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Abstract. In order to optimize surface CO2 fluxes at grid

scales, a regional surface CO2 flux inversion system (Carbon

Flux Inversion system and Community Multi-scale Air Qual-

ity, CFI-CMAQ) has been developed by applying the ensem-

ble Kalman filter (EnKF) to constrain the CO2 concentra-

tions and applying the ensemble Kalman smoother (EnKS)

to optimize the surface CO2 fluxes. The smoothing operator

is associated with the atmospheric transport model to con-

stitute a persistence dynamical model to forecast the surface

CO2 flux scaling factors. In this implementation, the “signal-

to-noise” problem can be avoided; plus, any useful observed

information achieved by the current assimilation cycle can

be transferred into the next assimilation cycle. Thus, the sur-

face CO2 fluxes can be optimized as a whole at the grid scale

in CFI-CMAQ. The performance of CFI-CMAQ was quan-

titatively evaluated through a set of Observing System Sim-

ulation Experiments (OSSEs) by assimilating CO2 retrievals

from GOSAT (Greenhouse Gases Observing Satellite). The

results showed that the CO2 concentration assimilation us-

ing EnKF could constrain the CO2 concentration effectively,

illustrating that the simultaneous assimilation of CO2 con-

centrations can provide convincing CO2 initial analysis fields

for CO2 flux inversion. In addition, the CO2 flux optimization

using EnKS demonstrated that CFI-CMAQ could, in general,

reproduce true fluxes at grid scales with acceptable bias. Two

further sets of numerical experiments were conducted to in-

vestigate the sensitivities of the inflation factor of scaling fac-

tors and the smoother window. The results showed that the

ability of CFI-CMAQ to optimize CO2 fluxes greatly relied

on the choice of the inflation factor. However, the smoother

window had a slight influence on the optimized results. CFI-

CMAQ performed very well even with a short lag-window

(e.g. 3 days).

1 Introduction

Considerable progress has been made in recent years to re-

duce the uncertainties of surface CO2 flux estimates through

the use of an advanced data assimilation technique (e.g.

Chevallier, 2007; Chevallier et al., 2005, 2007; Baker et

al., 2006; Engelen et al., 2009; Liu et al., 2012). Feng et

al. (2009) showed that the uncertainties of surface CO2 flux

estimates can be reduced significantly by assimilating OCO

XCO2
measurements. Peters et al. (2005, 2007, 2009) devel-

oped a surface CO2 flux inversion system, CarbonTracker, by

incorporating the ensemble square-root filter (EnSRF) into

the atmospheric transport TM5 model; the inversion results

obtained by assimilating in situ surface CO2 observations are

in excellent agreement with a wide collection of carbon in-

ventories that form the basis of the first North American State

of the Carbon Cycle Report (SOCCR) (Peters et al., 2007).

CarbonTracker has also been frequently used to constrain the

surface CO2 fluxes over Europe and Asia (eg., Zhang et al.,

2014a, b). Kang et al. (2012) presented a simultaneous data

assimilation of surface CO2 fluxes and atmospheric CO2 con-

centrations along with meteorological variables using a local

ensemble transform Kalman filter (LETKF). They indicated
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that an accurate estimation of the evolving surface fluxes can

be gained even without any a priori information. Recently,

Tian et al. (2014) developed a new surface CO2 flux data

assimilation system, Tan-Tracker, by incorporating a joint

PODEn4DVar assimilation framework into the GEOS-Chem

model on the basis of Peters et al. (2005, 2007) and Kang

et al. (2011, 2012). They discussed in detail that the assimi-

lation of CO2 surface fluxes could be improved through the

use of simultaneous assimilation of CO2 concentrations and

CO2 surface fluxes. Despite the rigour of data assimilation

theory, current CO2 flux-inversion methods still face many

challenging scientific problems, such as: (1) the well-known

“signal-to-noise” problem (NRC, 2010); (2) large inaccura-

cies in chemical transport models (e.g. Prather et al., 2008);

(3) vast computational expenses (e.g. Feng et al., 2009); and

(4) the sparseness of observation data (e.g. Gurney et al.,

2002).

The “signal-to-noise” problem is one of the most challeng-

ing issues for an ensemble-based CO2 flux inversion system

due to the fact that surface CO2 fluxes are the model forcing

(or boundary condition), rather than model states (like CO2

concentrations), of the chemistry transport model (CTM). In

the absence of a suitable dynamical model to describe the

evolution of the surface CO2 fluxes, most CO2 flux-inversion

studies have traditionally ignored the uncertainty of anthro-

pogenic and other CO2 emissions and focused on the opti-

mization of natural (i.e. biospheric and oceanic) CO2 emis-

sions at the ecological scale (e.g. Deng et al., 2007; Feng et

al., 2009; Peters et al., 2005, 2007; Jiang et al., 2013; Peylin

et al., 2013).

This compromise is acceptable to some extent. Indeed,

the total amount of anthropogenic CO2 emissions can

be estimated by relatively well-documented global fuel-

consumption data with a small degree of uncertainty (Bo-

den et al., 2011), and the uncertainties involved in the total

amount of anthropogenic CO2 emissions are much smaller

than those related to natural emissions. However, their spatial

distribution, strength and temporal development still remain

elusive because of their inherent non-uniformities (Andres et

al., 2012; Gurney et al., 2009). Marland (2008) pointed out

that even a tiny amount of uncertainty, i.e. 0.9 %, in one of

the leading emitter countries like the U.S. is equivalent to the

total emissions of the smaller emitter countries in the world.

Furthermore, the usual values of anthropogenic CO2 emis-

sions in chemical transport models have thus far been sim-

ply interpolated from very coarse monthly-mean fuel con-

sumption data. Therefore, great uncertainty in the spatiotem-

poral distributions of anthropogenic emissions likely exists,

which could reduce the accuracy of CO2 concentration sim-

ulations and subsequently increase the inaccuracy of natural

CO2 flux inversion results. In addition, current research ap-

proaches tend only to assimilate natural CO2 emissions at the

ecological scale, which is far from sufficient. Therefore, sur-

face CO2 fluxes should be constrained as a whole at a finer

scale.

In CarbonTracker (Peters at al., 2007), a smoothing opera-

tor is innovatively applied as the persistence forecast model.

In that application, the surface CO2 fluxes can be treated as

the model states and the observed information ingested by

the current assimilation cycle can be used in the next as-

similation cycle effectively. However, the “signal-to-noise”

problem has not yet been resolved, and thus CarbonTracker

also has to assimilate natural CO2 emissions at the ecolog-

ical scale only. In Tan-Tracker (Tian et al., 2014), a four-

dimensional (4-D) moving sampling strategy (Wang et al.,

2010) is used to generate the flux ensemble members, and

so the surface CO2 fluxes can be optimized as a whole at

the grid scale. In this work, the persistence dynamical model

taken by Peters et al. (2005) was further developed for the

purpose of resolving the “signal-to-noise” problem, to opti-

mize the surface CO2 fluxes as a whole at the grid scale. This

process is described in detail in Sect. 2 of this paper.

