Articles | Volume 16, issue 3
https://doi.org/10.5194/acp-16-1809-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-1809-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Chiung-Jui Su
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Hiroyuki Kusaka
Graduate school of Life and Environmental Sciences, and Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
Yuko Akimoto
Graduate school of Life and Environmental Sciences, and Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
Yang-Fan Sheng
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Jr-Chuan Huang
Department of Geography, National Taiwan University, Taipei, Taiwan
Huang-Hsiung Hsu
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Related authors
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Chuan-Yao Lin, Yang-Fan Sheng, Wan-Chin Chen, Charles C. K. Chou, Yi-Yun Chien, and Wen-Mei Chen
Atmos. Chem. Phys., 21, 16893–16910, https://doi.org/10.5194/acp-21-16893-2021, https://doi.org/10.5194/acp-21-16893-2021, 2021
Short summary
Short summary
Taiwan and Hong Kong experience air quality deterioration as typhoons approach. However, the mechanism of the formation of poor air quality may differ and still not be well documented in Taiwan. The interaction between easterly typhoon circulation and Taiwan’s Central Mountain Range resulted in a lee side vortex formation. Simulation results indicated that the lee vortex and land–sea breeze, as well as the boundary layer development, were the key mechanisms.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Mien-Tze Kueh, Wen-Mei Chen, Yang-Fan Sheng, Simon C. Lin, Tso-Ren Wu, Eric Yen, Yu-Lin Tsai, and Chuan-Yao Lin
Nat. Hazards Earth Syst. Sci., 19, 1509–1539, https://doi.org/10.5194/nhess-19-1509-2019, https://doi.org/10.5194/nhess-19-1509-2019, 2019
Short summary
Short summary
In this study, we show that both the model horizontal resolution and air–sea flux parameterization can exert a large influence on tropical cyclone intensity simulation but with different impacts on wind structures. We highlight the intensification and contraction of the TC eyewall in response to the reduction of grid spacing. We also suggest that a well-developed eyewall is more conducive to the positive effect of flux formulas on TC development.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Ci-Jian Yang, Pei-Hao Chen, Erica D. Erlanger, Jens M. Turowski, Sen Xu, Tse-Yang Teng, Jiun-Chuan Lin, and Jr-Chuang Huang
Earth Surf. Dynam., 11, 475–486, https://doi.org/10.5194/esurf-11-475-2023, https://doi.org/10.5194/esurf-11-475-2023, 2023
Short summary
Short summary
Observations of the interaction between extreme physical erosion and chemical weathering dynamics are limited. We presented major elements of stream water in the badland catchment at 3 h intervals during a 3 d typhoon. The excess sodium in the evaporite deposits causes material dispersion through deflocculation, which enhances the suspended sediment flux. Moreover, we observed a shift from predominantly evaporite weathering at peak precipitation to silicate weathering at peak discharge.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022, https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Short summary
This study has shown that coupling a high-resolution 1-D ocean model (SIT 1.06) with the Community Atmosphere Model 5.3 (CAM5.3) significantly improves the simulation of the Madden–Julian Oscillation (MJO) over the standalone CAM5.3. Systematic sensitivity experiments resulted in more realistic simulations of the tropical MJO because they had better upper-ocean resolution, adequate upper-ocean thickness, coupling regions including the eastern Pacific and southern tropics, and a diurnal cycle.
Wan-Ling Tseng, Huang-Hsiung Hsu, Yung-Yao Lan, Wei-Liang Lee, Chia-Ying Tu, Pei-Hsuan Kuo, Ben-Jei Tsuang, and Hsin-Chien Liang
Geosci. Model Dev., 15, 5529–5546, https://doi.org/10.5194/gmd-15-5529-2022, https://doi.org/10.5194/gmd-15-5529-2022, 2022
Short summary
Short summary
We show that coupling a high-resolution one-column ocean model to three atmospheric general circulation models dramatically improves Madden–Julian oscillation (MJO) simulations. It suggests two major improvements to the coupling process in the preconditioning phase and strongest convection phase over the Maritime Continent. Our results demonstrate a simple but effective way to significantly improve MJO simulations and potentially seasonal to subseasonal prediction.
