Articles | Volume 15, issue 2
Atmos. Chem. Phys., 15, 1087–1104, 2015
https://doi.org/10.5194/acp-15-1087-2015
Atmos. Chem. Phys., 15, 1087–1104, 2015
https://doi.org/10.5194/acp-15-1087-2015

Research article 30 Jan 2015

Research article | 30 Jan 2015

A regional carbon data assimilation system and its preliminary evaluation in East Asia

Z. Peng et al.

Related authors

The impact of multi-species surface chemical observation assimilation on air quality forecasts in China
Zhen Peng, Lili Lei, Zhiquan Liu, Jianning Sun, Aijun Ding, Junmei Ban, Dan Chen, Xingxia Kou, and Kekuan Chu
Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018,https://doi.org/10.5194/acp-18-17387-2018, 2018
Short summary
Improving PM2. 5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter
Zhen Peng, Zhiquan Liu, Dan Chen, and Junmei Ban
Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017,https://doi.org/10.5194/acp-17-4837-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The regional impact of urban emissions on air quality in Europe: the role of the urban canopy effects
Peter Huszar, Jan Karlický, Jana Marková, Tereza Nováková, Marina Liaskoni, and Lukáš Bartík
Atmos. Chem. Phys., 21, 14309–14332, https://doi.org/10.5194/acp-21-14309-2021,https://doi.org/10.5194/acp-21-14309-2021, 2021
Short summary
A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing–Tianjin–Hebei region
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021,https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147, https://doi.org/10.5194/acp-21-13131-2021,https://doi.org/10.5194/acp-21-13131-2021, 2021
Short summary
Evidence of a recent decline in UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021,https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Vehicle-induced turbulence and atmospheric pollution
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021,https://doi.org/10.5194/acp-21-12291-2021, 2021
Short summary

Cited articles

Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, Biogeosciences, 6, 807–817, https://doi.org/10.5194/bg-6-807-2009, 2009.
Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P., and Treanton, K.: A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9, 1845–1871, https://doi.org/10.5194/bg-9-1845-2012, 2012.
Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric CO2, Tellus B, 58, 359–365, 2006.
Boden, T. A., Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO2 emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, https://doi.org/10.3334/CDIAC/00001_V2011, 2011.
Chevallier, F.: Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements, Geophys. Res. Lett., 34, L24804, https://doi.org/10.1029/2007GL030463, 2007.
Download
Short summary
We associated the smoothing operator with the atmospheric transport model to constitute the persistence dynamical model to forecast the surface CO2 flux scaling factors for the purpose of resolving the "signal-to-noise" problem, as well as transporting the useful observed information onto the next assimilation cycle. Based on this improvement, a regional surface CO2 flux inversion system, CFI-CMAQ, has been developed. The OSSEs showed that the performance of CFI-CMAQ is effective and promising.
Altmetrics
Final-revised paper
Preprint