Articles | Volume 15, issue 6
https://doi.org/10.5194/acp-15-3327-2015
https://doi.org/10.5194/acp-15-3327-2015
Research article
 | 
24 Mar 2015
Research article |  | 24 Mar 2015

Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data

T. Fytterer, M. G. Mlynczak, H. Nieder, K. Pérot, M. Sinnhuber, G. Stiller, and J. Urban

Related authors

Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region
Tilo Fytterer, Christian von Savigny, Martin Mlynczak, and Miriam Sinnhuber
Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019,https://doi.org/10.5194/acp-19-1835-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region
Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan
Atmos. Chem. Phys., 24, 12843–12859, https://doi.org/10.5194/acp-24-12843-2024,https://doi.org/10.5194/acp-24-12843-2024, 2024
Short summary
Ozone anomalies over the polar regions during stratospheric warming events
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024,https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
Detectability of forced trends in stratospheric ozone
Louis Rivoire, Marianna Linz, Jessica L. Neu, Pu Lin, and Michelle L. Santee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2627,https://doi.org/10.5194/egusphere-2024-2627, 2024
Short summary
No severe ozone depletion in the tropical stratosphere in recent decades
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024,https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024,https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary

Cited articles

Azeem, S. M. I., Talaat, E. R., Sivjee, G. G., and Yee, J.-H.: Mesosphere and lower thermosphere temperature anomalies during the 2002 Antarctic stratospheric warming event, Ann. Geophys., 28, 267–276, https://doi.org/10.5194/angeo-28-267-2010, 2010.
Berger, U.: Modeling of middle atmosphere dynamics with LIMA, J. Atmos. Sol.-Terr. Phys., 70, 1170–1200, https://doi.org/10.1016/j.jastp.2008.02.004, 2008.
Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements, Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, 2014.
Funke, B., López-Puertas, M., von Clarmann, T., Stiller, G. P., Fischer, H., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., and Wang, D. Y.: Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, J. Geophys. Res., 110, D09302, https://doi.org/10.1029/2004JD005225, 2005.
Download
Short summary
Energetic particles from the sun produce NOx (=N+NO+NO2) in the mesosphere/lower thermosphere. The NOx can be transported downward in the stratosphere during polar winter where NOx eventually depletes O3. This entire chain is the so-called energetic particle precipitation (EPP) indirect effect. Here we show downward propagating negative stratospheric O3 anomalies during Antarctic polar winter. The O3 anomalies are caused by geomagnetic activity and show strong hints of the EPP indirect effect.
Altmetrics
Final-revised paper
Preprint