Chuan-Yao Lin, Yang-Fan Sheng, Wan-Chin Chen, Charles C. K. Chou, Yi-Yun Chien, and Wen-Mei Chen
Atmos. Chem. Phys., 21, 16893–16910, https://doi.org/10.5194/acp-21-16893-2021, https://doi.org/10.5194/acp-21-16893-2021, 2021
Short summary
Short summary
Taiwan and Hong Kong experience air quality deterioration as typhoons approach. However, the mechanism of the formation of poor air quality may differ and still not be well documented in Taiwan. The interaction between easterly typhoon circulation and Taiwan’s Central Mountain Range resulted in a lee side vortex formation. Simulation results indicated that the lee vortex and land–sea breeze, as well as the boundary layer development, were the key mechanisms.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary
Short summary
The Taiwan Earth System Model (TaiESM) is a new climate model developed in Taiwan. It includes several new features, and therefore it can better simulate the occurrence of convective rainfall, solar energy received by mountainous surfaces, and more detail chemical processes in aerosols. TaiESM can capture the trend of global warming after 1950 well, and its overall performance in most meteorological quantities is better than the average of global models used in IPCC AR5.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Mien-Tze Kueh, Wen-Mei Chen, Yang-Fan Sheng, Simon C. Lin, Tso-Ren Wu, Eric Yen, Yu-Lin Tsai, and Chuan-Yao Lin
Nat. Hazards Earth Syst. Sci., 19, 1509–1539, https://doi.org/10.5194/nhess-19-1509-2019, https://doi.org/10.5194/nhess-19-1509-2019, 2019
Short summary
Short summary
In this study, we show that both the model horizontal resolution and air–sea flux parameterization can exert a large influence on tropical cyclone intensity simulation but with different impacts on wind structures. We highlight the intensification and contraction of the TC eyewall in response to the reduction of grid spacing. We also suggest that a well-developed eyewall is more conducive to the positive effect of flux formulas on TC development.
Jun-Yi Lee, Yu-Ting Shih, Chiao-Ying Lan, Tsung-Yu Lee, Tsung-Ren Peng, Cheing-Tung Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-276, https://doi.org/10.5194/hess-2019-276, 2019
Revised manuscript not accepted
Short summary
Short summary
Scientists concern the travel time and the fraction of new water from the sky to the stream to figure out the sources of freshwater and the distribution of contaminants. This study tells a story of water by analyzing the oxygen isotope of rain and stream water. In our sites, a raindrop only needs 2–11 hour to travel to the stream and large storm could exert more and younger new water. The rapid response is likely because of the steep landscape which helps transferring new water to the stream.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Tsung-Yu Lee, Li-Chin Lee, Jr-Chuan Huang, Shih-Hao Jien, Thomas Hein, Franz Zehetner, Shuh-Ji Kao, and Fuh-Kwo Shiah
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-105, https://doi.org/10.5194/bg-2017-105, 2017
Revised manuscript not accepted
Jr-Chuan Huang, Tsung-Yu Lee, Teng-Chiu Lin, Thomas Hein, Li-Chin Lee, Yu-Ting Shih, Shuh-Ji Kao, Fuh-Kwo Shiah, and Neng-Huei Lin
Biogeosciences, 13, 1787–1800, https://doi.org/10.5194/bg-13-1787-2016, https://doi.org/10.5194/bg-13-1787-2016, 2016
Short summary
Short summary
The mean riverine DIN export of 49 watersheds in Taiwan is ∼ 3800 kg N km−2 yr−1, 18 times the global average. The mean riverine DIN export ratio is 0.30–0.51, which is much higher than the average of 0.20–0.25 of large rivers around the world, indicating excessive N input relative to ecosystem retention capacity. The DIN export ratio is positively related to agriculture input, and levels of human disturbance and watersheds with high DIN export ratios are likely at advanced stages of N excess.
T.-C. Lin, P.-J. L. Shaner, L.-J. Wang, Y.-T. Shih, C.-P. Wang, G.-H. Huang, and J.-C. Huang
Hydrol. Earth Syst. Sci., 19, 4493–4504, https://doi.org/10.5194/hess-19-4493-2015, https://doi.org/10.5194/hess-19-4493-2015, 2015
Short summary
Short summary
We summarize our findings as follows: (1) the mountain watersheds are vulnerable to agriculture expansion; (2) proper spatial configuration of agricultural lands in mountain watersheds can mitigate the impact of agriculture on NO3- output by 70%; and (3) the reconstructed element fluxes for the watersheds indicate excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, which likely resulted from excessive fertilizer use.
