Articles | Volume 12, issue 1
https://doi.org/10.5194/acp-12-1-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-12-1-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A review of operational, regional-scale, chemical weather forecasting models in Europe
J. Kukkonen
Finnish Meteorological Institute, Helsinki, Finland
T. Olsson
Finnish Meteorological Institute, Helsinki, Finland
Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Finland
D. M. Schultz
Finnish Meteorological Institute, Helsinki, Finland
Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Finland
Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK
A. Baklanov
Danish Meteorological Institute, Copenhagen, Denmark
T. Klein
Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
A. I. Miranda
CESAM & Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
A. Monteiro
CESAM & Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
M. Hirtl
Section of Environmental Meteorology, Central Institute for Meteorology and Geodynamics, Vienna, Austria
V. Tarvainen
Finnish Meteorological Institute, Helsinki, Finland
M. Boy
Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Finland
V.-H. Peuch
Meteo-France, Toulouse Cedex, France
ECMWF, Reading, UK
A. Poupkou
Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
I. Kioutsioukis
Laboratory of Atmospheric Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
S. Finardi
ARIANET s.r.l., Milano, Italy
M. Sofiev
Finnish Meteorological Institute, Helsinki, Finland
R. Sokhi
University of Hertfordshire, Hatfield, UK
K. E. J. Lehtinen
Finnish Meteorological Institute, Kuopio, Finland
Dept. Applied Physics, University of Eastern Finland, Kuopio, Finland
K. Karatzas
Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
R. San José
Technical University of Madrid, Madrid, Spain
M. Astitha
Energy, Environment and Water Research Center (EEWRC), The Cyprus Institute, Cyprus
G. Kallos
Faculty of Physics, University of Athens, Athens, Greece
M. Schaap
TNO Built Environment and Geosciences, Utrecht, The Netherlands
E. Reimer
Freie Universität Berlin, Berlin, Germany
H. Jakobs
University of Cologne, Cologne, Germany
K. Eben
Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impacts of urbanization on air quality and the related health risks in a city with complex terrain
Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data
Development and application of a multi-scale modeling framework for urban high-resolution NO2 pollution mapping
Towards monitoring the CO2 source–sink distribution over India via inverse modelling: quantifying the fine-scale spatiotemporal variability in the atmospheric CO2 mole fraction
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions
Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020
Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source
Analysis of CO2, CH4, and CO surface and column concentrations observed at Réunion Island by assessing WRF-Chem simulations
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio
The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China
Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations
High-resolution mapping of regional traffic emissions using land-use machine learning models
Land use and anthropogenic heat modulate ozone by meteorology: a perspective from the Yangtze River Delta region
Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7
Data assimilation of CrIS NH3 satellite observations for improving spatiotemporal NH3 distributions in LOTOS-EUROS
On the cross-tropopause transport of water by tropical convective overshoots: a mesoscale modelling study constrained by in situ observations during the TRO-Pico field campaign in Brazil
Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model
The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020
Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations
Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models
Evaluating the impact of storage-and-release on aircraft-based mass-balance methodology using a regional air-quality model
The regional impact of urban emissions on air quality in Europe: the role of the urban canopy effects
A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing–Tianjin–Hebei region
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Evidence of a recent decline in UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements
Vehicle-induced turbulence and atmospheric pollution
A comparative study to reveal the influence of typhoons on the transport, production and accumulation of O3 in the Pearl River Delta, China
Sensitivity to the sources of uncertainties in the modeling of atmospheric CO2 concentration within and in the vicinity of Paris
Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling
Analysis of CO2 spatio-temporal variations in China using a weather–biosphere online coupled model
Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown
Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases
Using TROPOspheric Monitoring Instrument (TROPOMI) measurements and Weather Research and Forecasting (WRF) CO modelling to understand the contribution of meteorology and emissions to an extreme air pollution event in India
Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations
COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas
Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: evaluation against mobile sensors and insights for influencing factors
Technical note: Emission mapping of key sectors in Ho Chi Minh City, Vietnam, using satellite-derived urban land use data
Impact of western Pacific subtropical high on ozone pollution over eastern China
High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model
Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport
Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System
The friagem event in the central Amazon and its influence on micrometeorological variables and atmospheric chemistry
Modeling atmospheric ammonia using agricultural emissions with improved spatial variability and temporal dynamics
Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion
Errors in top-down estimates of emissions using a known source
The impact of urban land-surface on extreme air pollution over central Europe
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
This article is included in the Encyclopedia of Geosciences
Hélène Peiro, Sean Crowell, and Berrien Moore III
Atmos. Chem. Phys., 22, 15817–15849, https://doi.org/10.5194/acp-22-15817-2022, https://doi.org/10.5194/acp-22-15817-2022, 2022
Short summary
Short summary
CO data can provide a powerful constraint on fire fluxes, supporting more accurate estimation of biospheric CO2 fluxes. We converted CO fire flux into CO2 fire prior, which is then used to adjust CO2 respiration. We applied this to two other fire flux products. CO2 inversions constrained by satellites or in situ data are then performed. Results show larger variations among the data assimilated than across the priors, but tropical flux from in situ inversions is sensitive to priors.
This article is included in the Encyclopedia of Geosciences
Zhaofeng Lv, Zhenyu Luo, Fanyuan Deng, Xiaotong Wang, Junchao Zhao, Lucheng Xu, Tingkun He, Yingzhi Zhang, Huan Liu, and Kebin He
Atmos. Chem. Phys., 22, 15685–15702, https://doi.org/10.5194/acp-22-15685-2022, https://doi.org/10.5194/acp-22-15685-2022, 2022
Short summary
Short summary
This study developed a hybrid model, CMAQ-RLINE_URBAN, to predict the urban NO2 concentrations at a high spatial resolution. To estimate the influence of various street canyons on the dispersion of air pollutants, a new parameterization scheme was established based on computational fluid dynamics and machine learning methods. This work created a new method to identify the characteristics of vehicle-related air pollution at both city and street scales simultaneously and accurately.
This article is included in the Encyclopedia of Geosciences
Vishnu Thilakan, Dhanyalekshmi Pillai, Christoph Gerbig, Michal Galkowski, Aparnna Ravi, and Thara Anna Mathew
Atmos. Chem. Phys., 22, 15287–15312, https://doi.org/10.5194/acp-22-15287-2022, https://doi.org/10.5194/acp-22-15287-2022, 2022
Short summary
Short summary
This paper demonstrates how we can use atmospheric observations to improve the CO2 flux estimates in India. This is achieved by improving the representation of terrain, mesoscale transport, and flux variations. We quantify the impact of the unresolved variations in the current models on optimally estimated fluxes via inverse modelling and quantify the associated flux uncertainty. We illustrate how a parameterization scheme captures this variability in the coarse models.
This article is included in the Encyclopedia of Geosciences
Dominik Brunnner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-645, https://doi.org/10.5194/acp-2022-645, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Six atmospheric transport models were evaluated for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet campaign in 2018. The study analysed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
This article is included in the Encyclopedia of Geosciences
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, https://doi.org/10.5194/acp-22-10809-2022, 2022
Short summary
Short summary
We quantify methane emissions in China and contributions from different sectors by inverse analysis of 2019 TROPOMI satellite observations of atmospheric methane. We find that anthropogenic methane emissions for China are underestimated in the national inventory. Our estimate of emissions indicates a small life-cycle loss rate, implying net climate benefits from the current
This article is included in the Encyclopedia of Geosciences
coal-to-gasenergy transition in China. However, this small loss rate can be misleading given China's high gas imports.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
This article is included in the Encyclopedia of Geosciences
Anna Agusti-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noel, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Ratzinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
EGUsphere, https://doi.org/10.5194/egusphere-2022-283, https://doi.org/10.5194/egusphere-2022-283, 2022
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost two decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
This article is included in the Encyclopedia of Geosciences
Ruben B. Schulte, Margreet C. van Zanten, Bart J. H. van Stratum, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 22, 8241–8257, https://doi.org/10.5194/acp-22-8241-2022, https://doi.org/10.5194/acp-22-8241-2022, 2022
Short summary
Short summary
We present a fine-scale simulation framework, utilizing large-eddy simulations, to assess NH3 measurements influenced by boundary-layer dynamics and turbulent dispersion of a nearby emission source. The minimum required distance from an emission source differs for concentration and flux measurements, from 0.5–3.0 km and 0.75–4.5 km, respectively. The simulation framework presented here proves to be a powerful and versatile tool for future NH3 research at high spatio-temporal resolutions.
This article is included in the Encyclopedia of Geosciences
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
This article is included in the Encyclopedia of Geosciences
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys., 22, 6489–6505, https://doi.org/10.5194/acp-22-6489-2022, https://doi.org/10.5194/acp-22-6489-2022, 2022
Short summary
Short summary
Mobile measurement techniques (e.g., instruments placed in cars) are often employed to identify and quantify individual sources of greenhouse gases. Due to road restrictions, those observations are often sparse (temporally and spatially). We performed high-resolution simulations of plume dispersion, with realistic weather conditions encountered in the field, to reproduce the measurement process of a methane plume emitted from an oil well and provide additional information about the plume.
This article is included in the Encyclopedia of Geosciences
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
This article is included in the Encyclopedia of Geosciences
Ying Li, Xiangjun Zhao, Xuejiao Deng, and Jinhui Gao
Atmos. Chem. Phys., 22, 3861–3873, https://doi.org/10.5194/acp-22-3861-2022, https://doi.org/10.5194/acp-22-3861-2022, 2022
Short summary
Short summary
This study finds a new phenomenon of weak wind deepening (WWD) associated with the peripheral circulation of typhoon and gives the influence mechanism of WWD on its contribution to daily variation during sustained ozone episodes. The WWD provides the premise for pollution accumulation in the whole PBL and continued enhancement of ground-level ozone via vertical mixing processes. These findings could benefit the daily daytime ozone forecast in the PRD region and other areas.
This article is included in the Encyclopedia of Geosciences
Tia R. Scarpelli, Daniel J. Jacob, Shayna Grossman, Xiao Lu, Zhen Qu, Melissa P. Sulprizio, Yuzhong Zhang, Frances Reuland, Deborah Gordon, and John R. Worden
Atmos. Chem. Phys., 22, 3235–3249, https://doi.org/10.5194/acp-22-3235-2022, https://doi.org/10.5194/acp-22-3235-2022, 2022
Short summary
Short summary
We present a spatially explicit version of the national inventories of oil, gas, and coal methane emissions as submitted by individual countries to the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. We then use atmospheric modeling to compare our inventory emissions to atmospheric methane observations with the goal of identifying potential under- and overestimates of oil–gas methane emissions in the national inventories.
This article is included in the Encyclopedia of Geosciences
Xiaomeng Wu, Daoyuan Yang, Ruoxi Wu, Jiajun Gu, Yifan Wen, Shaojun Zhang, Rui Wu, Renjie Wang, Honglei Xu, K. Max Zhang, Ye Wu, and Jiming Hao
Atmos. Chem. Phys., 22, 1939–1950, https://doi.org/10.5194/acp-22-1939-2022, https://doi.org/10.5194/acp-22-1939-2022, 2022
Short summary
Short summary
Our work pioneered land-use machine learning methods for developing link-level emission inventories, utilizing hourly traffic profiles, including volume, speed, and fleet mix, obtained from the governmental intercity highway monitoring network in the "capital circles" of China. This research provides a platform to realize the near-real-time process of establishing high-resolution vehicle emission inventories for policy makers to engage in sophisticated traffic management.
