Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5381-2015
https://doi.org/10.5194/acp-15-5381-2015
Research article
 | 
19 May 2015
Research article |  | 19 May 2015

Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013

G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts

Related authors

A Multi-Parameter Dynamical Diagnostics for Upper Tropospheric and Lower Stratospheric Studies
Luis F. Millan, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
EGUsphere, https://doi.org/10.5194/egusphere-2023-173,https://doi.org/10.5194/egusphere-2023-173, 2023
Short summary
Water vapour and ozone in the upper troposphere–lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022,https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021,https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Assessing the impact of clouds on ground-based UV–visible total column ozone measurements in the high Arctic
Xiaoyi Zhao, Kristof Bognar, Vitali Fioletov, Andrea Pazmino, Florence Goutail, Luis Millán, Gloria Manney, Cristen Adams, and Kimberly Strong
Atmos. Meas. Tech., 12, 2463–2483, https://doi.org/10.5194/amt-12-2463-2019,https://doi.org/10.5194/amt-12-2463-2019, 2019
Short summary
Detection and classification of laminae in balloon-borne ozonesonde profiles: application to the long-term record from Boulder, Colorado
Kenneth Minschwaner, Anthony T. Giljum, Gloria L. Manney, Irina Petropavlovskikh, Bryan J. Johnson, and Allen F. Jordan
Atmos. Chem. Phys., 19, 1853–1865, https://doi.org/10.5194/acp-19-1853-2019,https://doi.org/10.5194/acp-19-1853-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021
Michael J. Prather, Lucien Froidevaux, and Nathaniel J. Livesey
Atmos. Chem. Phys., 23, 843–849, https://doi.org/10.5194/acp-23-843-2023,https://doi.org/10.5194/acp-23-843-2023, 2023
Short summary
Water vapour and ozone in the upper troposphere–lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022,https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022,https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022,https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022,https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary

Cited articles

Achtert, P. and Tesche, M.: Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden, J. Geophys. Res., 119, 1386–1405, 2014.
Allen, D. R. and Nakamura, N.: A seasonal climatology of effective diffusivity in the stratosphere, J. Geophys. Res., 106, 7917–7935, 2001.
Arnone, E., Castelli, E., Papandrea, E., Carlotti, M., and Dinelli, B. M.: Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach, Atmos. Chem. Phys., 12, 9149–9165, https://doi.org/10.5194/acp-12-9149-2012, 2012.
Austin, J., Garcia, R. R., Russell III, J. M., Solomon, S., and Tuck, A. F: On the atmospheric photochemistry of nitric acid, J. Geophys. Res., 91, 5477–5485, 1986.
Bernhard, G., Manney, G., Fioletov, V., Grooß, J.-U., Heikkilä, A., Johnsen, B., Koskela, T., Lakkala, K., Müller, R., Lund Myhre, C., and Rex, M.: Ozone and UV Radiation, in: Arctic Report Card 2012, available at: http://www.arctic.noaa.gov/reportcard (last access: 13 February 2015), 2012.
Download
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
Altmetrics
Final-revised paper
Preprint