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary
Short summary
This paper investigates 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (CAM4/CLM4) with a 0.23°×0.31° resolution for simulations over 6 years. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations.
Y.-T. Shih, T.-Y. Lee, J.-C. Huang, S.-J. Kao, K.-K. Liu, and F.-J. Chang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-449-2015, https://doi.org/10.5194/hessd-12-449-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and per capita loading. Those estimated DIN yield factors can extrapolate all possible combinations of land-use, discharge, and population density, demonstrating the capability for scenario assessment.
T.-Y. Lee, Y.-T. Shih, J.-C. Huang, S.-J. Kao, F.-K. Shiah, and K.-K. Liu
Biogeosciences, 11, 5307–5321, https://doi.org/10.5194/bg-11-5307-2014, https://doi.org/10.5194/bg-11-5307-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
T.-Y. Lee, J.-C. Huang, S.-J. Kao, and C.-P. Tung
Biogeosciences, 10, 2617–2632, https://doi.org/10.5194/bg-10-2617-2013, https://doi.org/10.5194/bg-10-2617-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
To what extent is the description of streets important in estimating local air-quality? A case study over Paris
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Extreme ozone episodes in a major Mediterranean urban area
Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Effect of the boundary layer low-level jet on fast fog spatial propagation
Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations
Using synthetic case studies to explore the spread and calibration of ensemble atmospheric dispersion forecasts
Meteorological modeling sensitivity to parameterizations and satellite-derived surface datasets during the 2017 Lake Michigan Ozone Study
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Lagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
Better-constrained climate sensitivity when accounting for dataset dependency on pattern effect estimates
Determination of the chemical equator from GEOS-Chem model simulation: a focus on the tropical western Pacific region
Uncertainty in parameterized convection remains a key obstacle for estimating surface fluxes of carbon dioxide
Antarctic atmospheric Richardson number from radiosonde measurements and AMPS
Divergent convective outflow in large-eddy simulations
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Evolution of squall line variability and error growth in an ensemble of large eddy simulations
Climatology and variability of air mass transport from the boundary layer to the Asian monsoon anticyclone
Evaluation and bias correction of probabilistic volcanic ash forecasts
The representation of the trade winds in ECMWF forecasts and reanalyses during EUREC4A
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Parameterizing the aerodynamic effect of trees in street canyons for the street network model MUNICH using the CFD model Code_Saturne
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
The Sun's role in decadal climate predictability in the North Atlantic
Future projections of daily haze-conducive and clear weather conditions over the North China Plain using a perturbed parameter ensemble
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024, https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Short summary
We examined the links between the El Niño–Southern Oscillation (ENSO) and tropospheric ozone (O3) using model data. Our results show that ENSO impacts on tropospheric O3 are mainly found over oceans, while the signature of ENSO over continents is largely unclear. These impacts in the midlatitude regions over the Southern Hemisphere may be more significant than previously known. The responses of O3 to ENSO are weak in the middle troposphere and stronger in the upper and lower troposphere.
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024, https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
Short summary
Models are used to make forecasts of volcanic ash dispersion during eruptions. These models have unknown inputs relating to the eruption itself, physical processes, and meteorological conditions. We use statistical models to predict the output of the expensive physical model and show we can account for the effects of the different inputs. We compare the model to real-world observations and show that accounting for all sources of uncertainty may lead to different conclusions about the inputs.
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1043, https://doi.org/10.5194/egusphere-2024-1043, 2024
Short summary
Short summary
This study highlights the interest of using a street network model to estimate pollutant concentrations of NOx, NO2, and PM2.5 in heterogeneous urban areas, particularly those adjacent to highways, compared with the Subgrid approach embedded in the 3D eulerian model CHIMERE. However, the study also reveals comparable performance between the two approaches for the aforementioned pollutants in areas near the city centre, where urban characteristics are more uniform.