This article is included in the Encyclopedia of Geosciences
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
This article is included in the Encyclopedia of Geosciences
Hélène Peiro, Sean Crowell, Andrew Schuh, David F. Baker, Chris O'Dell, Andrew R. Jacobson, Frédéric Chevallier, Junjie Liu, Annmarie Eldering, David Crisp, Feng Deng, Brad Weir, Sourish Basu, Matthew S. Johnson, Sajeev Philip, and Ian Baker
Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, https://doi.org/10.5194/acp-22-1097-2022, 2022
Short summary
Short summary
Satellite CO2 observations are constantly improved. We study an ensemble of different atmospheric models (inversions) from 2015 to 2018 using separate ground-based data or two versions of the OCO-2 satellite. Our study aims to determine if different satellite data corrections can yield different estimates of carbon cycle flux. A difference in the carbon budget between the two versions is found over tropical Africa, which seems to show the impact of corrections applied in satellite data.
This article is included in the Encyclopedia of Geosciences
Shelley van der Graaf, Enrico Dammers, Arjo Segers, Richard Kranenburg, Martijn Schaap, Mark W. Shephard, and Jan Willem Erisman
Atmos. Chem. Phys., 22, 951–972, https://doi.org/10.5194/acp-22-951-2022, https://doi.org/10.5194/acp-22-951-2022, 2022
Short summary
Short summary
CrIS NH3 satellite observations are assimilated into the LOTOS-EUROS model using two different methods. In the first method the data are used to fit spatially varying NH3 emission time factors. In the second method a local ensemble transform Kalman filter is used. Compared to in situ observations, combining both methods led to the most significant improvements in the modeled concentrations and deposition, illustrating the usefulness of CrIS NH3 to improve the spatiotemporal distribution of NH3.
This article is included in the Encyclopedia of Geosciences
Abhinna K. Behera, Emmanuel D. Rivière, Sergey M. Khaykin, Virginie Marécal, Mélanie Ghysels, Jérémie Burgalat, and Gerhard Held
Atmos. Chem. Phys., 22, 881–901, https://doi.org/10.5194/acp-22-881-2022, https://doi.org/10.5194/acp-22-881-2022, 2022
Short summary
Short summary
Deep convection overshooting the stratosphere's contribution to the global stratospheric water budget is still being quantified. We ran three different cloud-resolving simulations of an observed case of overshoots in Bauru during the TRO-Pico balloon campaign in the context of upscaling the impact of overshoots at a large scale. These simulations, which have been validated with balloon-borne and S-band radar measurements, shed light on the local-scale variability and composition of overshoots.
This article is included in the Encyclopedia of Geosciences
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
This article is included in the Encyclopedia of Geosciences
Youwen Sun, Hao Yin, Xiao Lu, Justus Notholt, Mathias Palm, Cheng Liu, Yuan Tian, and Bo Zheng
Atmos. Chem. Phys., 21, 18589–18608, https://doi.org/10.5194/acp-21-18589-2021, https://doi.org/10.5194/acp-21-18589-2021, 2021
Short summary
Short summary
This study uses high-resolution nested-grid GEOS-Chem simulation, the eXtreme Gradient Boosting (XGBoost) machine learning method, and the exposure–response relationship to determine the drivers and evaluate the health risks of the unexpected surface O3 enhancements over the Sichuan Basin in 2020. These unexpected O3 enhancements were induced by meteorological anomalies and caused dramatically high health risks.
This article is included in the Encyclopedia of Geosciences
Sabour Baray, Daniel J. Jacob, Joannes D. Maasakkers, Jian-Xiong Sheng, Melissa P. Sulprizio, Dylan B. A. Jones, A. Anthony Bloom, and Robert McLaren
Atmos. Chem. Phys., 21, 18101–18121, https://doi.org/10.5194/acp-21-18101-2021, https://doi.org/10.5194/acp-21-18101-2021, 2021
Short summary
Short summary
We use 2010–2015 surface and satellite observations to disentangle methane from anthropogenic and natural sources in Canada. Using a chemical transport model (GEOS-Chem), the mismatch between modelled and observed methane concentrations can be used to infer emissions according to Bayesian statistics. Compared to prior knowledge, we show higher anthropogenic emissions attributed to energy and/or agriculture in Western Canada and lower natural emissions from Boreal wetlands.
This article is included in the Encyclopedia of Geosciences
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
This article is included in the Encyclopedia of Geosciences
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491, https://doi.org/10.5194/acp-21-15461-2021, https://doi.org/10.5194/acp-21-15461-2021, 2021
Short summary
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
This article is included in the Encyclopedia of Geosciences
Peter Huszar, Jan Karlický, Jana Marková, Tereza Nováková, Marina Liaskoni, and Lukáš Bartík
Atmos. Chem. Phys., 21, 14309–14332, https://doi.org/10.5194/acp-21-14309-2021, https://doi.org/10.5194/acp-21-14309-2021, 2021
Short summary
Short summary
Urban areas are strong hot spots of emissions influencing local and regional air quality. Cities furthermore influence the meteorological conditions due to their characteristic surface properties and geometry. We found that if these latter effects are not included in the quantification of the impact of urban emissions on regional air quality, this impact will be overestimated, and this overestimation is mainly due to the enhanced turbulence that is present in cities compared to rural areas.
This article is included in the Encyclopedia of Geosciences
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
This article is included in the Encyclopedia of Geosciences
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147, https://doi.org/10.5194/acp-21-13131-2021, https://doi.org/10.5194/acp-21-13131-2021, 2021
Short summary
Short summary
Methane emissions from leaks in natural gas pipes are often a large source in urban areas, but they are difficult to measure on a city-wide scale. Here we use an array of innovative methane sensors distributed around the city of Indianapolis and a new method of combining their data with an atmospheric model to accurately determine the magnitude of these emissions, which are about 70 % larger than predicted. This method can serve as a framework for cities trying to account for their emissions.
This article is included in the Encyclopedia of Geosciences
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021, https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Short summary
This paper estimates UK emissions of important greenhouse gases (hydrofluorocarbons (HFCs)) using high-quality atmospheric observations and atmospheric modelling. We compare these estimates with those submitted by the UK to the United Nations. We conclude that global concentrations of these gases are still increasing. Our estimates for the UK are 73 % of those reported and that the UK emissions are now falling, demonstrating an impact of UK government policy.
This article is included in the Encyclopedia of Geosciences
Paul A. Makar, Craig Stroud, Ayodeji Akingunola, Junhua Zhang, Shuzhan Ren, Philip Cheung, and Qiong Zheng
Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021, https://doi.org/10.5194/acp-21-12291-2021, 2021
Short summary
Short summary
Vehicle pollutant emissions occur in an environment where upward transport can be enhanced due to the turbulence created by the vehicles as they move through the atmosphere. An approach for including these turbulence effects in regional air pollution forecast models has been derived from theoretical, observation, and higher-resolution modeling. The enhanced mixing, which occurs in the immediate vicinity of roadways, changes pollutant concentrations on the regional to continental scale.
This article is included in the Encyclopedia of Geosciences
Kun Qu, Xuesong Wang, Yu Yan, Jin Shen, Teng Xiao, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 11593–11612, https://doi.org/10.5194/acp-21-11593-2021, https://doi.org/10.5194/acp-21-11593-2021, 2021
Short summary
Short summary
Typhoons above the Northwest Pacific frequently lead to severe ambient ozone pollution in the Pearl River Delta, China, in autumn and summer. However, typhoons do not enhance ozone transport, production and accumulation at the same time, and differences also exist between these influences in two seasons. Through systematic comparisons, we revealed the complex interactions between local meteorology and ozone processes, which is essential for understanding the causes of regional ozone pollution.
This article is included in the Encyclopedia of Geosciences
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021, https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Short summary
Currently there is growing interest in monitoring city-scale CO2 emissions based on atmospheric CO2 measurements, atmospheric transport modeling, and inversion technique. We analyze the various sources of uncertainty that impact the atmospheric CO2 modeling and that may compromise the potential of this method for the monitoring of CO2 emission over Paris. Results suggest selection criteria for the assimilation of CO2 measurements into the inversion system that aims at retrieving city emissions.
This article is included in the Encyclopedia of Geosciences
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys., 21, 8791–8807, https://doi.org/10.5194/acp-21-8791-2021, https://doi.org/10.5194/acp-21-8791-2021, 2021
Short summary
Short summary
Abundant mining and industrial activities in the Upper Silesian Coal Basin lead to large emissions of the potent greenhouse gas methane. This study quantifies these emissions with continuous, high-precision airborne measurements and dispersion modeling. Our emission estimates are in line with values reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) but significantly lower than values reported in the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2).
This article is included in the Encyclopedia of Geosciences
Xinyi Dong, Man Yue, Yujun Jiang, Xiao-Ming Hu, Qianli Ma, Jingjiao Pu, and Guangqiang Zhou
Atmos. Chem. Phys., 21, 7217–7233, https://doi.org/10.5194/acp-21-7217-2021, https://doi.org/10.5194/acp-21-7217-2021, 2021
Short summary
Short summary
The dynamics of CO2 has received considerable attention in the literature, yet uncertainties remain. We applied an online coupled weather-biosphere model to simulate biosphere processes and meteorology simultaneously to characterize CO2 dynamics in China. Anthropogenic emission was more influential in upper air, and the biosphere flux played a more important role in surface CO2, suggesting a significant influence of the boundary layer thermal structure on the accumulation and depletion of CO2.
This article is included in the Encyclopedia of Geosciences
Shibao Wang, Yun Ma, Zhongrui Wang, Lei Wang, Xuguang Chi, Aijun Ding, Mingzhi Yao, Yunpeng Li, Qilin Li, Mengxian Wu, Ling Zhang, Yongle Xiao, and Yanxu Zhang
Atmos. Chem. Phys., 21, 7199–7215, https://doi.org/10.5194/acp-21-7199-2021, https://doi.org/10.5194/acp-21-7199-2021, 2021
Short summary
Short summary
Mobile monitoring with low-cost sensors is a promising approach to garner high-spatial-resolution observations representative of the community scale. We develop a grid analysis method to obtain 50 m resolution maps of major air pollutants (CO, NO2, and O3) based on GIS technology. Our results demonstrate the sensing power of mobile monitoring for urban air pollution, which provides detailed information for source attribution and accurate traceability at the urban micro-scale.
This article is included in the Encyclopedia of Geosciences
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
This article is included in the Encyclopedia of Geosciences
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Short summary
We conducted an extensive analysis of the structural uncertainty of the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, which adds a much needed reliability dimension to the accuracy of the emission estimates. The study undertakes in-depth analyses of the implication of aggregating emissions from different sources and/or countries on the accuracy. Results are presented for all emissions sectors according to IPCC definitions.
This article is included in the Encyclopedia of Geosciences
Ashique Vellalassery, Dhanyalekshmi Pillai, Julia Marshall, Christoph Gerbig, Michael Buchwitz, Oliver Schneising, and Aparnna Ravi
Atmos. Chem. Phys., 21, 5393–5414, https://doi.org/10.5194/acp-21-5393-2021, https://doi.org/10.5194/acp-21-5393-2021, 2021
Short summary
Short summary
We investigate factors contributing to the severe and persistent air quality degradation in northern India that has worsened during every winter over the last decade. This is achieved by implementing atmospheric modelling and using recently available Sentinel-5 P satellite data for carbon monoxide. We see a minimal role of biomass burning, except for the state of Punjab. The aim is to focus on residential and industrial emission reduction strategies to tackle air pollution over northern India.
This article is included in the Encyclopedia of Geosciences
Xiao Lu, Daniel J. Jacob, Yuzhong Zhang, Joannes D. Maasakkers, Melissa P. Sulprizio, Lu Shen, Zhen Qu, Tia R. Scarpelli, Hannah Nesser, Robert M. Yantosca, Jianxiong Sheng, Arlyn Andrews, Robert J. Parker, Hartmut Boesch, A. Anthony Bloom, and Shuang Ma
Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, https://doi.org/10.5194/acp-21-4637-2021, 2021
Short summary
Short summary
We use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the information from satellite and in situ observations, and to estimate global methane budget and their trends over the 2010–2017 period. We find that satellite and in situ observations are to a large extent complementary in the inversion for estimating global methane budget, and reveal consistent corrections of regional anthropogenic and wetland methane emissions relative to the prior inventory.