The surface CO2 flux inversion system presented in this

paper was developed by simultaneously optimizing the sur-

face CO2 fluxes and constraining the CO2 concentrations.

As we know, assimilating CO2 observations from multiple

sources can improve the accuracy of simulation results (e.g.

Miyazaki, 2009; Liu et al., 2011, 2012; Feng et al., 2011;

Tangborn et al., 2013; Huang et al., 2014). In addition, pre-

vious studies showed that the simultaneous assimilation of

CO2 concentrations and surface CO2 fluxes can largely elim-

inate the uncertainty in initial CO2 concentrations on the CO2

evolution (Kang et al., 2012; Tian et al., 2014). Therefore,

we also use the simultaneous assimilation framework; the

ensemble Kalman filter (EnKF) was used to constrain CO2

concentrations and the ensemble Kalman smoother (EnKS)

was used to optimize surface CO2 fluxes. Since the regional

chemical transport models, compared to global models, have

some advantages in reproducing the effects of meso–micro–

scale transport on atmospheric CO2 distributions (Ahmadov

et al., 2009; Pillai et al., 2011; Kretschmer et al., 2012), we

choose a regional model, Regional Atmospheric Modeling

System and Community Multi-scale Air Quality (RAMS-

CMAQ) (Zhang et al., 2002, 2003, 2007; Kou et al., 2013;

Liu et al., 2013; Huang et al., 2014), to develop this in-

version system. For simplicity, this system is referred to as

CFI-CMAQ (Carbon Flux Inversion system and Community

Multi-scale Air Quality).

Since this is the first introduction of CFI-CMAQ, we focus

mainly on introducing the methodology in this paper. Nev-

ertheless, in addition, Observing System Simulation Experi-

ments (OSSEs) were designed to assess the system’s ability

to optimize surface CO2 fluxes. The retrieval information of

GOSAT XCO2
are used to generate artificial observations be-

cause of the sparseness and heterogeneity of ground-based

measurements.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the details of the regional surface CO2 flux

inversion system, CFI-CMAQ, including the developed per-

sistence dynamical model, a simple review of the EnKS and
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EnKF assimilation approaches, and the process involved.

The experimental designs are then introduced and the assim-

ilation results shown in Sect. 3. Finally, a summary and con-

clusions are provided in Sect. 4.

2 Framework of the regional surface CO2 flux

inversion system

Suppose we have the prescribed net CO2 surface flux,

F ∗(x,y,z, t), which can be released from a climate model or

be generated by other’s methods, our ultimate goal is to op-

timize F ∗(x,y,z, t) by assimilating CO2 observations from

various platforms. As an ensemble-based assimilation sys-

tem, CFI-CMAQ was also developed by applying a set of lin-

ear multiplication factors, similar to the approach by Peters

et al. (2007) and Tian et al. (2014). The ith ensemble mem-

ber of the surface fluxes, Fi(x,y,z, t), from an N -member

ensemble can be described by

Fi(x,y,z, t)= λi(x,y,z, t)F
∗(x,y,z, t), (i = 1, . . .,N), (1)

where λi(x,y,z, t) represents the ith ensemble member of

the linear scaling factors (Peters et al., 2007; Tian et al.,

2014) for each time and each grid to be optimized in the as-

similation. The notations are standard: the subscript i refers

to the ith ensemble member. In the following, λi(x,y,z, t)

is referred to as λi,t , F
∗(x,y,z, t) is referred to as F∗t , and

Fi(x,y,z, t) is referred to as Fi,t for simplicity.

At each optimization cycle, CFI-CMAQ includes

the following four parts in turn (see Fig. 1): (1)

forecasting of the linear scaling factors at time t ,

λa
i,t |t−1; (2) optimization of the scaling factors in

the smoother window, (λa
i,t−M|t−1,λ

a
i,t−M+1|t−1, . . .,

λa
i,j |t−1, . . .,λ

a
i,t−1|t−1,λ

a
i,t1|t−1), by EnKS, where

λa
i,j |t−1(j = t − 1−M,. . ., t − 1) refer to analysed quan-

tities from the previous assimilation cycle at time j (see

Fig. 1), |t − 1 means that these factors have been updated

using observations before time t − 1, and the super-

script a refers to the analysed; (3) updating of the fluxes

in the smoother window, (Fa
i,t−M|t−1,F

a
i,t−M+1|t−1, . . .,

Fa
i,j |t−1, . . .,F

a
i,t−1|t−1,F

a
i,t |t−1); and (4) assimilation of the

forecast CO2 concentration fields at time t , Cf
i (x,y,z, t)

(referred to as Cf
i,t , and the superscript f refers to the

forecast or the background), by EnKF. A flowchart illus-

trating CFI-CMAQ is presented in Fig. 2. The assimilation

procedure is addressed in detail below. In addition, the

observation operator is introduced, particularly for use in

the GOSAT XCO2
data in Sect. 2.4. Furthermore, covariance

inflation and localization techniques applied in CFI-CMAQ

are introduced briefly in Sect. 2.5.

2.1 Forecasting the linear scaling factors at time t

λa
i,t|t−1

In the previous assimilation cycle t − 1−M∼ t − 1 (see

Fig. 1), the optimized scaling factors in the smoother

window are (λa
i,t−1−M|t−1,λ

a
i,t−M|t−1,λ

a
i,t−M+1|t−1, . . .,

λa
i,j |t−1, . . .,λ

a
i,t−1|t−1) and the assimilated CO2 con-

centration fields at time t − 1 are Ca
i (x,y,z, t − 1)

(referred to as Ca
i,t−1). In the current assimilation cycle

t −M ∼ t , the scaling factors in the current smoother

window are (λa
i,t−M|t−1,λ

a
i,t−M+1|t−1, . . .,λ

a
i,j |t−1, . . .,

λa
i,t−1|t−1,λ

a
i,t |t−1) and the forecast CO2 concentration fields

at time t are Cf
i,t .

In order to pass the useful observed information onto

the next assimilation cycle effectively, following Peters et

al. (2007) the smoothing operator is applied as part of the

persistence dynamical model to calculate the linear scaling

factors λa
i,t |t−1,

λa
i,t |t−1 =

(
t−1∑

j=t−M

λa
i,j |t−1+λ

p

i,t |t−1)

M + 1
, (i = 1, . . .,N), (2)

where λ
p

i,t |t−1 refers to the prior values of the linear scaling

factors at time t . The superscript p refers to the prior. This

operation represents a smoothing over all the time steps in the

smoother window (see Fig. 1), thus dampening variations in

the forecast of λa
i,t |t−1 in time.