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115, https://doi.org/10.5194/acp-24-5099-2024, https://doi.org/10.5194/acp-24-5099-2024, 2024
Short summary
Short summary
Based on long-term observational, reanalysis, and numerical model simulation datasets from 1901 through 2014, this study shows that precipitation over the East Asian monsoon boundary zone featured prominent interdecadal changes, with dry summers during the periods preceding 1927, 1939–1945, 1968–1982, and 1998–2010 and wet summers during 1928–1938, 1946–1967, and 2011 onwards. The Indian Ocean basin mode is an important oceanic modulator responsible for its interdecadal variations.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
Weiming Ma, Hailong Wang, Gang Chen, Yun Qian, Ian Baxter, Yiling Huo, and Mark W. Seefeldt
Atmos. Chem. Phys., 24, 4451–4472, https://doi.org/10.5194/acp-24-4451-2024, https://doi.org/10.5194/acp-24-4451-2024, 2024
Short summary
Short summary
Extreme warming events with surface temperature going above 0°C can occur in the high-Arctic winter. Although reanalysis data show that these events were short-lived and occurred rarely during 1980–2021, they have become more frequent, stronger, and longer lasting latterly. A dipole pattern, comprising high- and low-pressure systems, is found to be the key in driving them. These findings have implications for the recent changes in sea ice, hydrological cycle, and ecosystem over the Arctic.
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024, https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Short summary
To show that the three-dimensional dispersion of plumes simulated by the Atmospheric Radionuclide Transport Model within the planetary boundary layer agrees with real plumes, we identify the most important input parameters and analyse the turbulence properties of five different turbulence models in very unstable stratification conditions using their deviation from the well-mixed state. Simulations show that one model agrees slightly better in unstable stratification conditions.
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024, https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Short summary
Our novel scheme enhances large-eddy simulations (LESs) for atmosphere–land interactions. It couples LES subgrid closure with Monin–Obukhov similarity theory (MOST), overcoming MOST's limitations. Validated over diverse land surfaces, our approach outperforms existing methods, aligning well with field measurements. Robustness is demonstrated across varying model resolutions. MOST's influence strengthens with decreasing grid spacing, particularly for sensible heat flux.
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023, https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Short summary
Using a numerical atmospheric model, we found that cooling sea surface temperatures along the southern coast of West Africa in July cause the “little dry season”. This effect reduces humidity and pollutant transport inland, potentially enhancing West Africa's synoptic and seasonal forecasting.
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023, https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Short summary
Accurate fog forecasting is difficult in a complex environment. Spatial variations in soil moisture could impact fog. Here, we carried out fog simulations with spatially different soil moisture in complex topography. The soil moisture was calculated using satellite observations. The results show that the spatial variations in soil moisture do not have a significant impact on where fog occurs but do impact how long fog lasts. This finding could improve fog forecasts in the future.
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023, https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Short summary
In this study, we quantitatively study the effect of the boundary layer low-level jet (BLLJ) on fast fog spatial propagation; i.e., the fog area expands very fast along a certain direction. The wind speed (10 m s−1) and direction (southeast) of the BLLJ core are consistent with fog propagation (9.6 m s−1). The BLLJ-induced temperature and moisture advections are possible reasons for fast fog propagation. The propagation speed would decrease by 6.4 m s−1 if these advections were turned off.
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023, https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary
Short summary
This study focuses on three medicanes, tropical-like cyclones that form in the Mediterranean Sea, studied by ensemble forecasting. This involved multiple simulations of the same event by varying initial conditions and model physics parameters, especially related to convection, which showed comparable results. It is found that medicane development is influenced by the model's ability to predict precursor events and the interaction between upper and lower atmosphere dynamics and thermodynamics.
Andrew R. Jones, Susan J. Leadbetter, and Matthew C. Hort
Atmos. Chem. Phys., 23, 12477–12503, https://doi.org/10.5194/acp-23-12477-2023, https://doi.org/10.5194/acp-23-12477-2023, 2023
Short summary
Short summary
The paper explores spread and calibration properties of ensemble atmospheric dispersion forecasts for hypothetical release events. Real-time forecasts from an ensemble weather prediction system were used to generate an ensemble of dispersion predictions and assessed against simulations produced using analysis meteorology. Results demonstrate good performance overall but highlight more skilful predictions for material released in the upper air compared with releases near the surface.
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
Atmos. Chem. Phys., 23, 7699–7717, https://doi.org/10.5194/acp-23-7699-2023, https://doi.org/10.5194/acp-23-7699-2023, 2023
Short summary
Short summary
Convection over land often triggers hours after a satellite last passed overhead and measured the state of the atmosphere, and during those hours the atmosphere can change greatly. Here we show that it is possible to reconstruct most of those changes by using weather forecast winds to predict where warm and moist air parcels will travel. The results can be used to better predict where precipitation is likely to happen in the hours after satellite measurements.