This article is included in the Encyclopedia of Geosciences
Stuart K. Grange, James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw
Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, https://doi.org/10.5194/acp-21-4169-2021, 2021
Short summary
Short summary
The changes in mobility across Europe due to the COVID-19 lockdowns had consequences for air quality. We compare what was experienced to estimates of "what would have been" without the lockdowns. Nitrogen dioxide (NO2), an important vehicle-sourced pollutant, decreased by a third. However, ozone (O3) increased in response to lower NO2. Because NO2 is decreasing over time, increases in O3 can be expected in European urban areas and will require management to avoid future negative outcomes.
This article is included in the Encyclopedia of Geosciences
Yanxu Zhang, Xingpei Ye, Shibao Wang, Xiaojing He, Lingyao Dong, Ning Zhang, Haikun Wang, Zhongrui Wang, Yun Ma, Lei Wang, Xuguang Chi, Aijun Ding, Mingzhi Yao, Yunpeng Li, Qilin Li, Ling Zhang, and Yongle Xiao
Atmos. Chem. Phys., 21, 2917–2929, https://doi.org/10.5194/acp-21-2917-2021, https://doi.org/10.5194/acp-21-2917-2021, 2021
Short summary
Short summary
Urban air quality varies drastically at street scale, but traditional methods are too coarse to resolve it. We develop a 10 m resolution air quality model and apply it for traffic-related carbon monoxide air quality in Nanjing megacity. The model reveals a detailed geographical dispersion pattern of air pollution in and out of the road network and agrees well with a validation dataset. The model can be a vigorous part of the smart city system and inform urban planning and air quality management.
This article is included in the Encyclopedia of Geosciences
Trang Thi Quynh Nguyen, Wataru Takeuchi, Prakhar Misra, and Sachiko Hayashida
Atmos. Chem. Phys., 21, 2795–2818, https://doi.org/10.5194/acp-21-2795-2021, https://doi.org/10.5194/acp-21-2795-2021, 2021
Short summary
Short summary
This study provides annual emissions of transportation, manufacturing industries and construction, and residential areas at 1 km resolution from 2009 to 2016 for Ho Chi Minh City, Vietnam. Our originality is our use of satellite-derived urban land use morphological maps. These maps which are based on building height provided by a coarse-resolution satellite-derived digital surface model (DSM) and urban built-up area classified from Landsat images allow spatial disaggregation of annual emissions.
This article is included in the Encyclopedia of Geosciences
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
This article is included in the Encyclopedia of Geosciences
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
This article is included in the Encyclopedia of Geosciences
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
This article is included in the Encyclopedia of Geosciences
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
This article is included in the Encyclopedia of Geosciences
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
This article is included in the Encyclopedia of Geosciences
Xinrui Ge, Martijn Schaap, Richard Kranenburg, Arjo Segers, Gert Jan Reinds, Hans Kros, and Wim de Vries
Atmos. Chem. Phys., 20, 16055–16087, https://doi.org/10.5194/acp-20-16055-2020, https://doi.org/10.5194/acp-20-16055-2020, 2020
Short summary
Short summary
This article is about improving the modeling of agricultural ammonia emissions. By considering land use, meteorology and agricultural practices, ammonia emission totals officially reported by countries are distributed in space and time. We illustrated the first step for a better understanding of the variability of ammonia emission, with the possibility of being applied at a European scale, which is of great significance for ammonia budget research and future policy-making.
This article is included in the Encyclopedia of Geosciences
Ashok K. Luhar, David M. Etheridge, Zoë M. Loh, Julie Noonan, Darren Spencer, Lisa Smith, and Cindy Ong
Atmos. Chem. Phys., 20, 15487–15511, https://doi.org/10.5194/acp-20-15487-2020, https://doi.org/10.5194/acp-20-15487-2020, 2020
Short summary
Short summary
With the sharp rise in coal seam gas (CSG) production in Queensland’s Surat Basin, there is much interest in quantifying methane emissions from this area and from unconventional gas production in general. We develop and apply a regional Bayesian inverse model that uses hourly methane concentration data from two sites and modelled backward dispersion to quantify emissions. The model requires a narrow prior and suggests that the emissions from the CSG areas are 33% larger than bottom-up estimates.
This article is included in the Encyclopedia of Geosciences
Wayne M. Angevine, Jeff Peischl, Alice Crawford, Christopher P. Loughner, Ilana B. Pollack, and Chelsea R. Thompson
Atmos. Chem. Phys., 20, 11855–11868, https://doi.org/10.5194/acp-20-11855-2020, https://doi.org/10.5194/acp-20-11855-2020, 2020
Short summary
Short summary
Emissions of air pollutants must be known for a wide variety of applications. Different methods of estimating emissions often disagree substantially. In this study, we apply standard methods to a well-known source, a power plant. We explore the uncertainty implied by the different answers that come from the different methods, different samples taken over several years, and different pollutants. We find that the overall uncertainty of emissions estimates is about 30 %.
This article is included in the Encyclopedia of Geosciences
Peter Huszar, Jan Karlický, Jana Ďoubalová, Tereza Nováková, Kateřina Šindelářová, Filip Švábik, Michal Belda, Tomáš Halenka, and Michal Žák
Atmos. Chem. Phys., 20, 11655–11681, https://doi.org/10.5194/acp-20-11655-2020, https://doi.org/10.5194/acp-20-11655-2020, 2020
Short summary
Short summary
The paper shows how extreme meteorological conditions change due to the urban land-cover forcing and how this translates to the impact on the extreme air pollution over central European cities. It focuses on ozone, nitrogen dioxide, and particulate matter with a diameter of less than 2.5 μm and shows that, while for the extreme daily maximum 8 h ozone, changes are same as for the mean ones, much larger modifications are calculated for extreme NO2 and PM2.5 compared to their mean changes.
This article is included in the Encyclopedia of Geosciences
Cited articles
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: MADE: modal aerosol dynamics model for Europe; development and first applications, Atmos. Environ., 32, 2981–2999, 1998.
Andersson, C., Langner, J., and Bergström, R.: Inter-annual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis, Tellus B, 59, 77–98, https://doi.org/10.1111/j.1600-0889.2006.00196.x, 2007.
Andersson, C., Bergström, R., and Johansson, C.: Population exposure and mortality due to regional background PM in Europe – long-term simulations of source region and shipping contributions, Atmos. Environ., 43, 3614–3620, https://doi.org/10.1016/j.atmosenv.2009.03.040, 2009.
Andersson-Sköld, Y. and Simpson, D.: Comparison of the chemical schemes of the EMEP MSC-W and IVL photochemical trajectory models, Atmos. Environ., 33, 1111–1129, 1999.
Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of sub-aerial volcanic sulfur emissions, J. Geophys. Res., 103, 25251–25261, 1998.
Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmos. Chem. Phys., 3, 131–143, https://doi.org/10.5194/acp-3-131-2003, 2003.
Ansari, A. S. and Pandis, S. N.: Prediction of multicomponent inorganic atmospheric aerosol behavior, Atmos. Environ., 33, 745–757, 1999a.
Ansari, A. S. and Pandis, S. N.: An analysis of four models predicting the partitioning of semivolatile inorganic aerosol components, Aerosol. Sci. Tech., 31, 129–153, 1999b.
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1, J. Atmos. Sci., 31, 674–701, 1974.
Astitha, M. and Kallos, G.: Gas-phase and aerosol chemistry interactions in South Europe and the Mediterranean region, Environ. Fluid Mech., 9, 3–22, https://doi.org/10.1007/s10652-008-9110-7, 2008.
Astitha, M., Kallos, G., Katsafados, P., Pytharoulis, I., and Mihalopoulosx, N.: Radiative effects of natural PMs on photochemical processes in the Mediterranean region, in: Oral Presentation-Proceedings, 28th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Applications, Leipzig, Germany, May 2006, edited by: Borrego, C. and Renner, E., Elsevier Pub., ISBN 978-0-444-52987-9, 548–559, London, UK, 2006.
Astitha, M., Kallos, G., Katsafados, P., and Mavromatidis, E.: Heterogeneous chemical processes and their role on particulate matter formation in the Mediterranean region, in: Air Pollution Modeling and Its Application XIX, NATO Science for Peace and Security Series C: Environmental Security, 5, 505–513, https://doi.org/10.1007/978-1-4020-8453-9_55, 2007.
Astitha, M., Kallos, G., and Katsafados, P.: Air pollution modeling in the Mediterranean region: from analysis of episodes to forecasting, Atmos. Res., 89, 358–364, 2008.
Astitha, M., Kallos, G., Katsafados, P., and Mavromatidis, E.: Heterogeneous chemical processes and their role on particulate matter formation in the Mediterranean region, in: Air Pollution Modeling and Its Application XIX, NATO Science for Peace and Security Series C: Environmental Security, 5, 505–513, https://doi.org/10.1007/978-1-4020-8453-9_55, 2008.
Astitha, M., Kallos, G., Spyrou, C., O'Hirok, W., Lelieveld, J., and Denier van der Gon, H. A. C.: Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts, Atmos. Chem. Phys., 10, 5797–5822, https://doi.org/10.5194/acp-10-5797-2010, 2010.
Atanassov, D.: Validation of the Eulerian pollution transport model PolTran on the Kincaid dataset, Int. J. Environ. Pollut., 20, 105–113, 2003.
Aumont, B., Jaecker-Voirol, A., Martin, B., and Toupance, G.: Tests of some reduction hypotheses made in photochemical mechanisms, Atmos. Environ., 30, 2061–2077, 1996.
Baklanov, A.: Chemical Weather Forecasting: A New Concept of Integrated Modelling, Adv. Sci. Res., 4, 23–27, 2010.
Baklanov, A. and Grisogono, B. (Eds.): Atmospheric Boundary Layers: Nature, Theory and Application to Environmental Modelling and Security, Springer, 248 pp., ISBN 978-0-387-74318-9, New York, USA, 2007.
Baklanov, A. and Sørensen, J. H.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth. Pt. B, 26, 787–799, 2001.
Baklanov, A., Fay, B., Kaminski, J., Sokhi, R., Pechinger, U., De Ridder, K., Delcloo, A., Smith Korsholm, U., Gross, A., Männik, A., Kaasik, M., Sofiev, M., Reimer, E., Schlünzen, H., Tombrou, M., Bossioli, E., Finardi, S., Maurizi, A., Castelli, S. T., Finzi, G., Carnevale, C., Pisoni, E., Volta, M., Struzewska, J., Kaszowski, W., Godlowska, J., Rozwoda, W., Miranda, A. I., San José, R., Persson, C., Foltescu, V., Clappier, A., Athanassiadou, M., Hort, M. C., Jones, A., Vogel, H., Suppan, P., Knoth, O., Yu, Y., Chemel, C., Hu, R.-M., Grell, G., Schere, K., Manins, P., and Flemming, J.: Overview of existing integrated (off-line and on-line) mesoscale meteorological and chemical transport modelling systems in Europe, WMO TD No. 1427, WMO, Geneva, Switzerland, 2008a.
Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A.: ENVIRO-HIRLAM: on-line coupled modelling of urban meteorology and air pollution, Adv. Sci. Res., 2, 41–46, https://doi.org/10.5194/asr-2-41-2008, 2008b.
