Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3383-2016
https://doi.org/10.5194/acp-16-3383-2016
Research article
 | 
15 Mar 2016
Research article |  | 15 Mar 2016

Convective sources of trajectories traversing the tropical tropopause layer

Ann-Sophie Tissier and Bernard Legras

Related authors

Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating
Pasquale Sellitto, Redha Belhadji, Juan Cuesta, Aurélien Podglajen, and Bernard Legras
Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023,https://doi.org/10.5194/acp-23-15523-2023, 2023
Short summary
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022,https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing
Pasquale Sellitto, Redha Belhadji, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 22, 9299–9311, https://doi.org/10.5194/acp-22-9299-2022,https://doi.org/10.5194/acp-22-9299-2022, 2022
Short summary
Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022,https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021,https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024,https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023,https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023,https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Effect of the boundary layer low-level jet on fast fog spatial propagation
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023,https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023,https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary

Cited articles

Abalos, M., Randel, W. J., and Serrano, E.: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere, Atmos. Chem. Phys., 12, 11505–11517, https://doi.org/10.5194/acp-12-11505-2012, 2012.
Adler, R. F. and Mack, R. A.: Thunderstorm Cloud Top Dynamics as Inferred from Satellite Observations and a Cloud Top Parcel Model, J. Atmos. Sci., 43, 1945–1960, https://doi.org/10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2, 1986.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle atmosphere dynamics, no. v. 40 in International geophysics series, Academic Press, Orlando, 1987.
Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal variation of mass transport across the tropopause, J. Geophys. Res., 101, 15071–15071, https://doi.org/10.1029/96JD00821, 1996.
Aschmann, J., Sinnhuber, B.-M., Atlas, E. L., and Schauffler, S. M.: Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere, Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, 2009.
Download
Short summary
Transit properties across the TTL are studied using forward and backward Lagrangian trajectories between cloud tops and the reference surface 380 K. The tropical domain is subdivided into 11 subregions according to the distribution of land and convection. Due to the good agreement between forward and backward statistics, we estimate the contribution of each region to the upward mass flux across the 380 K surface, the vertical distribution of convective sources and of transit times over 2005–2008.
Altmetrics
Final-revised paper
Preprint