Lars Hoffmann, Paul Konopka, Jan Clemens, and Bärbel Vogel
Atmos. Chem. Phys., 23, 7589–7609, https://doi.org/10.5194/acp-23-7589-2023, https://doi.org/10.5194/acp-23-7589-2023, 2023
Short summary
Short summary
Atmospheric convection plays a key role in tracer transport in the troposphere. Global meteorological forecasts and reanalyses typically have a coarse spatiotemporal resolution that does not adequately resolve the dynamics, transport, and mixing of air associated with storm systems or deep convection. We discuss the application of the extreme convection parameterization in a Lagrangian transport model to improve simulations of tracer transport from the boundary layer into the free troposphere.
Angshuman Modak and Thorsten Mauritsen
Atmos. Chem. Phys., 23, 7535–7549, https://doi.org/10.5194/acp-23-7535-2023, https://doi.org/10.5194/acp-23-7535-2023, 2023
Short summary
Short summary
We provide an improved estimate of equilibrium climate sensitivity (ECS) constrained based on the instrumental temperature record including the corrections for the pattern effect. The improved estimate factors in the uncertainty caused by the underlying sea-surface temperature datasets used in the estimates of pattern effect. This together with the inter-model spread lifts the corresponding IPCC AR6 estimate to 3.2 K [1.8 to 11.0], which is lower and better constrained than in past studies.
Xiaoyu Sun, Mathias Palm, Katrin Müller, Jonas Hachmeister, and Justus Notholt
Atmos. Chem. Phys., 23, 7075–7090, https://doi.org/10.5194/acp-23-7075-2023, https://doi.org/10.5194/acp-23-7075-2023, 2023
Short summary
Short summary
The tropical western Pacific (TWP) is an active interhemispheric transport region contributing significantly to the global climate. A method to determine the chemical equator was developed by model simulations of a virtual passive tracer to analyze transport in the tropics, with a focus on the TWP region. We compare the chemical equator with tropical rain belts and wind fields and obtain a vertical pattern of interhemispheric transport processes which shows tilt structure in certain seasons.
Andrew E. Schuh and Andrew R. Jacobson
Atmos. Chem. Phys., 23, 6285–6297, https://doi.org/10.5194/acp-23-6285-2023, https://doi.org/10.5194/acp-23-6285-2023, 2023
Short summary
Short summary
A comparison of atmospheric carbon dioxide concentrations resulting from two different atmospheric transport models showed large differences in predicted concentrations with significant space–time correlations. The vertical mixing of long-lived trace gases by convection was determined to be the main driver of these differences. The resulting uncertainty was deemed significant to the application of using atmospheric gradients of carbon dioxide to estimate surface fluxes of carbon dioxide.
Qike Yang, Xiaoqing Wu, Xiaodan Hu, Zhiyuan Wang, Chun Qing, Tao Luo, Pengfei Wu, Xianmei Qian, and Yiming Guo
Atmos. Chem. Phys., 23, 6339–6355, https://doi.org/10.5194/acp-23-6339-2023, https://doi.org/10.5194/acp-23-6339-2023, 2023
Short summary
Short summary
The AMPS-forecasted Richardson number was first comprehensively validated over the Antarctic continent. Some potential underlying reasons for the discrepancies between the forecasts and observations were analyzed. The underlying physical processes of triggering atmospheric turbulence in Antarctica were investigated. Our results suggest that the estimated Richardson number by the AMPS is reasonable and the turbulence conditions in Antarctica are well revealed.
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023, https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper troposphere and lower stratosphere in idealized high-resolution simulations (LESs) depends linearly on the net amount of latent heat released by the cloud for fixed geometry of the clouds. However, it is shown that, in more realistic situations, convective organization and aggregation (collecting mechanisms of cumulonimbus clouds) affect the amount of outflow non-linearly through non-idealized geometry.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023, https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Short summary
In this study, SSH-aerosol, a modular box model that simulates the evolution of gas, primary, and secondary aerosols, is coupled with the computational fluid dynamics (CFD) software, OpenFOAM and Code_Saturne. The transient dispersion of pollutants emitted from traffic in a street canyon of Greater Paris is simulated. The coupled model achieved better agreement in NO2 and PM10 with measurement data than the conventional CFD simulation which regards pollutants as passive scalars.