Baklanov A., Lawrence, M., Pandis, S., Mahura, A., Finardi, S., Moussiopoulos, N., Beekmann, M., Laj, P., Gomes, L., Jaffrezo, J.-L., Borbon, A., Coll, I., Gros, V., Sciare, J., Kukkonen, J., Galmarini, S., Giorgi, F., Grimmond, S., Esau, I., Stohl, A., Denby, B., Wagner, T., Butler, T., Baltensperger, U., Builtjes, P., van den Hout, D., van der Gon, H. D., Collins, B., Schluenzen, H., Kulmala, M., Zilitinkevich, S., Sokhi, R., Friedrich, R., Theloke, J., Kummer, U., Jalkinen, L., Halenka, T., Wiedensholer, A., Pyle, J., and Rossow, W. B.: MEGAPOLI: concept of multi-scale modeling of megacity impact on air quality and climate, Adv. Sci. Res., 4, 115–120, https://doi.org/10.5194/asr-4-115-2010, 2010a.
Baklanov, A., Mahura, A., and Sokhi, R. (Eds.): Integrated Systems of Meso-Meteorological and Chemical Transport Models, Springer, Berlin, Heidelberg, Germany, ISBN 978-3-642-13979-6, 186 pp., 2010b.
Baldasano, J. M., Jiménez-Guerrero, P., Jorba, O., Pérez, C., López, E., Güereca, P., Martin, F., Garc\'{i}a-Vivanco, M., Palomino, I., Querol, X., Pandolfi, M., Sanz, M. J., and Diéguez, J. J.: CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands – First annual evaluation and ongoing developments, Adv. Sci. Res., 2, 89–98, 2008.
Baldwin, M. E., Kain, J. S., and Kay, M. P.: Properties of the convection scheme in NCEP's Eta model that affect forecast sounding interpretation, Weather Forecast., 17, 1063–1079, 2002.
Balk, T., Kukkonen, J., Karatzas, K., Bassoukos, T., and Epitropou, V.: A European open access chemical weather forecasting portal, Atmos. Environ., 45, 6917–6922, 2011.
Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., and Benight, C.: False alarms and close calls: A conceptual model of warning accuracy, Weather Forecast., 22, 1140–1147, 2007.
Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., and Benight, C.: Corrigendum: False alarm rate or false alarm ratio?, Weather Forecast., 24, 1452–1454, 2009.
Bartnicki, J., Salbu, B., Saltbones, J., Foss, A., and Lind, O. C.: Gravitational settling of particles in dispersion model simulation using the Chernobyl accident as a test case, Research Report, 131, Norwegian Met. Inst., Oslo, 43 pp., 2001.
Baumann-Stanzer, K., Hirtl, M., and Krueger, B. C.: Regional-scale air quality forecasts for Austria, in: Abstracts of the 5th EMS Annual Meeting/ECAM, Vol. 2, 12–16 September 2005, Utrecht, The Netherlands, EMS05-A-00036, ISSN 1812-7053 (CD-ROM), 2005.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886, https://doi.org/10.1256/smsqj.57308, 2001.
Beekmann, M. and Vautard, R.: A modelling study of photochemical regimes over Europe: robustness and variability, Atmos. Chem. Phys., 10, 10067–10084, https://doi.org/10.5194/acp-10-10067-2010, 2010.
Beekmann, M., Kerschbaumer, A., Reimer, E., Stern, R., and Möller, D.: PM measurement campaign HOVERT in the Greater Berlin area: model evaluation with chemically specified particulate matter observations for a one year period, Atmos. Chem. Phys., 7, 55–68, https://doi.org/10.5194/acp-7-55-2007, 2007.
Bell, M. and Ellis, H.: Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region, Atmos. Environ., 38, 1879–1889, 2004.
Beljaars, A. C. M. and Viterbo, P.: Soil moisture-precipitation interaction: experience with two land surface schemes in the ECMWF model, in: Global Energy and Water Cycles, edited by: Browning, K. and Gurney, R., Cambridge University Press, Cambridge, 223–233, 1999.
Berge, E.: Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model, Tellus, 45B, 1–22, 1993.
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme, Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic Air mass datasets, Q. J. Roy. Meteor. Soc., 112, 693–709, 1986.
Binkowski, F. S.: The aerosol portion of Models-3 CMAQ, in: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Part II: Chapters 9–18, edited by: Byun, D. W. and Ching, J. K. S., EPA-600/R-99/030, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, 10-1-10-16, 1999.
Binkowski, F. S. and Shankar, U.: The regional particulate matter model, 1. Model description and preliminary results, J. Geophys. Res., 100, 26191–26209, 1995.
Board on Atmospheric Sciences and Climate: Completing the Forecast: Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts, National Academies Press, Washington DC, USA, 112 pp., 2006.
Borrego, C., Monteiro, A., Ferreira, J., Miranda, A. I., Costa, A. M., Carvalho, A. C., and Lopez, M.: Procedures for estimation of modelling uncertainty in air quality assessment, Environ. Int., 34, 613–620, ISSN 0160-4120, 2008.
Bott, A.: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev., 117, 1006–1015, 1989.
Bott, A.: Monotone flux limitation in the area-preserving flux form advection algorithm, Mon. Weather Rev., 120, 2592–2602, 1992.
Bott, A.: The monotone area-preserving flux-form advection algorithm: reducing the time-splitting error in two-dimensional flow fields, Mon. Weather Rev., 121, 2637–2641, 1993.
Bougeault, P.: A simple parameterization of the large-scale effects of deep cumulus convection, Mon. Weather Rev., 113, 2108–2121, 1985.
Bousserez, N., Attié, J.-L., Peuch, V.-H., Michou, M., Pfister, G., Edwards, D., Avery, M., Sachse, G., Browell, E., and Ferrare, E.: Evaluation of MOCAGE chemistry and transport model during the ICARTT/ITOP experiment, J. Geophys. Res., 112, D120S42, https://doi.org/10.1029/2006JD007595, 2007.
Boussinesq, J.: Essai sur la theorie des eaux courantes, Mem Savants Etrange, Paris, 23, 46 pp., 1877.
Brandt, J., Christensen, J. H., Frohn, L. M., and Berkowicz. R.: Operational air pollution forecasts from regional scale to urban street scale, Part 2: Performance evaluation, Phys. Chem. Earth. Pt. B, 26, 825–830, https://doi.org/10.1016/S1464-1909(01)00092-2, 2001a.
Brandt, J., Christensen, J. H., Frohn, L. M., Palmgren, F., Berkowicz, R., and Zlatev, Z.: Operational air pollution forecasts from European to local scale, Atmos. Environ., 35, Sup. No. 1, S91–S98, 2001b.
Britter, R. E., Collier, C., Griffiths, R., Mason, P., Thomson, D., Timmis, R., and Underwood, B.: Atmospheric dispersion modeling – guidelines on the justification of choice and use of models, and the communication and reporting of results, Royal Meteorol. Soc. Policy Statement, RMS, Reading, UK, 8 pp., 1995.
Broad, K., Leiserowitz, A., Weinkle, J., and Steketee, M.: Misinterpretations of the "cone of uncertainty" in Florida during the 2004 hurricane season, B. Am. Meteorol. Soc., 88, 651–667, 2007.
Brown, A. R., Beare, R. J., Edwards, J. M., Lock, A. P., Keogh, S. J., Milton, S. F., and Walters, D. N.: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model, Bound.-Lay. Meteorol., 128, 117–132, 2008.
Builtjes, P. J. H.: The LOTOS-Long Term Ozone Simulation-project Summary Report, TNO Report TNO-MW-R92/240, Netherlands Organization for Applied Scientific Research, Utrecht, The Netherlands, 1992.
Bukovsky, M. S., Kain, J. S., and Baldwin, M. E.: Bowing convective systems in a popular operational model: are they for real?, Weather Forecast., 21, 307–324, 2006.
Burrows, J. and Borrell, P. (Eds.): The Remote Sensing of Tropospheric Constituents form Space, ACCENT-TROPOSAT-2: Activities 2007-8 and Final Report, ACCENT Secretariat, Urbino, available at: http://troposat.iup.uni-heidelberg.de/AT2/AT2/Reports_and_papers/2008_Ann_Rep/AT2_Fin_Rep_2008_A_overview.pdf, 2009.
Byun, D. W.: Dynamically consistent formulations in meteorological and air quality models for multi-scale atmospheric applications: Part I. Governing equations in generalized coordinate system, J. Atmos. Sci., 56, 3789–3807, 1999a.
Byun, D. W.: Dynamically consistent formulations in meteorological and air quality models for multi-scale atmospheric applications: Part II. Mass conservation issues, J. Atmos. Sci., 56, 3808–3820, 1999b.
Byun, D. W. and Ching, J. K. S. (Eds.): Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030, US Environmental Protection Agency, Atmospheric Modeling Division, Research Triangle Park, NC, available at: http://www.epa.gov/AMD/CMAQ/CMAQscienceDoc.html, 1999.
Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, 2006.
Calori, G., Finardi, S., Nanni, A., Radice, P., Riccardo, S., Bertello, A., and Pavone, F.: Long-term air quality assessment: modeling sources contribution and scenarios in Ivrea and Torino areas, Environ. Model. Assess., 13, 329–335, https://doi.org/10.1007/s10666-007-9105-7, 2008.
Cape, J. N., Methven, J., and Hudson, L. E.: The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland, Atmos. Environ., 34, 3651–3663, 2000.
Carmichael, G. R., Sandu, A., and Potra, F. A.: Sensitivity analysis for atmospheric chemistry models via automatic differentiation, Atmos. Environ., 31, 475–489, 1997.
Carmichael, G. R., Uno, I., Phadnis, M. J., Zhang, Y., and Sunwoo, Y.: Tropospheric ozone production and transport in the springtime in East Asia, J. Geophys. Res., 103, 10649–10671, 1998.
Carmichael, G. R., Calori, G., Hayami, H., Uno, I., Cho, S. Y., Engardt, M., Kim, S.-B., Ichikawa, Y., Ikeda, Y., Woo, J.-H., Ueda, H., and Amann, M.: The MICS-Asia study: model intercomparison of long-range transport and sulfur deposition in East Asia, Atmos. Environ., 36, 175–199, 2002.
Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., and Tang, Y.: Predicting air quality: improvements through advanced methods to integrate models and measurements, J. Comput. Phys., 227, 3540–3571, 2008a.
Carmichael, G. R., Sakuraib, T., Streetsc, D., Hozumib, Y., Uedab, H., Parkd, S. U., Funge, C., Hanb, Z., Kajinof, M., Engardtg, M., Bennetg, C., Hayamih, H., Sarteleti, K., Hollowayj, T., Wangk, Z., Kannaril, A., Fum, J., Matsudan, K., Thongboonchooa, N., and Amanno, M.: MICS-ASIA II: the model intercomaprison study for Asia phase II methodology and overview of findings, Atmos. Environ., 42, 3468–3490, 2008b.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds, Atmos. Environ., 24A, 481–518, 1990.
Carter, W. P. L.: Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manage., 44, 881–899, 1994.
Carter, W. P. L.: Condensed atmospheric photo-oxidation mechanisms for isoprene, Atmos. Environ., 30, 4275–4290, 1996.
Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Final report to California Air Resources Board Contract 92–329 and Contract 95–308, Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology, University of California, Riverside, CA, 230 pp., available at: http://www.engr.ucr.edu/ carter/absts.htm#saprc99, 2000.
Carter, W. P. L., Luo, D., Malkina, I. L., and Fitz, D.: The University of California, Riverside Environmental Chamber Data Base for Evaluating Oxidant Mechanisms, Indoor Chamber Experiments Through 1993, Report submitted to the US Environmental Protection Agency, 20 March 1995, EPA/AREAL, Research Triangle Park, NC, University of California, Riverside, available at: http://www.cert.ucr.edu/ carter/absts.htm#databas, 1995.
Chai, T., Carmichael, G., Tang, Y., and Sandu, A.: Regional NO2 emission inversion through four-dimensional variational approach using Sciamachy tropospheric column observations, Atmos. Environ., 43, 5046–5055, 2009.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation, Meteorol. Atmos. Phys., 87, 167–196, 2004.
Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J.: A three-dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res., 92, 14681–14700, 1987.
Chang, J. S., Binkowski, F. S., Seaman, N. L., Byun, D. W., McHenry, J. N., Samson, P. J., Stockwell, W. R., Walcek, C. J., Madronich, S., Middleton, P. B., Pleim, J. E., and Landsford, H. L.: The regional acid deposition model and engineering model, NAPAP SOS/T Report 4, in: National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology, Vol. I, Washington, DC, 1990.
Chenevez, J., Baklanov, A., and Sørensen, J. H.: Pollutant transport schemes integrated in a numerical weather prediction model: model description and verification results, Meteorol. Appl., 11, 265–275, 2004.
Claiborn, C., Lamb, B., Miller, A., Beseda, J., Clode, B., Vaughan, J., Kang, L., and Nevine, C.: Regional measurements and modelling of windblown agricultural dust: the Columbia Plateau PM10 program, J. Geophys. Res., 103, 19753–19767, 1998.
Coll, I., Pirovano, G., Lasry, F., Alessandrini, S., Bedogni, M., Costa, M., Gabusi, V., Menut, L., and Vautard, R.: Application and sensitivity analysis of CAMx and CHIMERE air quality models in coastal area, in: Air Pollution Modeling and its Application XVIII, Dev. Environm. Sci., vol. 6., edited by: Borrego, C. and Renner, E., Elsevier Science Ltd, Oxford, UK, 362–373, ISSN 1474–8177, https://doi.org/10.1016/S1474-8177(07)06042-1, 2007.
Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: Tropospheric ozone in a global-scale three-dimensional model and its response to NOx emission controls, J. Atmos. Chem., 26, 223–274, 1997.
Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Ensemble-based chemical data assimilation, I: General approach, Q. J. Roy. Meteor. Soc., 133, 1229–1243, 2007.
Cotton, W. R., Pielke, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001: current status and future directions, Meteorol. Atmos. Phys., 82, 5–29, 2003.
Cros, B., Durand, P., Cachier, H., Drobinski, Ph., Fréjafon, E., Kottmeier, C., Perros, P. E., Peuch, V.-H., Ponche, J.-L., Robin, D., Sa\"{i}d, F., Toupance, G., and Wortham, H.: The ESCOMPTE program: an overview, Atmos. Res., 69, 241–279, 2004.
Crowley, W. P.: Second order numerical advection, J. Comput. Phys., 1, 471–484, 1967.
Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 1449, 81–94, 1993.
Cullen, M. J. P., Davies, T., Mawson, M. H., James, J. A., Coulter, S. C., and Malcolm, A.: An overview of numerical methods for the next generation of NWP and climate models, in: Numerical Methods in Atmospheric and Ocean Modelling, The Andre Robert Memorial Volume, edited by: Lin, C., Laprise, R., and Ritchie, H., Canadian Meteorological and Oceanographic Society, Ottawa, Canada, 425–444, 1997.
Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., Theloke, J., and Friedrich, R.: Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels, Atmos. Environ., 43, 1444–1455, 2009.
Cuvelier, C., Thunis, P., Vautard, R., Amann, M., Bessagnet, B., Bedogni, M., Berkowicz, R., Brandt, J., Brocheton, J., Builtjes, P., Carnavale, C., Coppalle, A., Denby, B., Douros, J., Graf, A., Hellmuth, O., Hodzic, A., Honore, C., Jonson, J., Kerschbaumer, A., de Leeuw, F., Minguzzi, E., Moussiopoulos, M., Pertot, C., Peuch, V.-H., Pirovano, G., Rouil, L., Sauter, F., Schaap, M., Stern, R., Tarrasón, L., Vignati, E., Volta, M., White, L., Wind, P., and Zuber, A.: CityDelta: a model intercomparison study to explore the impact of emission reductions in European cities in 2010, Atmos. Environ., 41, 189–201, 2007.
Cuxart, J., Bougeaults, P., and Redelsberger, J. L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteor. Soc., 126, 1–30, 2000.
Dabberdt, W. F., Carroll, M. A., Baumgardner, D., Carmichael, G., Cohen, R., Dye, T., Ellis, J., Grell, G., Grimmond, S., Hanna, S., Irwin, J., Lamb, B., Madronich, S., McQueen, J., Meagher, J., Odman, T., Pleim, J., Schmid, H. P., and Westphal, D. L.: Meteorological research needs for improved air quality forecasting, B. Am. Meteorol. Soc., 85, 563–586, 2004.
Davidson, C. I., Miller, J. M., and Pleskow, M. A.: The influence of surface structure on predicted particle dry deposition to natural grass canopies, Water Air Soil Poll., 18, 25–43, 1982.
Davies. T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.: A new dynamical core for the Met Office's global and regional modelling of the atmosphere, Q. J. Roy. Meteor. Soc., 131, 1759–1782, 2005.
Daescu, D., Sandu, A., and Carmichael, G. R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: II – Validation and numerical experiments, Atmos. Environ., 37, 5097–5114, 2003.
Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R.: The kinetic preprocessor KPP – a software environment for solving chemical kinetics, Comput. Chem. Eng., 26, 1567–1579, 2002.
Dayan, U. and Lamb, D.: Global and synoptic-scale weather patterns controlling wet atmospheric deposition over Central Europe, Atmos. Environ., 39, 521–533, 2005.
Dayan, U. and Levy, I.: Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel, J. Geophys. Res., 107, 4813, https://doi.org/10.1029/2002JD002147, 2002.
de Leeuw, F. A. A. M., van Rheineck Leyssius, H. J.: Modeling study of \chem{SO_x} and NOx during the January 1985 smog episode, Water Air Soil Poll., 51, 357–371, 1990.
de Leeuw, G., Neele, F. P., Hill, M., Smith, M. H., and Vignati, E.: Production of sea spray aerosol in the surf zone, J. Geophys. Res., 105, 29397–29409, https://doi.org/10.1029/2000JD900549, 2000.
Delle Monache, L. and Stull, R. B.: An ensemble air-quality forecast over Western Europe during an ozone episode, Atmos. Environ., 37, 3469–3474, 2003.
Demerjian, K. L.: Quantifying uncertainty in long range transport models: a summary of the AMS Workshop on Sources and Evaluation of Uncertainty in Long Range Transport Models, B. Am. Meteorol. Soc., 66, 1533–1540, 1985.
Denby, B., Karl, M., Laupsa, H., Johansson, C. H., Pohjola, M., Karppinen, A., Kukkonen, J., Ketzel, M., and Wåhlin, P.: Estimating domestic wood burning emissions of particulate matter in two nordic cities by combining ambient air observations with receptor and dispersion models, Chem. Ind. Chem. Eng. Q., 16, 237–241, https://doi.org/10.2298/CICEQ091214019D, 2010.
Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., and Venkatram, A.: A framework for evaluating regional-scale photochemical modeling systems, Environ. Fluid. Mech., 10, 471–489, 2010.
Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H.: Effect of biogenic volatile organic compound emissions on tropospheric chemistry during the atmospheric pollution over the paris area (ESQUIF) campaign in the Ile-de-France region, J. Geophys. Res., 108, 8560, https://doi.org/10.1029/2001JD001421, 2003.
Dodge, M.: Chemical oxidant mechanisms for air quality modeling: critical review, Atmos. Environ., 34, 2103–2130, 2000.
Doms, G. and Schättler, U.: The nonhydrostatic limited-are a model LM (Lokal-Modell) of DWD, Part I: Scientific documentation, Deutscher Wetterdienst, available at: Deutscher Wetterdienst Postfach 100465, 63004 Offenbach, Germany, 155 pp., 1997.
Downton, R. A. and Bell, R. S.: The impact of analysis differences on a medium-range forecast, Meteorol. Mag., 117, 279–285, 1988.
Dudhia, J.: A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front, Mon. Weather Rev., 121, 1493–1513, 1993.
Dufour, A., Amodei, M., Ancellet, G., and Peuch, V.-H.: Observed and modelled "chemical weather" during ESCOMPTE, Atmos. Res., 74, 161–189, 2004.
Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: The decoupled direct method for sensitivity analysis in a three-dimensional air quality model – implementation, accuracy and efficiency, Environ. Sci. Technol., 36, 2965–2976, 2002.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science, 312, 1375–1378, https://doi.org/10.1126/science.1125261, 2006.
Egan, B. A. and Mahoney, J. R.: Numerical modeling of advection and diffusion of urban area source pollutants, J. Appl. Meteorol., 11, 312–322, 1972.
Eben, K., Jurus, P., Resler, J., Belda, M., Pelikan, E., Krueger, B. C., and Keder, J.: An ensemble Kalman filter for short term forecasting of tropospheric ozone concentrations, Q. J. Roy. Meteor. Soc., 131, 3313–3322, 2005.
Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational evaluation of the Eta-CMAQ air quality forecast model, Atmos. Environ., 40, 4894–4905, 2006.
Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T., and Pouliot, G.: A performance evaluation of the national air quality forecast capability for the summer of 2007, Atmos. Environ., 43, 2312–2320, 2009.
EEA: Air pollution in Europe 1990–2004, EEA report No 2/2007, European Environment Agency, Copenhagen, Denmark, 79 pp., 2007.
Eerola, K.: Experimentation with a three-dimensional trajectory model, in: Meteorological Publications No. 15, Finnish Meteorological Institute, Helsinki, Finland, 33 pp., 1990.
El Amraoui, L., Attiè, J.-L., Semane, N., Claeyman, M., Peuch, V.-H., Warner, J., Ricaud, P., Cammas, J.-P., Piacentini, A., Josse, B., Cariolle, D., Massart, S., and Bencherif, H.: Midlatitude stratosphere – troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields, Atmos. Chem. Phys., 10, 2175–2194, https://doi.org/10.5194/acp-10-2175-2010, 2010.
Elbern, H., Schmidt, H., Talagrand, O., and Ebel, A.: 4-D-variational data assimilation with an adjoint air quality model for emission analysis, Environ. Modell. Softw., 15, 539–548, 2000.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
Eliassen, A.: The OECD study of long range transport of air pollutants: long range transport modeling, Atmos. Environ., 12, 479–487, 1978.
Elmore, K. L., Baldwin, M. E., and Schultz, D. M.: Field significance revisited: spatial bias errors in forecasts as applied to the Eta model, Mon. Weather Rev., 134, 519–531, 2006a.
Elmore, K. L., Schultz, D. M., and Baldwin, M. E.,: The behavior of synoptic-scale errors in the Eta model, Mon. Weather Rev., 134, 3355–3366, 2006b.
Emanuel, K. A.: Atmospheric Convection, Oxford University Press, Oxford, 580 pp., 1994.
Engardt, M., Siniarovina, U., Khairul, N. I., and Leong, C. P.: Country to country transport of anthropogenic sulphur in Southeast Asia, Atmos. Environ., 39, 5137–5148, 2005.
ENVIRON: User's Guide to the Comprehensive Air Quality Model with Extensions (CAMx), Version 1.10, ENVIRON International Corporation, Novato, California, USA, 1997.
ENVIRON: CAMx (Comprehensive Air Quality Model with extensions) – User's Guide, Version 4.00, Internal Report, ENVIRON International Corporation, Novato, California, USA, 2003.
ENVIRON: User's Guide; Comprehensive Air Quality model with Extensions, Version 4.40, ENVIRON International Corporation, Novato, California, USA, available at: www.camx.com, last access: 11 February 2011, 2006.
Erisman, J. W. and Draaijers, G. P. J.: Atmospheric deposition in relation to acidication and eutrophication, in: Studies in Environmental Science 63, edited by: Erisman, J. W. and Draaijers, G. P. J., Elsevier, Amsterdam, The Netherlands, 91 pp., 1995.
Erisman, J. W., van Pul, A., and Wyers, P.: Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone, Atmos. Environ., 28, 2595–2607, 1994.
Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, https://doi.org/10.5194/acp-3-1285-2003, 2003.
Faraji., M., Kimura, Y., McDonald-Buller, E., and Allen, D.: Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to Southeast Texas, Atmos. Environ., 42, 5821–5836, 2008.
Fedra, K. and Witwer, C.: Operational web-based air quality forecasts: cascading models for assessment, management and public information, presented at the AOGS 2009, Singapore, 11–15 August, avialable at: http://www.ess.co.at/PDF/FandW_manuscript.pdf, last access: 11 February 2011, 2009.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430, 1992.
Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G.: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model, in: Proceedings of the 15th Conf. on Numerical Weather Prediction, Amer. Meteor. Soc., San Antonio, TX, 280–283, 2002.
Finardi, S., De Maria, R., D'Allura, A., Cascone, C., Calori, G., and Lollobrigida, F.: A deterministic air quality forecasting system for Torino urban area, Italy, Environ. Modell. Softw., 23, 344–355, 2008.
Finardi, S., D'Allura, A., Maddalena, M., Silibello, C., Radice, P., Morelli, M., Bolignano, A., and Sozzi, R.: An air quality forecast system for Rome metropolitan area: first evaluation and identification of critical issues, in: Proceedings of the 7th International Conference on Air Quality – Science and Application (Air Quality 2009), Istanbul, 24–27 March 2009, 2009.
Finlayson-Pitts, B. J. and Pitts, J. N.: Atmospheric Chemistry Fundamentals and Experimental Techniques, Wiley, New York, 1998.
Fisher, B., Kukkonen, J., Piringer, M., Rotach, M. W., and Schatzmann, M.: Meteorology applied to urban air pollution problems: concepts from COST 715, Atmos. Chem. Phys., 6, 555–564, https://doi.org/10.5194/acp-6-555-2006, 2006.
Flemming, J. and Reimer, E.: The impact of special features of numerically predicted and analysed meteorological data on the results of ozone forecast by a PBL-chemical transport model, in: ITM Air Pollution Modelling and its Applications XXIII, edited by: Gryning, S. and Batchvarova, E., NATO CMS, Kluwer Academic/Plenum Publishers, New York, 2000.
Foltescu, V. L., Pryor, S. C., and Bennet, C.: Sea salt generation, dispersion and removal on the regional scale, Atmos. Environ., 39, 2123–2133, 2005.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for \chem{K^+}–\chem{Ca^{2+}}–\chem{Mg^{2+}}–\chem{NH^{4+}}–\chem{Na^+}–\chem{SO_4^{2-}}–\chem{NO_3^-}–\chem{Cl^-}–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fox, D. G.: Uncertainty in air quality modeling, B. Am. Meteorol. Soc., 65, 27–35, 1984.
Gallus, W. A.: The impact of step orography on flow in the Eta model: two contrasting examples, Weather Forecast., 15, 630–639, 2000.
Gallus, W. A. and Klemp, J. B.: Behavior of flow over step orography, Mon. Weather Rev., 128, 1153–1164, 2000.
Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J. C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H., D'Amours, R., Davakis, E., Eleveld, H., Geertsema, G. T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson, C., Polreich, E., Potemski, S., Prodanova, M., Saltbones, J., Slaper, H., Sofev, M. A., Syrakov, D., S\`{u}rensen, J. H., Van der Auwera, L., Valkama, I., and Zelazny, R.: Can the confidence in long-raqnge atmospheric transport models be increased? The pan-European experience of ENSEMBLE, Radiat. Prot. Dosim., 109, 19–24, https://doi.org/10.1093/rpd/nch261, 2004a.
Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J. C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H., D'Amours, R., Davakis, E., Eleveld, H., Geertsema, G. T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson, C., Polreich, E., Potempski, S., Prodanova, M., Saltbones, J., Slaper, H., Sofiev, M. A., Syrakov, D., Sorensen, J. H., Van der Auwera, L., Valkama, I., and Zelazny, R.: Ensemble dispersion forecasting – Part I: Concept, approach and indicators, Atmos. Environ., 38, 4607–4617, 2004b.
Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J. C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H., D'Amours, R., Davakis, E., Eleveld, H., Geertsema, G. T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson, C., Polreich, E., Potemski, S., Prodanova, M., Saltbones, J., Slaper, H., Sofiev, M. A., Syrakov, D., Sørensen, J. H., Van der Auwera, L., Valkama, I., and Zelazny, R.: Ensemble dispersion forecasting – Part II: Application and evaluation, Atmos. Environ., 38, 4619–4632, 2004c.
Galmarini, S., Bonnardot, F., Jones, A., Potempski, S., Robertson, L., and Martet, M.: Multi-model vs. EPS-based ensemble atmospheric dispersion simulations: A quantitative assessment on the ETEX-1 tracer experiment case, Atmos. Environ., 44, 3558–3567, 2010.
Galperin, M. V.: Approaches for improving the numerical solution of the advection equation, in: Large Scale Computations in Air Pollution Modelling, edited by: Zlatev, Z., Dongarra, J., Dimov, I., Brandt, J., and Builtjes, P. J., Kluwer Academic Publishers, Dordrecht, The Netherlands, 161–172, 1999.
Galperin, M. V.: The approaches to correct computation of airborne pollution advection, in: Problems of Ecological Monitoring and Ecosystem Modelling, Vol. XVII, Gidrometeoizdat, St. Petersburg, 54–68, 2000 (in Russian).
Galperin, M. V. and Sofiev, M.: The long-range transport of ammonia and ammonium in the Northern Hemisphere, Atmos. Environ., 32, 373–380, 1998.
Gangoiti, G., Millan, M. M., Salvador, R., and Mantilla, E.: Long-range transport and re-circulation of pollutants in the Western Mediterranean during the project regional cycles of air pollution in the West-Central Mediterranean area, Atmos. Environ., 135, 6267–6276, 2001.
Gariazzo, C., Silibello, C., Finardi, S., Radice, P., Piersanti, A., Calori, G., Cecinato, A., Perrino, C., Nussio, F., Pelliccioni, A., Gobbi, G. P., and Di Filippo, P.: A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model, Atmos. Environ., 41, 7286–7303, 2007.
Genikhovich, E., Sofiev, M., and Gracheva, I.: Interactions of meteorological and dispersion models at different scales, in: Air Polution Modelling and its Applications XVII, edited by: Borrego, C. and Norman, A.-L., Springer (2007), 158–166, ISBN-10:0-387-28255-6, 2004.
Gerard, L.: An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales, Q. J. Roy. Meteor. Soc., 133, 711–730, 2007.
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.: A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12925–12956, 1989.
Gidhagen, L., Johansson, C., Langner, J., and Foltescu, V. L.: Urban scale modeling of particle number concentration in Stockholm, Atmos. Environ., 39, 1711–1725, 2005.
Gilliland, A. B., Hogrefe, C., Pinder, R. W., Godowitch, J. M., Foley, K. L., and Rao, S. T.: Dynamic evaluation of regional air quality models: assessing changes in O3 stemming from changes in emissions and meteorology, Atmos. Environ., 42, 5110–5123, 2008.
Giorgi, F.: A particle dry deposition parameterisation scheme for use in tracer transport models, J. Geophys. Res., 91, 9794–9806, 1986.
Giorgi, F. and Chameides, W. L.: Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 91, 14367–14376, 1986.
Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cy., 17, 1097, https://doi.org/1029/2003GB002079, 2003.
Gong, S. L., Barrie, L. A., and Blanchet, J.-P.: Modeling seasalt aerosols in the atmosphere: 1. Model development, J. Geophys. Res., 102, 3805–3818, 1997.
Gong, S. L., Barrie, L. A., and Lazare, M.: Canadian aerosol module (CAM): a size-segregated simulation of atmospheric aerosol processes for climate and air quality models: 2. Global sea-salt aerosol and its budgets, J. Geophys. Res., 107, 4779, https://doi.org/10.1029/2001JD002004, 2002.
Grasso, L. D.: The differentiation between grid spacing and resolution and their application to numerical modeling, B. Am. Meteorol. Soc., 81, 579–580, 2000a.
Grasso, L. D.: Reply: "The differentiation between grid spacing and resolution and their application to numerical modeling", B. Am. Meteorol. Soc., 81, p. 2479, 2000b.
Gregory, D. and Rowntree, P. R.: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure, Mon. Weather Rev., 118, 1483–1506, 1990.
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note NCAR/TN-398+STR, 138 pp., available from: NCAR, P. O. Box 3000, Boulder, CO 80307–3000, National Center for Atmospheric Research, Boulder, Colorado, USA, 1994.
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), NCAR Tech. Rep. NCAR/TN-398, 122 pp., National Center for Atmospheric Research, Boulder, Colorado, USA, 1995.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled on-line chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Gross, A. and Baklanov, A.: Modelling the influence of dimethyl sulphide on the aerosol production in the marine boundary layer, Int. J. Environ. Pollut., 22, 51–71, 2004.
Gross, A. and Stockwell, W. R.: Comparison of the EMEP, RADM2 and RACM mechanisms, J. Atmos. Chem., 44, 151–170, 2003.
Guelle, W., Balkanski, Y. J., Dibb, J. E., Schulz, M., and Dulac, F.: Wet deposition in a global size-dependent aerosol transport model, 2. Influence of the scavenging scheme on Pb vertical profiles, and deposition, J. Geophys. Res., 103, 28875–28891, 1998.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R., and Fall, R.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, 12609–12617, 1993.
Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural volatile organic compound emission rate estimates for US woodland landscapes, Atmos. Environ., 28, 1197–1210, 1994.
Guenther, A., Hewitt, N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compounds emissions, J. Geophys. Res., 100, 8873–8892, 1995.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., and Fall, R.: Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America, Atmos. Environ., 34, 2205–2230, 2000.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Gurjar, B. R., Butler, T. M., Lawrence, M. G., and Lelieveld, J.: Evaluation of emissions and air quality in megacities, Atmos. Environ., 42, 1693–1606, 2008.
Hahn, J., Steinbrecher, J., and Steinbrecher, R.: Studie F: Emission von Nicht-Methan-Kohlenwasserstoffen aus der Landwirtschaft, in: Enquete-Kommission \squt{Schutz der Erdatmosphaere} des Deutschen Bundestages (Ed.), Studienprogramm Band 1 \squt{Landwirtschaft}, Teilband 1 , Economica Verlag, Bonn, 1994.
Hakami, A., Odman, M., Talat, R., and Armistead, G.: High-order, direct sensitivity analysis of multidimensional air quality models, Environ. Sci. Technol., 37, 2442–2452, 2003.
Hakami, A., Seinfeld, J. H., Chai, T. F., Tang, Y. H., Carmichael, G. R., and Sandu, A.: Adjoint sensitivity analysis of ozone nonattainment over the continental United States, Environ. Sci. Technol., 40, 3855–3864, 2006.
Hakami, A., Henze, D. K., Seinfeld, J. H., Singh, K., Sandu, A., Kim, S., Byun, D., and Li, Q.: The Adjoint of CMAQ, Environ. Sci. Technol., 41, 7807–7817, 2007.
Hanea, R. G., Velders, G. J. M., and Heemink, A.: Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport model, J. Geophys. Res., 109, D10302, https://doi.org/10.1029/2003JD004283, 2004.
Hanea, R. G., Velders, G. J. M., Segers, A. J., Verlaan, M., and Heemink, A. W.: A hybrid Kalman filter algorithm for large-scale atmospheric chemistry data assimilation, Mon. Weather Rev., 135, 140–151, 2007.
Hanna, S. R., Gifford, F. A., and Yamartino, R. J.: Long range radioactive plume transport simulation model/code – phase I, Technical report, USNRC Division of Contracts and Property Management, Contract Administration Branch, P-902, Washington, DC 20555, 121 pp., 1991.
