article
 | 
15 Mar 2016
Research article |  | 15 Mar 2016

Convective sources of trajectories traversing the tropical tropopause layer

Ann-Sophie Tissier and Bernard Legras

Related authors

The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, and Clair Duchamp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1433,https://doi.org/10.5194/egusphere-2024-1433, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023,https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022,https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022,https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022,https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024,https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024,https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115, https://doi.org/10.5194/acp-24-5099-2024,https://doi.org/10.5194/acp-24-5099-2024, 2024
Short summary
Extreme ozone episodes in a major Mediterranean urban area
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024,https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472, https://doi.org/10.5194/acp-24-4451-2024,https://doi.org/10.5194/acp-24-4451-2024, 2024
Short summary

Cited articles

Abalos, M., Randel, W. J., and Serrano, E.: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere, Atmos. Chem. Phys., 12, 11505–11517, https://doi.org/10.5194/acp-12-11505-2012, 2012.
Adler, R. F. and Mack, R. A.: Thunderstorm Cloud Top Dynamics as Inferred from Satellite Observations and a Cloud Top Parcel Model, J. Atmos. Sci., 43, 1945–1960, https://doi.org/10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2, 1986.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, no. v. 40 in International geophysics series, Academic Press, Orlando, 1987.
Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal variation of mass transport across the tropopause, J. Geophys. Res., 101, 15071–15071, https://doi.org/10.1029/96JD00821, 1996.
Aschmann, J., Sinnhuber, B.-M., Atlas, E. L., and Schauffler, S. M.: Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, 2009.
Download
Short summary
Transit properties across the TTL are studied using forward and backward Lagrangian trajectories between cloud tops and the reference surface 380 K. The tropical domain is subdivided into 11 subregions according to the distribution of land and convection. Due to the good agreement between forward and backward statistics, we estimate the contribution of each region to the upward mass flux across the 380 K surface, the vertical distribution of convective sources and of transit times over 2005–2008.
Altmetrics
Final-revised paper
Preprint