In order to generate λ
p

i,t |t−1, the atmospheric transport

model (CMAQ) is applied and a set of ensemble forecast ex-

periments are carried out. It integrates from time t−1 to t to

produce the CO2 concentration fields Ĉf
i (x,y,z, t) (referred

to as Ĉf
i,t hereafter to distinguish from Cf

i,t ) forced by the

prescribed net CO2 surface flux F∗t with Ca
i,t−1 as initial con-

ditions. Then, the ratio κi,t = Ĉ
f
i,t

/
Ĉf
i,t is calculated, where

Ĉf
i,t =

1
N

N∑
i=1

Ĉf
i,t . Suppose that λ

p

i,t |t−1 = κi,t due to the fact

that the surface CO2 fluxes correlate with its concentrations,

the values for λ
p

i,t |t−1 are obtained and then λa
i,t |t−1 can fi-

nally be calculated (see the red arrows in the flowchart in

Fig. 2).

The way the prior scaling factor λ
p

i,t |t−1 is updated by as-

sociating with the atmospheric transport model is the main

improvement over the one used in CarbonTracker (Peters et

al., 2007). In CarbonTracker, all λ
p

i,t |t−1 are set to 1 (Peters

et al., 2007). The distribution of the ensemble members of

the linear scaling factors at time t , λ
p

i,t |t−1, are finally depen-

dent on the distribution of the previous scaling factors be-

cause Eq. (2) is a linear smoothing operator. In this study, the

values of λ
p

i,t |t−1 are updated by association with the atmo-

spheric transport model. It is important to note that λ
p

i,t |t−1

in this study are rand fields with mean 1. However, the dis-

tribution of λa
i,t |t−1 are dependent on the distribution of all

www.atmos-chem-phys.net/15/1087/2015/ Atmos. Chem. Phys., 15, 1087–1104, 2015
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Figure 1. Schematic diagram of the smoother window. (λa
i,t−1−M|t−1

,λa
i,t−M|t−1

,λa
i,t−M+1|t−1

, . . .,λa
i,j |t−1

, . . .,λa
i,t−1|t−1

) are the op-

timized scaling factors in the smoother window and Ca
i,t−1

are the assimilated CO2 concentrations fields at time t − 1 in the previous

assimilation cycle t−1−M∼ t−1. (λa
i,t−M|t−1

,λa
i,t−M+1|t−1

, . . .,λa
i,j |t−1

, . . .,λa
i,t−1|t−1

,λa
i,t |t−1

) are the scaling factors in the smoother

window and Cf
i,t

are the forecast CO2 concentrations fields at time t which need to be optimized in the current assimilation cycle t−M∼ t .

Figure 2. Flowchart of the CFI-CMAQ system used to optimize surface CO2 fluxes at each assimilation cycle. The system includes the

following four parts in turn: (1) forecasting of the linear scaling factors λa
i,t |t−1

(red arrows); (2) optimization of the scaling factors in the

smoother window by EnKS (see Fig. 1) (blue arrows); (3) updating of the flux in the smoother window (green arrows); and (4) assimilation

of the CO2 concentration fields at time t by EnKF (black arrows).

the scaling factors in the smoother window. An OSSE was

designed to illustrate the difference between our method and

the one in which λ
p

i,t |t−1 are set to 1 in Sect. 3.

It is also important to note that, similar to Peters et

al. (2007), this dynamical model equation still does not in-

clude an error term in the dynamical model, and the model

error cannot be estimated yet. However, the covariance infla-

tion is applied to compensate for model errors before opti-

mization, which is addressed in Sect. 2.5.

Atmos. Chem. Phys., 15, 1087–1104, 2015 www.atmos-chem-phys.net/15/1087/2015/
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2.2 Optimizing the scaling factors in the smoother

window by EnKS

Substituting λa
i,t |t−1 into Eq. (1), the ith member of the sur-

face fluxes at time t , Fa
i,t |t−1, can be generated. Then, forced

by Fa
i,t |t−1, CMAQ was run from time t − 1 to t to produce

the background concentration field Cf
i,t with Ca

i,t−1 as initial

conditions.

In the current assimilation cycle t −M∼ t (see Fig. 1),

the scaling factors to be optimized in the smoother

window are (λa
i,t−M|t−1,λ

a
i,t−M+1|t−1, . . .,λ

a
i,j |t−1, . . .,

λa
i,t−1|t−1,λ

a
i,t |t−1), as stated in the first paragraph of

Sect. 2.1. Using the EnKS analysis technique, these scaling

factors are updated in turn via

λa
i,j |t = λ

a
i,j |t−1+K

e
j,t |t−1(y

obs
t − yf

i,t + υi,t ),

(i = 1, . . .,N,j = t −M,. . ., t), (3)

Ke
j,t |t−1 = Se

j,t |t−1H
T (HSe

t,t |t−1H
T
+R)−1, (4)

Se
j,t |t−1 =

1

N − 1

N∑
i=1

[λa
i,j |t−1−λ

a
i,j |t−1][λ

a
i,t |t−1−λ

a
i,t |t−1]

T , (5)

Se
t,t |t−1 =

1

N − 1

N∑
i=1

[λa
i,t |t−1−λ

a
i,t |t−1][λ

a
i,t |t−1−λ

a
i,t |t−1]

T , (6)

yf
i,t =H(φt−1→t (λ

a
i,t |t−1))=H(C

f
i,t ), (7)

where Ke
j,t |t−1 is the Kalman gain matrix of EnKS, yobs

t is

the observation vector measured at time t and yf
i,t is the sim-

ulated values, υi,t is a random normal distribution pertur-

bation field with zero mean, Se
j,t |t−1 is the background er-

ror cross-covariance between the state vector λa
i,j |t−1 and

λa
i,t |t−1, Se

t,t |t−1 is the background error covariance of the

state vector λa
i,t |t−1, H(·) is the observation operator that

maps the state variable from model space into observation

space, R is the standard deviation representing the measure-

ment errors, and φ(·) is the atmospheric transport model.

In actual implementations, it is unnecessary to calculate

Se
j,t |t−1 and Se

t,t |t−1 separately. Se
j,t |t−1H

T and HSe
t,t |t−1H

T

can be calculated as a whole by

Se
j,t |t−1H

T
=

1

N − 1

N∑
i=1

[λa
i,j |t−1−λ

a
i,j |t−1

][yf
i,t − yf

t ]
T , (8)

HSe
t,t |t−1H

T
=

1

N − 1

N∑
i=1

[yf
i,t − yf

t ][y
f
i,t − yf

t ]
T , (9)

yf
t =H(C

f
t )=H(

1

N

N∑
i=1

Cf
i,t ). (10)

After EnKS, (λa
i,t−M|t ,λ

a
i,t−M+1|t , . . .,λ

a
i,j |t , . . .