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023, https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary
Short summary
Local winds in four valleys located in the Nepal Himalayas are studied by means of high-resolution meteorological modelling. Well-defined daytime up-valley winds are simulated in all of the valleys with some variation in the flow depth and strength among the valleys and their parts. Parts of the valleys with a steep valley floor inclination (2–5°) are associated with weaker and shallower daytime up-valley winds compared with the parts that have nearly flat valley floors (< 1°).
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 565–585, https://doi.org/10.5194/acp-23-565-2023, https://doi.org/10.5194/acp-23-565-2023, 2023
Short summary
Short summary
Thunderstorm systems play an important role in the dynamics of the Earth’s atmosphere, and some of them form a well-organised line: squall lines. Simulations of such squall lines with very small initial perturbations are compared to a reference simulation. The evolution of perturbations and processes amplifying them are analysed. It is shown that the formation of new secondary thunderstorm cells (after the initial primary cells) directly ahead of the line affects the spread strongly.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Alice Crawford, Tianfeng Chai, Binyu Wang, Allison Ring, Barbara Stunder, Christopher P. Loughner, Michael Pavolonis, and Justin Sieglaff
Atmos. Chem. Phys., 22, 13967–13996, https://doi.org/10.5194/acp-22-13967-2022, https://doi.org/10.5194/acp-22-13967-2022, 2022
Short summary
Short summary
This study describes the development of a workflow which produces probabilistic and quantitative forecasts of volcanic ash in the atmosphere. The workflow includes methods of incorporating satellite observations of the ash cloud into a modeling framework as well as verification statistics that can be used to guide further model development and provide information for risk-based approaches to flight planning.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Alice Maison, Cédric Flageul, Bertrand Carissimo, Yunyi Wang, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 22, 9369–9388, https://doi.org/10.5194/acp-22-9369-2022, https://doi.org/10.5194/acp-22-9369-2022, 2022
Short summary
Short summary
This paper presents a parameterization of the tree crown effect on air flow and pollutant dispersion in a street network model used to simulate air quality at the street level. The new parameterization is built using a finer-scale model (computational fluid dynamics). The tree effect increases with the leaf area index and the crown volume fraction of the trees; the street horizontal velocity is reduced by up to 68 % and the vertical transfer into or out of the street by up to 23 %.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022, https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters describing the characteristics of volcanic plumes. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method using satellite data to refine a series of volcanic ash dispersion forecasts and quantify these uncertainties. We show how we can improve forecast accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Cited articles
Arnfield, A. J.: Two decades of urban climate research: A review of
turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol., 23,
1–26, 2003.
Atkinson, B. W. : Numerical modeling of urban heat island
intensity,
Bound.-Lay. Meteorol., 109, 285–310, 2003.
Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology
model with the Penn State-NCAR MM5 modeling system. Part I: Model
implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Chen, F., Kusaka, H., Tewari, M. Bao, J.-W., and Kirakuchi, H.: Utilizing
the coupled WRF/LSM/Urban modeling system with detailed urban classification
to simulate the urban heat island phenomena over the greater Houston Area,
The 5th Conference on Urban Environment, 22–26 August 2004, Vancouver
BC, Canada, 2004.
Chen, F., Kusaka, H., Bornstein, R., Grimmond, S., Ching, J.,
Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S.,
Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and
Zhang, C.: The integrated WRF/urban modelling system: development,
evaluation, and applications to urban environmental problems, Int. J. Climatol., 31,
273–288,
2011.
Chen, T.-C., Wang, S.-Y., and Yen, M.-C.: Enhancement of afternoon
thunderstorm activity by urbanization in a valley: Taipei, J. Appl. Meteor. Climatol., 46,
1324–1340,
2007.
Corburn, J.: Cities, climate change and urban heat island
mitigation: Localizing global environmental science, Urban Studies, 46, 413–427,
2009.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale Eta model, J. Geophys. Res., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.
Feddema, J. J., Oleson, K. W., Bonna, G. B., Mearns, L. O., Buja, L. E.,
Meehl, G. A., and Washington, W. M.: The importance of land-cover change in
simulating future climates, Science, 310, 1674–1678, 2005.