Hanna, S. R., Chang, J. C., and Strimaitis, D. G.: Hazardous gas model evaluation with field observations, Atmos. Environ., 27A, 2265–2285, 1993.
Hanna, S. R., Lu, Z., Frey, H. C., Wheeler, N., Vukovich, J., Arunachalam, S., Fernau, M., and Hansen, D. A.: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmos. Environ., 35, 891–903, 2001.
Hara, T., Hozumi, Y., Wang, Z., Ohba, R., and Ueda, H.: An intercomparison study of MM5 and RAMS simulations in a coastal desert area of Saudi Arabia, 6th WRF/15th MM5 Users' Workshop, National Center for Atmospheric Research, 27–30 June, abstract no. 3.28, 2005.
Harper, K., Uccellini, L. W., Kalnay, E., Carey, K., and Morone, L.: 50th anniversary of operational numerical weather prediction, B. Am. Meteorol. Soc., 88, 639–650, 2007.
Hass, H., Builtjes, P. J. H., Simpson, D., and Stern, R.: Comparison of model results obtained with several European regional air quality models, Atmos. Environ., 31, 3259–3279, 1997.
Hass, H., van Loon, M., Kessler, C., Matthijsen, J., Sauter, F., Stern, R., Zlatev, R., Langner, J., Fortescu, V., and Schaap, M.: Aerosol modeling: results and intercomparison from European regional-scale modeling systems, A contribution to the EUROTRAC-2 subproject GLOREAM, EUROTRAC report, 2003.
Heard, D. E., Read, K. A., Methven, J., Al-Haider, S., Bloss, W. J., Johnson, G. P., Pilling, M. J., Seakins, P. W., Smith, S. C., Sommariva, R., Stanton, J. C., Still, T. J., Ingham, T., Brooks, B., De Leeuw, G., Jackson, A. V., McQuaid, J. B., Morgan, R., Smith, M. H., Carpenter, L. J., Carslaw, N., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Purvis, R. M., Wevill, D. J., Brough, N., Green, T., Mills, G., Penkett, S. A., Plane, J. M. C., Saiz-Lopez, A., Worton, D., Monks, P. S., Fleming, Z., Rickard, A. R., Alfarra, M. R., Allan, J. D., Bower, K., Coe, H., Cubison, M., Flynn, M., McFiggans, G., Gallagher, M., Norton, E. G., O'Dowd, C. D., Shillito, J., Topping, D., Vaughan, G., Williams, P., Bitter, M., Ball, S. M., Jones, R. L., Povey, I. M., O'Doherty, S., Simmonds, P. G., Allen, A., Kinnersley, R. P., Beddows, D. C. S., Dall'Osto, M., Harrison, R. M., Donovan, R. J., Heal, M. R., Jennings, S. G., Noone, C., and Spain, G.: The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002, Atmos. Chem. Phys., 6, 2241–2272, https://doi.org/10.5194/acp-6-2241-2006, 2006.
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433, https://doi.org/10.5194/acp-7-2413-2007, 2007.
Hesstvedt, E., Öystein, H., and Isaksen, I. S. A.: Quasi-steady-state approximations in air pollution modeling: comparison of two numerical schemes for oxidant prediction, Int. J. Chem. Kinet., 10, 971–994, 1978.
Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker Jr., R. P., and Matt, D. R.: A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Poll., 36, 311–330, 1987.
Hirtl, M., Baumann-Stanzer, K., and Krüger, B. C.: Operational ozone forecasts for Austria, COST728/NetFAM workshop on "Integrated systems of meso-meteorological and chemical transport models", Copenhagen, Denmark, 21–23 May 2007.
Holtslag, A. A. M., de Bruijn, E. I. F., and Pan, H.-L.: A high resolution air mass transformation model for short-range weather forecasting, Mon. Weather Rev., 118, 1561–1575, 1990.
Honoré, C., Rouïl, L., Vautard, R., Beekmann, M., Bessagnet, B., Dufour, A., Elichegaray, C., Flaud, J.-M., Malherbe, L., Meleux, F., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, N.: Predictability of European air quality: assessment of 3 years of operational forecasts and analyses by the PREV'AIR system, J. Geophys. Res., 113, D04301, https://doi.org/10.1029/2007JD008761, 2008.
Houyoux, M. R. and Vukovich, J. M.: Updates to the sparse matrix operator kernel emission (SMOKE) modeling system and integration with Models-3, The emission inventory: regional strategies for the future, 26–28 October, Raleigh, NC, Air and Waste Management Association, 1999.
Hov, Ø., Hjøllo, B. A. and Eliassen, A.: Transport distance of ammonia and ammonium in Northern Europe, 1. Model description, J. Geophys. Res., 99, 18735–18748, 1994.
Huang, M., Carmichael, G. R., Adhikary, B., Spak, S. N., Kulkarni, S., Cheng, Y. F., Wei, C., Tang, Y., Parrish, D. D., Oltmans, S. J., D'Allura, A., Kaduwela, A., Cai, C., Weinheimer, A. J., Wong, M., Pierce, R. B., Al-Saadi, J. A., Streets, D. G., and Zhang, Q.: Impacts of transported background ozone on California air quality during the ARCTAS-CARB period – a multi-scale modeling study, Atmos. Chem. Phys., 10, 6947–6968, https://doi.org/10.5194/acp-10-6947-2010, 2010.
Huijnen, V., Eskes, H. J., Poupkou, A., Elbern, H., Boersma, K. F., Foret, G., Sofiev, M., Valdebenito, A., Flemming, J., Stein, O., Gross, A., Robertson, L., D'Isidoro, M., Kioutsioukis, I., Friese, E., Amstrup, B., Bergstrom, R., Strunk, A., Vira, J., Zyryanov, D., Maurizi, A., Melas, D., Peuch, V.-H., and Zerefos, C.: Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models, Atmos. Chem. Phys., 10, 3273–3296, https://doi.org/10.5194/acp-10-3273-2010, 2010.
Hussein, T., Kukkonen, J., Korhonen, H., Pohjola, M., Pirjola, L., Wraith, D., Härkönen, J., Teinilä, K., Koponen, I. K., Karppinen, A., Hillamo, R., and Kulmala, M.: Evaluation and modeling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki – Part II: Aerosol measurements within the SAPPHIRE project, Atmos. Chem. Phys., 7, 4081–4094, https://doi.org/10.5194/acp-7-4081-2007, 2007.
IPG: International Phenological Gardens, http://www.agrar.hu-berlin.de/struktur/institute/nptw/agrarmet/phaenologie/ipg, last access: 11 February 2011, 2004.
Jablonowski, C.: Adaptive grids in weather and climate modeling, Ph. D. dissertation, University of Michigan, Ann Arbor, MI, 2004.
Jablonowski, C., Herzog, M., Penner, J. E., Oehmke, R. C., Stout, Q. F., van Leer, B., and Powell, K. G.: Block-structured adaptive grids on the sphere: advection experiments, Mon. Weather Rev., 134, 3691–3713, 2006.
Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, Second Edn., Cambridge University Press, New York, 813 pp., 2005.
Jakobs, H. J., Tilmes, S., Heidegger, A., Nester, K., and Smiatek, G.: Short-term ozone forecasting with a network model system during Summer 1999, J. Atmos. Chem., 42, 23–40, 2002.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys. Discuss., 11, 22129–22172, https://doi.org/10.5194/acpd-11-22129-2011, 2011.
Janjić, Z. I.: The step-mountain coordinate: physical package, Mon. Weather Rev., 118, 1429–1443, 1990.
Janjić, Z. I.: The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Weather Rev., 122, 927–945, 1994.
Janjić, Z. I.: Advection scheme for passive substance in the NCEP Eta model, in: Research Activities in Atmospheric and Oceanic Modeling, edited by: Ritchie, H., World Meteorol. Organ., Geneva, Switzerland, 1997.
Janjić, Z. I.: A nonhydrostatic model based on a new approach, Meteorol. Atmos. Phys., 82, 271–285, 2003.
Janjić, Z. I., Gerrity, J. P. Jr., and Nickovic, S.: An alternative approach to nonhydrostatic modeling, Mon. Weather Rev., 129, 1164–1178, 2001.
Jimenez, P., Baldasano, J. M., and Dabdub, D.: Comparison of photochemical mechanisms for air quality modeling, Atmos. Environ., 37, 4179–4194, 2003.
Jones, A. R., Thomson, D. J., Hort, M., and Devenish, B.: The UK Met Office's next-generation atmospheric dispersion model, NAME III, in: Air Pollution Modeling and its Application XVII, Proceedings of the 27th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Application, 24–29 October 2004, New York, USA, edited by: Borrego, C. and Norman, A.-L., Springer, 580–589, 2007.
Josse, B., Simon, P., and Peuch, V.-H.: Rn-222 global simulations with the multiscale CTM MOCAGE, Tellus, 56B, 339–356, 2004.
Jylhä, K.: Empirical scavenging coefficients of radioactive substances released from Chernobyl, Atmos. Environ., 25A, 263–270, 1991.
Kaas, E.: A simple and efficient locally mass conserving semi-Lagrangian transport scheme, Tellus, 60A, 305–320, 2008.
Kain, J. S.: The Kain-Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170–181, 2004.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: the Kain-Fritsch scheme, The representation of cumulus convection in numerical models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170, Boston, USA, 1993.
Kain, J. S., Baldwin, M. E., and Weiss, S. J.: Parameterized updraft mass flux as a predictor of convective intensity, Weather Forecast., 18, 106–116, 2003.
Kalabokas, P. D., Volz-Thomas, A., Brioude, J., Thouret, V., Cammas, J.-P., and Repapis, C. C.: Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe, Atmos. Chem. Phys., 7, 3783–3790, https://doi.org/10.5194/acp-7-3783-2007, 2007.
Kallos, G., Papadopoulos, A., Katsafados, P., and Nickovic, S.: Trans-Atlantic Saharan dust transport: model simulation and results, J. Geophys. Res., 111, D09204, https://doi.org/10.1029/2005JD006207, 2006.
Kallos, G., Spyrou, C., Papantoniou, N., Mitsakou, C., Astitha, M., Solomos, S., and Katsafados, P.: Analysis of the particulate matter exceedances in Greece, period 2001–2004, Final Report Prepared for the Ministry of Environment City Planning and Public Work, University of Athens, Athens, Greece, June 2007.
Kallos, G., Spyrou, C., Astitha, M., Mitsakou, C., Solomos, S., Kushta, J., Pytharoulis, I., Katsafados, P., Mavromatidis, E., and Papantoniou, N.: Ten-year operational dust forecasting – recent model development and future plans, WMO/GEO Expert Meeting on a International Sand and Dust Storm Warning System, Barcelona, Spain, 7–9 November 2007, IOP C. Ser. Earth Env., 7, 012012, https://doi.org/10.1088/1755-1307/7/1/012012, 2009.
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 341 pp., 2002.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kang, D., Mathur, R., Schere, K., Yu, S., and Eder, B.: New Categorical Metrics for Air Quality Model Evaluation, J. Appl. Meteorol. Clim., 46, 549–555, 2007.
Karatzas, K.: State-of-the-art in the dissemination of AQ information to the general public, in: Proceedings of the 21st International Conference on Informatics for Environmental Protection – EnviroInfo2007, Warsaw, Poland, 12–14 September 2007, Vol. 2., edited by: Hryniewicz, O., Studziñski, J., and Romaniuk, M., Shaker Verlag, Aachen, ISBN 978-3-8322-6397-3, 41–47, 2007.
Karatzas, K.: Artificial intelligence applications in the atmospheric environment: status and future trends, Environ. Eng. Manag. J., 9, 171–180, 2010.