,λa
i,t−1|t ,λ

a
i,t |t ) are gained. Then the corre-

sponding fluxes in the smoother window

(Fa
i,t−M|t ,F

a
i,t−M+1|t , . . .,F

a
i,j |t , . . .,F

a
i,t−1|t ,F

a
i,t |t )

can be gained (see the green arrows in

the flowchart in Fig. 2) by substituting

(λa
i,t−M|t ,λ

a
i,t−M+1|t , . . .,λ

a
i,j |t , . . .,λ

a
i,t−1|t ,λ

a
i,t |t ) into

Eq. (1).

Then the ensemble mean values of the assimilated fluxes

in the smoother window can be calculated via,

Fa
i,j |t =

1

N

N∑
i=1

Fa
i,j |t , (j = t −M,. . ., t). (11)

Finally, those ensemble mean assimilated fluxes which are

before the next smoother window and will not be updated

by the succeeding observations are regarded as the final op-

timized fluxes. We referred to them as Fa
t for simplicity.

2.3 Assimilating the CO2 concentration fields at time t

by EnKF

The analysis of CO2 concentrations fields at time t in the

EnKF scheme is updated via

Ca
i,t = Cf

i,t +K(yobs
t − yf

t + υi,t ), (12)

K= PfH T (HPfH T
+R)−1, (13)

where K is the Kalman gain matrix of EnKF, Pf is the back-

ground error covariance among the background CO2 concen-

tration fields Cf
i,t .

In the actual application, PfH T andHPfH T can be calcu-

lated as a whole by

PfH T
=

1

N − 1

N∑
i=1

[Cf
i,t −Cf

t ][y
f
i,t − yf

t ]
T , (14)

HPfH T
=

1

N − 1

N∑
i=1

[yf
i,t − yf

t ]
T
[yf
i,t − yf

t ]
T , (15)

Cf
t =

1

N

N∑
i=1

Cf
i,t . (16)

Finally, the ensemble mean values of the assimilated CO2

concentrations fields can be gained via

Ca
t =

1

N

N∑
i=1

Ca
i,t , (17)

where Ca
t is regarded as the final analysing concentration

field.

2.4 The observation operator

As mentioned above, the observation operator H(·) trans-

forms the state variable from model space into observation

space. Usually, it is the spatial bilinear interpolator for tra-

ditional ground-based observations. Since the GOSAT XCO2

retrieval is a weighted CO2 column average, the simulated

www.atmos-chem-phys.net/15/1087/2015/ Atmos. Chem. Phys., 15, 1087–1104, 2015
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XCO2
should be calculated with the same weighted column

average method (Connor et al., 2008; Crisp et al., 2010, 2012;

O’Dell et al., 2012). Hence, the observation operator to as-

similate the GOSAT XCO2
retrieval is

yf
i,t =H(φt−1→t (λ

a
i,t |t−1))=H(C

f
i,t )= ypriori

+hT aCO2
(S(Cf

i,t )− fpriori), (18)

where yf
i,t is the simulated XCO2

; ypriori is the a priori CO2

column average used in the GOSAT XCO2
retrieval process;

S(·) is the spatial bilinear interpolation operator that inter-

polates the simulated fields to the GOSAT XCO2
locations to

obtain the simulated CO2 vertical profiles there; f priori is the

a priori CO2 vertical profile used in the retrieval process; h

is the pressure weighting function, which indicates the con-

tribution of the retrieved value from each layer of the atmo-

sphere; and aCO2
is the normalized averaging kernel.

2.5 Covariance inflation and localization

In order to keep the ensemble spread of the CO2 concentra-

tions at a certain level and compensate for transport model

error to prevent filter divergence, covariance inflation is ap-

plied before updating the CO2 concentrations. So,

(Cf
i,t )new = α(C

f
i,t −Cf

i,t )+Cf
i,t , (19)

where α is the inflation factor of CO2 concentrations and

(Cf
i,t )new is the final field used for data assimilation.

Similarly, covariance inflation is also used to keep the en-

semble spread of the prior scaling factors at a certain level

and compensate for dynamical model error. Hence,

(λ
p

i,t |t−1)new = β(λ
p

i,t |t−1−λ
p

i,t |t−1)+λ
p

i,t |t−1, (20)

where β is the inflation factor of scaling factors and

(λ
p

i,t |t−1)new is the final scaling factors used for data assimi-

lation.

In addition, the Schur product is utilized to filter the

remote correlation resulting from the spurious long-range

correlations (Houtekamer and Mitchell 2001). Hence, the

Kalman gain matrix Ke
j,t |t−1 and K are updated via

Ke
j,t |t−1 = [(ρ ◦Se

j,t |t−1)H
T (H(ρ ◦Pe

t,t |t−1)H
T
+R)−1, (21)

K= [(ρ ◦Pf)H T
][(H(ρ ◦Pf)H T

+R]−1, (22)

where the filtering matrix ρ is calculated using the formula

C0(r,c)=
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(
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0,c ≤ |r| ,

(23)

where c is the element of the localization Schur radius. The

matrix ρ can filter the small background error correlations

associated with remote observations through the Schur prod-

uct (Tian et al., 2011); and the Schur product tends to reduce

the effect of those observations smoothly at intermediate dis-

tances due to the smooth and monotonically decreasing of

the filtering matrix.

3 OSSEs for evaluation of CFI-CMAQ

A set of OSSEs were designed to quantitatively assess the

performance of CFI-CMAQ. The setup of the experiments

and the results are described in this section.

3.1 Experimental setup

The chemical transport model utilized was RAMS-CMAQ

(Zhang et al., 2002), in which CO2 was treated as an in-

ert tracer. The model domain was 6654× 5440 km2 on a ro-

tated polar stereographic map projection centred at (35.0◦ N,

116.0◦ E), with a horizontal grid resolution of 64× 64 km2

and 15 vertical layers in the σz-coordinate system, unequally

spaced from the surface to approximately 23 km. The ini-

tial fields and boundary conditions of the CO2 concentra-

tions were interpolated from the simulated CO2 fields of

CarbonTracker 2011 (Peters et al., 2007). The prior sur-

face CO2 fluxes included biosphere–atmosphere CO2 fluxes,

ocean–atmosphere CO2 fluxes, anthropogenic emissions,

and biomass-burning emissions (Kou et al., 2013),

F p(x,y,z, t)= Fbio(x,y,z, t)+Foce(x,y,z, t)