Grimmond, C. S. B.: The suburban energy balance: Methodological
considerations and results for a mid-latitude west coast city under winter
and spring conditions, Int. J. Climatol., 12, 481–497, 1992.
Grimmond, C. S. B. and Oke, T. R.: Comparison of heat fluxes from
summertime observations in the suburbs of four North American cities, J. Appl. Meteorol., 34,
873–889, 1995.
Holt, T. R. and Pullen, J.: Urban canopy modeling of the New York City
metropolitan area: A comparison and validation of single- and multilayer
parameterization, Mon. Weather Rev., 135, 1906–1930, 2007.
Hong, S.-Y. and Lim, J. J.: The WRF Single-Moment 6-Class Microphysics
Scheme (WSM6), J. Korean Meteorol. Soc., 42, 129–151,
2006.
Huszar, P., Halenka, T., Belda, M., Zak, M., Sindelarova, K., and Miksovsky, J.: Regional
climate model assessment of the urban land-surface forcing over central Europe, Atmos. Chem. Phys., 14, 12393–12413, https://doi.org/10.5194/acp-14-12393-2014, 2014.
IPCC: Climate change 2007: Impacts, adaptation and vulnerability.
Rep., Contribution of Working Group II to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge
University Press, 2007.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
https://doi.org/10.1017/CBO9781107415324, 2013.
Jin, M., Shepherd, J. M., and King, M. D.: Urban aerosols and their
interaction with clouds and rainfall: A case study for New York and
Houston, J. Geophy. Res., 1110, D10S20, https://doi.org/10.1029/2004JD005081, 2005.
Kalnay, E. and Cai, M.: Impact of urbanization and land-use change on
climate, Nature, 423, 528–531, 2003.
Kang, H. Q., Zhu, B., Zhu, T., Sun, J. L., and Ou, J. J.: Impact of megacity
Shanghai on the urban heat island effects over the downstream city Kunshan,
Bound.-Lay. Meteorol., 152, 411–426, 2014.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H.,
Malyshev, S., Mcavaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A.,
Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of
strong coupling between soil moisture and precipitation, Science, 305,
1138–1140,
2004.
Kunkel, K. E., Changnon, S. A., Reinke, B. C., and Arritt, R. W.: The
July 1995 heat wave in the Midwest: A climatic perspective and critical
weather factors, B. Am. Meteorol. Soc., 77, 1507–1518, 1996.
Kusaka, H. and Kimura, F.: Coupling a single-layer urban canopy model
with a simple atmospheric model: Impact on urban heat island simulation for
an idealized case, J. Appl. Meteor., 43, 1899–1910, 2004.
Kusaka, H., Kondo, K., Kikegawa, Y., and Kimura, F.: A simple
single-layer urban canopy model for atmospheric models: Comparison with
multi-layer and slab models, Bound.-Lay. Meteor., 101, 329–358,
2001.
Kusaka, H., Chen, F., and Tewari, M.: Impact of using the urban canopy model
on the simulation of the heat island of Tokyo, Extended Abstracts, Sixth
Symp. on the Urban Environment,Atlanta, GA, Amer. Meteor. Soc., J1.3., 2006.
Kusaka, H., Hara, M., and Takane, Y.: Urban climate projection by the
WRF model at 3-km horizontal grid increment: Dynamical downscaling and
predicting heat stress in the 2070's August for Tokyo, Osaka, and Nagoya
metropolises, J. Meteor. Soc. Japan, 90B, 47–63,
2012a.
Kusaka, H., Chen, F., Tewari, M., Dudhia, J., Gill, D. O., Duda, M. G.,
Wang, W., and Miya, Y.: Numerical simulation of urban heat island effect by the
WRF model with 4-km grid increment: An inter-comparison study between the
urban canopy model and slab model, J. Meteor. Soc. Japan, 90B, 33–45,
2012b.
Kusaka, H., Nawata, K., Suzuki-Parker, A., Takane, Y., and Furuhashi, N.:
Mechanism of precipitation increase with urbanization in Tokyo as revealed
by ensemble climate simulations, J. Appl. Meteor. Clim., 53, 824–839,
2014.
Liao, J., Wang, T., Wang, X., Xie, M., Jiang, Z., Huang, X., and Zhu, J.: Impacts
of different urban canopy schemes in WRF/Chem on regional climate and air
quality in the Yangtze River Delta, China, Atmos. Res., 145–146, 226–243,
2014.