+Fff(x,y,z, t)+Ffire(x,y,z, t), (24)

where F p(x,y,z, t) (referred to as F
p
t ) was the prior sur-

face CO2 flux; Fbio(x,y,z, t) and Foce(x,y,z, t) were the

biosphere–atmosphere and ocean–atmosphere CO2 fluxes,

respectively, which were obtained from the optimized results

of CarbonTracker 2011 (Peters et al., 2007); Fff(x,y,z, t)

was fossil fuel emissions, adopted from the Regional Emis-

sion inventory in ASia (REAS, 2005 Asia monthly mean

emission inventory) with a spatial resolution of 0.5◦× 0.5◦

(Ohara et al., 2007); and Ffire(x,y,z, t) was biomass–

burning emissions, provided by the monthly mean inven-

tory at a spatial resolution of 0.5◦× 0.5◦ from the Global

Fire Emissions Database, Version 3 (GFED v3) (van der

Werf et al., 2010). Among all these fluxes, Fbio(x,y,z, t),

Foce(x,y,z, t) and Fff(x,y,z, t) had nonzero values at model

level 1, while they all were zeros at the other 14 levels. How-

ever, Ffire(x,y,z, t) had nonzero values at model level 1∼ 5

and they were all zeros at other the 10 levels. So, all fluxes in

this paper were the function of (x,y,z, t) for convenience.

Firstly, the prior flux F
p
t was assumed as the true surface

CO2 flux in all of the following OSSEs. Forced by F
p
t , the

RAMS-CMAQ model was run to produce the artificial true

CO2 concentration results Cp(x,y,z, t)(referred to as C
p
t in
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Figure 3. (a) Total number of observations in February 2010 in the model grid. Each symbol indicates the total number of all GOSAT XCO2

measurements in the corresponding model grid. Monthly mean values in February 2010 of (b) X
p
CO2

, column mixing ratio of C
p
t ; (c) Xf

CO2
,

column mixing ratio of Cf
t ; (d) Xa

CO2
, column mixing ratio of Ca

t ; (e) X
p
CO2
−Xf

CO2
; and (f) X

p
CO2
−Xa

CO2
. All column mixing ratios are

column-averaged with real GOSAT XCO2
averaging kernels at GOSAT XCO2

locations. Each symbol indicates the monthly average value of

all XCO2
estimates in the model grid. Ca

t are the ensemble mean values of the assimilated CO2 concentrations fields of a CFI-CMAQ OSSE,

in which the lag-window was 9 days and β was 70. They are the same OSSE in Figs. 3–6.

the following). Then, the artificial GOSAT observations yobs
t

(or X
p

CO2
) were generated by substituting C

p
t into the ob-

servation operator in Eq. (16). The retrieval information of

GOSAT XCO2
(ypriori, f priori, h and aCO2

) needed in Eq. (16)

were gained from the v2.9 Atmospheric CO2 Observations

from Space (ACOS) Level 2 standard data products, which

only utilized the SWIR observations. Only data classified

into the “Good” category were utilized in this study. Dur-

ing the retrieval process, most of the soundings (such as data

with a solar zenith angle greater than 85◦, or data not in clear

sky conditions, or data collected over the ocean but not in

glint, etc.) were not processed, so typically data products for

the “good” category contained only 10–100 soundings per

satellite orbit (Osterman et al., 2011), and there were only

0∼ 60 samples per orbit in the study model domain gener-

ally. Fig. 3a also showed the total number of “good” GOSAT

XCO2
observations for each model grid in February in 2010.

There were relatively more observations over most continen-

tal regions of the study domain except some regions in North-

East and South China. The total numbers ranged from 1 to 8.

However, there were almost no data over the oceans of the

study domain.
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Figure 4. Monthly mean values of (a) C
p
t , the artificial true simulations driven by the prior surface CO2 fluxes F

p
t ; (b) Cf

t , the background

simulations driven by magnified surface CO2 fluxes F∗t = (1.8+ δ(x,y,z, t))F
p
t ; (c) Ca

t , the ensemble mean values of the assimilated CO2

concentrations fields; (d) C
p
t −Cf

t ; (e) C
p
t −Ca

t ; and (f) 100∗(C
p
t −Ca

t )
/

C
p
t at model-level 1 in February 2010. Black lines EF and GH

indicate the positions of the cross sections shown in Fig. 5.

Secondly, the prescribed surface CO2 fluxes series F∗t were

created by

F∗t = (1.8+ δ(x,y,z, t))F
p
t , (25)

where δ was a random number. They were standard normal

distribution time series at each grid in the integration pe-

riod of our numerical experiment. Driven by F∗t , the RAMS-

CMAQ model was integrated to obtain the CO2 simula-

tions Cf(x,y, ,z, t) (referred to as Cf
t hereafter). Then, the

column-averaged concentrations Xf
CO2

were obtained using

Eq. (16).

The performance of CFI-CMAQ was evaluated through a

group of well-designed OSSEs, and the goal of each OSSE

was to retrieve the true fluxes F
p
t from given true observa-

tions X
p

CO2
and “wrong” fluxes F∗t . In all the OSSEs, we

assimilated artificial observations X
p

CO2
about three times

a day since GOSAT has about three orbits in the study

model domain. If there were some observations, CFI-CMAQ

paused to assimilate. Otherwise, it continued simulating. The

default ensemble size N was 48, the measurement errors

were 1.5 ppmv, the standard localization Schur radius c was

1280 km (20 grid spacing), and the covariance inflation fac-

tor of concentrations α was 1.1. The referenced lag-window

was 9 days and the covariance inflation factor of the prior

scaling factors β was 70. Since the smoother window was

very important for CO2 transportation and β was a newly

introduced parameter, both these parameters were further in-

vestigated by several numerical sensitivity experiments. The
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Figure 5. Monthly mean cross sections of C
p
t −Cf

t along line (a) EF and (b) GH, and monthly mean cross sections of C
p
t −Ca

t along line (c)

EF and (d) GH (cross section lines shown in Fig. 4d) in February 2010.

primary focus of this paper was to describe the assimilation

methodology, so all the numerical experiments started on 1

January 2010 and ended on 30 March 2010.

As for the initialization of CFI-CMAQ, only the ensemble

of background concentration fields Cf
i,0 needed to be initial-

ized at the time t = 0 because the values of λa
i,t |t−1 were up-

dated using the persistence dynamical model. In practice, the

mean concentration fields at t = 0 are interpolated from the

simulated CO2 fields of CarbonTracker 2011 (Peters et al.,

2007). The ensemble members of the background concen-

tration fields were created by adding random vectors. The

mean values of the random vectors were zero and the vari-

ances were 2.5 percent of the mean concentration fields. The

atmospheric transport model then integrated from time t = 0

to t = 1 driven by F∗t with Cf
i,0 as initial conditions to pro-

duce the CO2 concentration fields Ĉf
i,1. Subsequently, the

first prior linear scaling factors, λ
p

i,1|0, could be calculated by

applying Ĉf
i,1. Assuming that λa

i,1|0 = λ
p

i,1|0, λa
i,1|0 are gained,

finally. For the first assimilation cycle, the lag-window was

only one (that is, only λa
i,1|0 needed to be optimized in the

first assimilation cycle). It increased for the first dozens of as-

similation cycles until it reached M+ 1 as CFI-CMAQ con-

tinued to assimilate observations. Once the system was ini-

tialized, all future scaling factors could be created using the

persistence dynamical model, which associated the smooth-

ing operator with the atmospheric transport model.

In order to illustrate the limitation using only the smooth-

ing operator as the persistence dynamical model to gener-

ate all future scaling factors, another OSSE (referred to as

the reference experiment to distinguish it from the above-

mentioned CFI-CMAQ OSSEs) was designed to optimize

the surface CO2 fluxes at grid scale. The reference exper-

iment was under the same assimilation framework as CFI-

CMAQ except that all λ
p

i,t |t−1 were set to 1 (Peters et al.,

2007). Beside that, the initialization procedure of the refer-

ence experiment was different from that of the CFI-CMAQ.

In practice, both the ensemble of background concentration

fields at t = 0, Cf
i,0, and the ensemble members of the scaling

factors at t = 1, λa
i,1|0, needed to be initialized because they

could not be generated in other ways (Peters et al., 2005).

The initial concentration fields Cf
i,0 were created using the

same method as that used to generateCf
i,0 for the CFI-CMAQ

OSSEs. The ensemble members of the scaling factors λa
i,1|0

were rand fields. Their mean values were 1 and their vari-

ances were 0.1. In addition, in order to keep the ensemble

spread of the scaling factors λa
i,t |t−1 at a certain level and

compensate for dynamical model error, covariance inflation

was also used and the covariance inflation factor of the scal-

ing factors λa
i,t |t−1 was 1.6. All other parameters are the same

as used in the CFI-CMAQ OSSEs. The ensemble size N was

48, the measurement errors were 1.5 ppmv, the standard lo-

calization Schur radius c was 1280 km, the covariance infla-
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Figure 6. Daily mean time series of CO2 concentrations at national background stations in China and their nearest large cities from 1 January

to 20 March 2010 extracted from the artificial true simulations C
p
t (black), background simulations Cf

t (red), and the ensemble mean values

of the assimilated CO2 concentrations fields Ca
t (blue). All time series were interpolated to the observation locations by the spatial bilinear

interpolator method. The sites used are (a) Waliguan (36.28◦ N, 100.91◦ E), (b) Xining (36.56◦ N, 101.74◦ E), (c) Longfengshan (44.73◦ N,

127.6◦ E), (d) Haerbin (45.75◦ N, 126.63◦ E), (e) Shangdianzi (40.65◦ N, 117.12◦ E), (f) Beijing (39.92◦ N, 116.46◦ E), (g) Linan (30.3◦ N,

119.73◦ E), and (h) Hangzhou (30.3◦ N, 120.2◦ E).

tion factor of concentrations α was 1.1, and the lag-window

was 9 days.

3.2 Experimental results

Essentially, the assimilation part of CFI-CMAQ includes two

subsections: one for the CO2 concentration assimilation with

EnKF, which can provide convincing CO2 initial analysis

fields for the next assimilation cycle; and the other for the

CO2 flux optimization with EnKS, which can provide bet-

ter estimation of the scaling factors for the next time through

the persistence dynamical model, except for optimized CO2

fluxes. The performance of the EnKF subsection will be

greatly influenced by the validation of the EnKS subsection,

or vice versa. Firstly, the performance of CFI-CMAQ will

be quantitatively assessed in detail using the assimilated re-
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Figure 7. Monthly mean values in February 2010 of (a) F
p
t , the prior true surface CO2 fluxes; (b) F∗t , the prescribed CO2 surface fluxes,

F∗t = (1.8+ δ(x,y,z, t))F
p
t ; (c) Fa

t , the ensemble mean values of the assimilated surface CO2 fluxes; (d) F
p
t −F∗t ; and (e) F

p
t −Fa

t (units:

µmole m−2 s−1). Fa
t are the assimilated results of a CFI-CMAQ OSSE, in which the lag-window was 9 days and β was 70. They are the

same in Figs. 7–10.

sults of a CFI-CMAQ OSSE, in which the lag-window was 9

days and β was 70. The sensitivities of β and the lag-window

will then be discussed in the following two paragraphs. Fi-

nally, the assimilation results of the reference experiment in

whichλ
p

i,t |t−1 were set to 1 will be briefly described at the end

of this subsection.

We begin by describing the impacts of assimilating artifi-

cial observations X
p

CO2
on CO2 simulations by CFI-CMAQ.

As shown in Fig. 4a, b and d, the monthly mean values of the

background CO2 concentrations Cf
t produced by the magni-

fied surface CO2 fluxes F∗t were much larger than those of the

artificial true CO2 concentrations C
p
t produced by the prior

surface CO2 fluxes F
p
t near the surface in February 2010.

In the east and south of China especially, the magnitude of

the difference between C
p
t and Cf

t was at least 6 ppmv. Also,

as expected, the monthly mean Xf
CO2

was much larger than

the monthly mean artificial observations X
p

CO2
, and the mag-

nitude of the difference between X
p

CO2
and Xf

CO2
reached

2 ppmv in the east and south of China (see Fig. 3b, c, e).

However, the impact of magnifying surface CO2 fluxes on

the CO2 concentrations was primarily below the model-level

10 (approximately 6 km), and especially below model-level

7 (approximately 1.6 km). Above model-level 10, the differ-

ences between C
p
t and Cf

t fell to zero (see Fig. 5a, b). After

assimilating X
p

CO2
, the analysis CO2 concentrations Ca

t was

much closer to C
p
t (see Fig. 4c, e, f). The monthly mean dif-

ference between C
p
t and Ca

t ranged from −2 to 2 ppmv and
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Figure 8. Monthly mean RMSEs of Fa
t in February 2010 (units:

µmole m−2 s−1).

the relative error (C
p
t – Ca

t )/C
p
t ranged from −1 to 1 % in al-

most the entire model domain at model-level 1. The monthly

mean differences between C
p
t and Ca

t were negligible above

model-level 2 (see Fig. 5c, d). The monthly mean Xa
CO2

was

also closer to X
p

CO2
and the difference between X

p

CO2
and

Xa
CO2

ranged from −0.5 to 0.5 ppmv. In order to evaluate

the general impact of assimilating X
p

CO2
in the surface layer,

time series of the daily mean CO2 concentration extracted

from the background simulations and the assimilations were

compared with the artificial true simulations at four national

background stations in China and their nearest large cities.