Lin, C.-Y., Chen, W.-C.,
Liu, S. C., Liou, Y. A., Liu, G. R., and Lin, T.-H.: Numerical study of the impact of urbanization on the precipitation
over Taiwan, Atmos. Environ., 42, 2934–2947, 2008a.
Lin, C.-Y., Chen, F., Huang, J., Liou, Y. A., Chen, W. C., Chen, W. N.,
and
Liu, S. C.: Urban heat island effect and its impact on boundary layer
development and land-sea circulation over Northern Taiwan, Atmos. Environ., 42,
5639–564,
2008b.
Lin, C.-Y., Chen, W. C., Chang, P.-L., and Sheng, Y. F.: Impact of urban
heat island effect on the precipitation over complex geographic environment
in northern Taiwan, J. Appl. Meteorol. Climatol., 50, 339–353, https://doi.org/10.1175/2010JAMC2504.1,
2011.
Liu, Y., Chen, F., Warner, T., and Basara, J.: Verification of a mesoscale
data-assimilation and forecasting system for the Oklahoma city area during
the Joint Urban 2003 Field Project, J. Appl. Meteorol., 45, 912–929,
2006.
Lo, J. C. F., Lau, A. K. H., Chen, F., Fung, J. C. H., and Leung, K. K. M.: Urban
modification in a mesoscale model and the effects on the local circulation
in the Pearl River Delta Region, J. Appl. Meteorol. Climatol., 46,
457–476,
2007.
Martilli, A., Clappier, A., and Rotach, M. W.: An urban surface exchange
parameterization for mesoscale models, Bound.-Lay. Meteorol., 104,
261–304,
2002.
Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., and Wang, Y.: An
observational and modeling study of characteristics of urban heat island and
boundary layer structures in Beijing, J. Appl. Meteorol. Climatol., 48,
484–501,
2009.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. R. Meteorol. Soc. 108,
1–24,
1982.
Ren, G. Y., Chu, Z. Y., Chen, Z. H., and Ren, Y. Y.: Implications of temporal
change in urban heat island intensity observed at Beijing and Wuhan
stations, Geophys. Res. Lett., 34, L05711, https://doi.org/10.1029/2006GL027927,
2007.
Rizwan, A. M., Leung, Y. C., and Liu, C.: A review on the generation,
determination and mitigation of Urban Heat Island, J. Environ. Sci., 20,
120–128,
2008.
Sailor, D. J.: A review of methods for estimating anthropogenic heat and
moisture emissions in the urban environment, Int. J. Climatol., 31,
189–199,
2011.
Sailor, D. J. and Lu, L.: A top-down methodology for developing diurnal
and seasonal anthropogenic heating profiles for urban areas, Atmos. Enviro., 38,
2737–2748,
2004.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Duda, D. M., Wang, W., and Powers, J. G.: A description of the advanced research
WRF version 3, NCAR Tech. Note. NCAR/TN-468+STR, 100 pp., Natl. Cent. for
Atmos. Res., Boulder, Colo, 2008.
Tan, J., Zhang, Y., Tang, X., Cuo, C., Li, L., Song, G., Zhen, X., Yuan, D.,
Kalkstein, A. J., Li, F., and Chen, H.: The urban heat island and its impact on
heat waves and human health in Shanghai, Int. J. Biometeorol., 54, 75–84,
2010.
Tewari, M., Chen, F., and Kusaka, H.: Implementation and evaluation of a
single-layer urban model in WRF/Noah, The 7th WRF Users' Workshop,
June 2006.
Wang, X., Liao, J., Zhang, J., Shen, C., Chen, W., Xia, B., and Wang, T.: A
numerical study of regional climate change induced by urban expansion in the
Pearl River Delta, J. Appl. Meteor. Climatol., 53, 346–362, 2014.
Short summary
This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF-UCM2D). WRF-UCM2D performed much better than the original UCM coupled with WRF (WRF-UCM) at non-urban stations with a low urban fraction during nighttime. The result of this study has crucial implications for assessing the impacts of urbanization on air quality and regional climate.
This study evaluated the impact of urbanization over northern Taiwan using the Weather Research...
Altmetrics
Final-revised paper
Preprint