As shown in Fig. 3a, Waliguan is 150 km away from Xin-

ing, Longfengshan is 180 km away from Haerbin, Shangdi-

anzi is 150 km away from Beijing, and Linan is 50 km away

from Hangzhou. The assimilated results are shown in Fig. 6.

The background time series were much larger than the ar-

tificial true time series, especially at Shangdianzi, Beijing,

Linan and Hangzhou, which are strongly influenced by local

anthropogenic CO2 emissions. After assimilating X
p

CO2
, the

assimilated time series were very close to the true time se-

ries with negligible bias, as expected, at Waliguan, Xining,

Shangdianzi, Beijing, Linan and Hangzhou, especially after

the first 10 days, which can be considered the spin-up period.

Meanwhile, the improvements at Longfengshan and Haerbin

were limited due to the absence of observation data at those

locations (see Fig. 3a). Nevertheless, in general, the substan-

tial benefits to the CO2 concentrations in the surface layer

of assimilating GOSAT XCO2
with EnKF are clear. All the

results illustrated that CFI-CMAQ can provide a convincing

CO2 initial analysis fields for CO2 flux inversion.

The impacts of assimilating X
p

CO2
on surface CO2 fluxes

were also highly impressive by CFI-CMAQ. On the whole,

the prescribed CO2 surface fluxes F∗t were much larger than

the true surface CO2 fluxes F
p
t in February 2010, especially

in the east and south of China. The monthly mean differ-

ence between F∗t and F
p
t reached 5 µmole m−2 s−1 in Jing–

Jin–Ji, the Yangtze River delta, and the Pearl River Delta Ur-

ban Circle because of the strong local anthropogenic CO2

emissions (see Fig. 7a, b, d). After assimilating X
p

CO2
, the

ensemble mean of the assimilated surface CO2 fluxes Fa
t de-

creased sharply. Thus, the monthly mean values of Fa
t were

much smaller than F∗t in most of the model domain in Febru-

ary 2010. The pattern of the difference between Fa
t and F∗t

was similar to that of the difference between F
p
t and F∗t (see

Fig. 7d). The ensemble mean of the assimilated surface CO2

fluxes Fa
t were also compared to the artificial true fluxes F

p
t ,

revealing that Fa
t was equivalent to F

p
t in most of the model

domain. The monthly mean difference between Fa
t and F

p
t

ranged from −0.1 to 0.1 µmole m−2 s−1 only (see Fig. 7e).

In addition, the root-mean-square errors (RMSEs) of the as-

similated flux members were analysed. As shown in Fig. 8,

the monthly mean RMSE was less than 0.5 µmole m−2 s−1

in most of the model domain, except in areas near to large

cities such as Beijing, Shanghai and Guangzhou, indicating

that the assimilated CO2 fluxes were reliable.

In order to evaluate the ability of CFI-CMAQ to optimize

the surface CO2 fluxes comprehensively, the ratios of the

monthly mean F∗t to the monthly mean F
p
t were analysed. In

actual implementation, we only analysed the ratios where the

absolute values of the monthly mean F
p
t were larger than 0.1,

to avoid random noise. As shown in Fig. 9a, the ratios of

the monthly mean F∗t to the monthly mean F
p
t are about 1.8

in most of China, except in the Qinghai–Tibet Plateau, where

the absolute values of the monthly mean F
p
t in February were

very small and were not analysed. In addition, the ratios of

the monthly mean Fa
t to the monthly mean F

p
t are shown in

Fig. 9b. This figure demonstrates that the impact of the as-

similation of X
p

CO2
by CFI-CMAQ on CO2 fluxes was great

in the east and south of China in general, but the influence

was negligible in Northeast China due to the lack of observa-

tion data.

Time series of daily mean surface CO2 fluxes extracted

from F∗t and Fa
t were also compared with that from F

p
t at

four national background stations in China and their near-

est large cities, similar to the CO2 concentration assimi-

lation. The results are shown in Fig. 10. The background

time series were much larger than the artificial true time se-

ries, especially at Haerbin, Shangdianzi, Beijing, Linan and

Hangzhou, which are strongly influenced by local anthro-

pogenic CO2 emissions. After assimilating X
p

CO2
, the assim-

ilated time series were near to the true time series with ac-

ceptable bias, as expected, at Waliguan, Xining, Shangdianzi,

Linan and Hangzhou after the 10-day spin-up period. How-

ever, the improvements at Longfengshan and Haerbin were

negligible because of a lack of observations at these loca-

tions. Also, this inversion system failed to show improve-

ments in Beijing. One of the possible reasons was that the

values of the ensemble spread of λa
i,t |t−1 in the Beijing area

are too large (see Fig. 11c). Beijing is located in the Jing–

Jin–Ji Urban Circle, which had strong local anthropogenic

CO2 emissions during January–March. So the values of the

ensemble spread of Cf
i,t in the Beijing area at model-level 1

Atmos. Chem. Phys., 15, 1087–1104, 2015 www.atmos-chem-phys.net/15/1087/2015/



Z. Peng et al.: A regional carbon data assimilation system 1099

Figure 9. (a) Ratios of monthly mean F∗t to monthly mean F
p
t ; and (b) ratios of monthly mean Fa

t to monthly mean F
p
t in February 2010. The

white part indicates the ratios where the absolute values of monthly mean F
p
t are larger than 0.1, not analysed in this study. The black square

labelled I indicates the domain where surface CO2 fluxes were used for the results presented in Figs. 12 and 13.

Figure 10. Daily mean time series of CO2 fluxes at national background stations in China and their nearest large cities from 1 January to

20 March 2010, extracted from the prior true surface CO2 fluxes F
p
t (black), the prescribed CO2 surface fluxes F∗t (red), and the assimilated

CO2 fluxes Fa
t (blue). All time series were interpolated to the observation locations by the spatial bilinear interpolator method. The sites used

are (a) Waliguan, (b) Xining, (c) Longfengshan, (d) Haerbin, (e) Shangdianzi, (f) Beijing, (g) Linan, and (h) Hangzhou.
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Figure 11. (a) Ensemble spread of Cf
i,t

after inflating; (b) ensemble spread of λ
p
i,t |t−1

before inflating; (c) ensemble spread of λa
i,t |t−1

at

model-level 1 at 00:00 UT on 1 March 2010, when β = 70.

Figure 12. Time series of daily mean CO2 fluxes averaged in do-

main I (shown in Fig. 9a) from 1 January to 20 March 2010 with

the inflation factor of scaling factors β = 50,60,70,75 and 80. The

black dashed line is the time series averaged from F∗t and the black

solid line is the time series averaged from F
p
t .

could be much larger than those in other areas, which had

weak local anthropogenic CO2 emissions (see Fig. 11a). As

a result, the values of the ensemble spread of λ
p

i,t |t−1 before

inflating in the Beijing area are much larger than those in

other areas with small local anthropogenic CO2 emissions

(see Fig. 11b). After inflating, the ensemble spread of λ
p

i,t |t−1

in the Beijing area could be too large, compared to those in

other areas with small local anthropogenic CO2 emissions

(see Fig. 11c), which led to the failure to reproduce the true

fluxes in the Beijing area. Later, CFI-CMAQ will be im-

proved by optimizing the covariance inflation method.

Since the impact of assimilation X
p

CO2
by CFI-CMAQ on

CO2 fluxes was in general greater in the east and south of

China than other model areas (see Figs. 7, 9), the time series

of the daily mean CO2 fluxes in that area averaged from Fa
t

was compared with those from F∗t and F
p
t (see Fig. 12). This

figure indicates that CFI-CMAQ could in general reproduce

the true fluxes with acceptable bias.

As stated in the above section, β was a newly introduced

parameter. The prior scaling factors should have been in-

flated indirectly through the inflated CO2 concentration fore-

cast. However, the values of the ensemble spread of λ
p

i,t |t−1

before inflating were very small (ranging from 0 to 0.08 in

most areas at model-level 1, see Fig. 11b), though the values

of the ensemble spread of Cf
i,t after inflating could reach 1–

14 ppmv in most areas at model-level 1 (see Fig. 11a). Con-

sequently, we had to inflate them again before using them

in Eq. (2). Fig. 11c shows the distribution of the ensemble

spread of λa
i,t |t−1 at model-level 1 at 00:00 UT on 1 March

2010 when β = 70. It shows that the values of the ensem-

ble spread of λa
i,t |t−1 ranged from 0.1 to 0.8 in most areas.

In order to investigate the sensitivity of the inflation factor

of the scaling factors β, a series of numerical experiments

were conducted. As shown in Fig. 12, CFI-CMAQ worked

rather well for β = 60,70,75,80. However, if β was much
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Figure 13. Time series of daily mean CO2 fluxes averaged in do-

main I (shown in Fig. 9a) from 1 January to 20 March 2010 with

different smoother windows (3, 6, 9 and 12 days). The black dashed

line is the time series averaged from F∗t and the black solid line is

the time series averaged from F
p
t .

smaller than 50 (e.g. β = 10), the impact of assimilation was

small due to the small ensemble spread; or if β was much

larger than 80 (e.g. β = 100), the assimilated CO2 fluxes de-

viated markedly from the “true” CO2 fluxes. In other words,

the performance of CFI-CMAQ greatly relies on the choice

of β.

From the perspective of the lag-window, the differences

among the four assimilation sensitivity experiments with lag-

windows of 3, 6, 9 and 12 days were very small (see Fig. 13).

Although Peters et al. (2007) indicated that the lag-window

should be more than five weeks, it seemed that the smoother

window had a slight influence on the assimilated results for

CFI-CMAQ. It was clear that the assimilated results with

a larger lag-window were better than those with a smaller

lag-window; however, CFI-CMAQ performed very well even

with a short lag-window (e.g. 3 days).

At the end of this subsection, the assimilation results of the

reference experiment in which λ
p

i,t |t−1 were set to 1 will be

addressed briefly. The impact of assimilation X
p

CO2
on CO2

fluxes was disordered. The monthly mean values of the dif-

ference between the prior true surface CO2 fluxes and the

ensemble mean values of the assimilated surface CO2 fluxes

were irregular noise (see Fig. 14). The main reason is that

all the elements of the scaling factors to be optimized in the

smoother window are only random numbers. As stated in the

above section, only λa
i,1|0 needed to be optimized in the first

assimilation cycle. However, λa
i,1|0 were rand fields (in other

words, all the elements of λa
i,1|0 are random numbers) be-

cause they could not be generated in other ways in the first

instance. Therefore their spatial correlations were too small.

The correlations between the scaling factors and the observa-

tions were also too small. It was therefore impossible to sys-

tematically change the values of λa
i,1|0 in large areas where

the observations located after assimilating observations at

t = 1. Hence, the signal-to-noise problem arose. So, the ele-

ments of λa
i,1|1 are also only random numbers. Though λa

i,2|1

Figure 14. Monthly mean values of the difference between the prior

true surface CO2 fluxes and the ensemble mean values of the assim-

ilated surface CO2 fluxes (units: µmole m−2 s−1) of the reference

experiment in which λ
p
i,t |t−1

were set to 1.

could be generated automatically by the smoothing opera-

tor when all λ
p

i,2|1 were set to 1, the elements of λa
i,2|1 are

also random numbers because the smoothing operator is only

a linear operator. Similarly, it was impossible to systemati-

cally change the values of λa
i,1|1 and λa

i,2|1 in large areas after

assimilating observations at t = 2. As this inversion system

continued assimilating observations, all future scaling fac-

tors could be created by the smoothing operator and then

updated. But this inversion system could not ingest the ob-

servations effectively because all the elements of the scaling

factors were always random numbers. Though the 9-day lag-

window in the reference experiment is too short compared to

the 5 week lag-window recommended by Peters et al. (2007),

this reference experiment could illustrate the limitation by

only using the smoothing operator as the persistence dynam-

ical model. If the lag-window was around 5 weeks, we could

achieve better results because there were more observations

in every assimilation cycle. However, the results could not

be better than those obtained by CFI-CMAQ because most

grids have no observations (see Fig. 3a) and the signal-to-

noise problem still remained.

4 Summary and conclusions

A regional surface CO2 flux inversion system, CFI-CMAQ,

has been developed to optimize CO2 fluxes at grid scales. It

operates under a joint data assimilation framework by apply-

ing EnKF to constrain the CO2 concentrations and applying

EnKS to optimize the surface CO2 flux, which is similar to

Kang et al. (2011, 2012) and Tian et al. (2014). The persis-

tence dynamical model, which was first introduced by Peters

et al. (2007) by applying the smoothing operator to trans-

port the useful observed information onto the next assimila-

tion cycle, is developed further. We associated the smooth-

ing operator with the atmospheric transport model to con-
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stitute the persistence dynamical model to forecast the sur-

face CO2 flux scaling factors for the purpose of resolving the

“signal-to-noise” problem, as well as transporting the useful

observed information onto the next assimilation cycle. In this

application, the scaling factors to be optimized in the flux

inversion system can be forecast at the grid scale without

random noise. The OSSEs showed that the performance of

CFI-CMAQ is effective and promising. In general, it could

reproduce the true fluxes at the grid scale with acceptable

bias.

This study represents the first step in developing a regional

surface CO2 flux inversion system to optimize CO2 fluxes

over East Asia, particularly over China. In future, we in-

tend to further develop the covariance localization techniques

and inflation techniques to improve the performance of CFI-

CMAQ. Furthermore, the uncertainty of the boundary con-

ditions should be considered to improve the effectiveness of

regional CO2 flux optimization.
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