Karatzas, K. and Kukkonen, J. (Eds.): Quality of life information services towards a sustainable society for the atmospheric environment, COST Action ES0602, Workshop Proceedings, Chemical weather information services for quality of life, 8–9 May 2008, Sofia Publications S. A., Thessaloniki, Greece, ISBN 978-960-6706-20-2, 118 pp., 2009.
Karatzas, K. and Masouras, A.: Using FLOSS towards building environmental information systems, in: Complexity and Integrated Resources Management, Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, Vol. 2, edited by: Pahl-Wostl, C., Schmidt, S., Rizzoli, A. E., and Jakeman, A. J., iEMSs, Manno, Switzerland, ISBN 88-900787-1-5, 525–530, 2004.
Karatzas, K. and Nikolaou, K.: Early warning for environmental information: the AIRTHESS system, in: Proceedings of the 2nd International CEMEPE and SECOTOX Conference, Mykonos, 21–26 June 2009, edited by: Kungolos, A., Aravossis, K., Karagiannidis, A., and Samaras, P., ISBN 978-960-6865-09-1, 2085–2090, 2009.
Karatzas, K., Endregard, G., and Fløisand, I.: Citizen-oriented environmental information services: usage and impact modelling, in: Proceedings of the "Informatics for Environmental Protection-Networking Environmental Information" – 19th International EnviroInfo Conference, edited by: Hrebicek, J. and Racek, J., Brno, Czech Rebublic, 872–878, 2005.
Karvosenoja, N., Tainio, M., Kupiainen, K., Tuomisto, J. T., Kukkonen, J., and Johansson, M.: Evaluation of the emissions and uncertainties of PM2.5 originated from vehicular traffic and domestic wood combustion in Finland, Boreal Environ. Res., 13, 465–474, 2008.
Karvosenoja, N., Kangas, L., Kupiainen, K., Kukkonen, J., Karppinen, A., Sofiev, M., Tainio, M., Paunu, V.-V., Ahtoniemi, P., Tuomisto, J. T., and Porvari, P.: Integrated modeling assessments of the population exposure in Finland to primary PM2.5 from traffic and domestic wood combustion on the resolutions of 1 and 10 km, Air Qual. Atmos. Health, 4, 179–188, https://doi.org/10.1007/s11869-010-0100-9, 2010.
Kessler, E.: On the distribution and continuity of water substance in atmospheric circulations, Meteorol. Monogr., No. 32, American Meteorological Society, 84 pp., Boston, USA, 1969.
Kioutsioukis, I., Melas, D., Zerefos, C., and Ziomas, I.: Efficient sensitivity computations in 3-D air quality models, Comput. Phys. Commun., 167, 23–33, 2005.
Kioutsioukis, I., Poupkou, A., Katragkou, E., Giannaros, T., Markakis, K., Balis, D., Melas, D., and Zerefos, C.: An evaluation of the MM5/CAMx system for Europe, in: Proceedings of the ESA Atmospheric Science Conference, 7–11 September 2009, Barcelona, Spain, abstract no. 1084, 2009.
Kioutsioukis, I., Poupkou, A., Katragkou, E., Giannaros, T., Markakis, K., Balis, D., Melas, D., and Zerefos, C.: Performance evaluation of the MM5/CAMx system for Europe (2003), in: Proceedings of the 10th International Conference on Meteorology, Climatology and Atmospheric Physics, 25–28 May 2010, Patra, Greece, 6 p., 2010.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V., and Edney, E. O.: Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a Southeastern US location, Atmos. Environ., 41, 8288–8300, 2007.
Kokkola, H., Vesterinen, M., Anttila, T., Laaksonen, A., and Lehtinen, K. E. J.: Technical note: Analytical formulae for the critical supersaturations and droplet diameters of CCN containing insoluble material, Atmos. Chem. Phys., 8, 1985–1988, https://doi.org/10.5194/acp-8-1985-2008, 2008.
Konovalov, I. B., Beekmann, M., Burrows, J. P., and Richter, A.: Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions, Atmos. Chem. Phys., 8, 2623–2641, https://doi.org/10.5194/acp-8-2623-2008, 2008.
Koo, B., Dunker, A. M., and Yarwood, G.: Implementing the decoupled direct method for sensitivity analysis in a particulate matter air quality model, Environ. Sci. Technol., 41, 2847–2854, 2007.
Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., Yantosca, R. M., Singh, K., Henze, D. K., Burrows, J. P., Buchwitz, M., Khlystova, I., McMillan, W. W., Gille, J. C., Edwards, D. P., Eldering, A., Thouret, V., and Nedelec, P.: Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855–876, https://doi.org/10.5194/acp-10-855-2010, 2010.
Korsholm, U. S.: Integrated modeling of aerosol indirect effects – develoment and application of a chemical weather model, Ph. D. thesis, University of Copenhagen, Niels Bohr Institute and DMI, Research department, 2009.
Korsholm, U. S., Baklanov, A., Gross, A., Mahura, A., Sass, B. H., and Kaas, E.: Online coupled chemical weather forecasting based on HIRLAM – overview and prospective of Enviro-HIRLAM, HIRLAM Newsl., 54, 151–168, available at: http://hirlam.org/index.php?option=com_docman&task=doc_download&gid=148&Itemid=70, last access: 11 February 2011, 2008.
Korsholm, U. S., Baklanov, A., Gross, A., and Sørensen, J. H.: On the importance of the meteorological coupling interval in dispersion modeling during ETEX-1, Atmos. Environ., 43, 4805–4810, 2009.
Koskinen, J. T., Poutiainen, J., Schultz, D. M., Joffre, S., Koistinen, J., Saltikoff, E., Gregow, E., Turtiainen, H., Dabberdt, W. F., Damski, J., Eresmaa, N., Göke, S., Hyvärinen, O., Järvi, L., Karppinen, A., Kotro, J., Kuitunen, T., Kukkonen, J., Kulmala, M., Moisseev, D., Nurmi, P., Pohjola, H., Pylkkö, P., Vesala, T., and Viisanen, Y.: The Helsinki Testbed: A mesoscale measurement, research, and service platform, B. Am. Meteor. Soc., 92, 325–342, 2011.
Kreiss, H. O. and Oliger, J.: Comparison of accurate methods for integration of hyperbolic equation, Tellus, XXIV, 199–215, 1972.
Krüger, B. C., Katragkou, E., Tegoulias, I., Zanis, P., Melas, D., Coppola, E., Rauscher, S., Huszar, P., and Halenka, T.: Regional photochemical model calculations for Europe concerning ozone levels in a changing climate, Idöjaras, 112, 285–300, 2008.
Kuhn, M., Builtjes, P. J. H., Poppe, D., Simpson, D., Stockwell, W. R., Andersson-Sköld, Y., Baart, A., Das, M., Fiedler, F., Hov, Ø., Kirchner, F., Makar, P. A., Milford, J. B., Roemer, M. G. M., Ruhnke, R., Strand, A., Vogel, B., and Vogel, H.: Intercomparison of the gas-phase chemistry in several chemistry and transport models, Atmos. Environ., 32, 693–709, 1998.
Kukkonen, J., Sokhi, R., Slørdal, L. H., Sandro, F., Barbara, F., Millan, M., Salvador, R., Palau, J. L., Rasmussen, A., Schayes, G., and Berge, E.: Analysis and evaluation of European air pollution episodes, in: Meteorology Applied to Urban Air Pollution Problems, Final Report COST Action 715, edited by: Fisher, B., Joffre, S., Kukkonen, J., Piringer, M., Rotach, M., and Schatzmann, M., Demetra Ltd Publishers, Sofia, Bulgaria, ISBN 954-9526-30-5, 99–114, 2005a.
Kukkonen, J., Pohjola, M., Sokhi, R. S., Luhana, L., Kitwiroon, N., Rantamäki, M., Berge, E., Odegaard, V., Slørdal, L. H., Denby, B., and Finardi, S.: Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo, Atmos. Environ., 39, 2759–2773, 2005b.
Kukkonen, J., Sokhi, R., Luhana, L., Härkönen, J., Salmi, T., Sofiev, M., and Karppinen, A.: Evaluation and application of a statistical model for assessment of long-range transported proportion of PM2.5 in the United Kingdom and in Finland, Atmos. Environ., 42, 3980–3991, https://doi.org/10.1016/j.atmosenv.2007.02.036, 2008.
Kukkonen, J., Karatzas, K., Tørseth, K., Fahre Vik, A., Klein, T., San José, R., Balk, T., and Sofiev, M.: An overview of the COST action "Towards a European network on chemical weather forecasting and information systems", in: Quality of life information services towards a sustainable society for the atmospheric environment, COST Action ES0602, Workshop Proceedings, edited by: Karatzas, K. and Kukkonen, J., Sofia Publishers, Thessaloniki, Greece, ISBN 978-960-6706-20-2, 21–37, 2009a.
Kukkonen, J., Karatzas, K., Tørseth, K., Fahre Vik, A., Klein, T., San José, R., Balk, T., and Sofiev, M.: An overview of the cost action "Towards a European network on chemical weather forecasting and information systems", in: Proceedings of Short Papers, 7th International Conference on Air Quality – Science and Application, Istanbul, 24–27 March 2009, edited by: Francis, X. V. and Ask, J., University of Hertfordshire, 37–40, 2009b.
Kukkonen, J., Klein, T., Karatzas, K., Torseth, K., Fahre Vik, A., San José, R., Balk, T., and Sofiev, M.: COST ES0602: towards a European network on chemical weather forecasting and information systems, Adv. Sci. Res., 3, 27–33, https://doi.org/10.5194/asr-3-27-2009, 2009c.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, 2004.
Kumar, N., Lurmann, F. W., and Carter, W. P. L.: Development of the flexible chemical mechanism version of the urban airshed model, Final Report STI-94470-1508-FR, California Air Resources Board, Sacramento, California, USA, 1995.
Kumar, N., Lurmann, F. W., Wexler, A. S., Pandis, S., and Seinfeld, J. H.: Development and application of a three dimensional aerosol model, A{&}WMA Specialty Conference on Computing in Environmental Resource Management, Research Triangle Park, North Carolina, USA, 2–4 December 1996, STI-1609, 1996.
Kunz, R. and Moussiopoulos, N.: Simulation of the wind field in Athens using refined boundary conditions, Atmos. Environ., 29, 3575–3591, 1995.
Kuo, H. L.: On formation and intensification of tropical cyclones through latent heat release by cumulus convection, J. Atmos. Sci., 22, 40–63, 1965.
Kuo, H. L.: Further studies of the parameterization of the influence of cumulus convection on large-scale flow, J. Atmos. Sci., 31, 1232–1240, 1974.
Kurokawa, J., Yumimoto, K., Uno, I., and Ohara, T.: Adjoint inverse modeling of NOx emissions over Eastern China using satellite observations of NO2 vertical column densities, Atmos. Environ., 43, 1827–1944, 2009.
LAEI: London atmospheric emissions inventory 2006 report (2006, 2010 and 2015), June 2009, Greater London Authority, available at: www.london.gov.uk, last access: 11 February 2011, 2009.
Lagzi, I., Kármán, D., Turányi, T., Tomlin, A. S., and Haszpra, L.: Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model, J. Environ. Radioactiv., 75, 59–82, 2004.
Langmann, B., Varghese, S., Marmer, E., Vignati, E., Wilson, J., Stier, P., and O'Dowd, C.: Aerosol distribution over Europe: a model evaluation study with detailed aerosol microphysics, Atmos. Chem. Phys., 8, 1591–1607, https://doi.org/10.5194/acp-8-1591-2008, 2008.
Langner, J., Robertson, L., Persson, C., and Ullerstig, A.: Validation of the operational emergency response model at the Swedish meteorological and hydrological institute using data from ETEX and the Chernobyl accident, Atmos. Environ., 32, 4325–4333, 1998.
Langner, J., Bergström, R., and Foltescu, V. L.: Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe, Atmos. Environ., 39, 1129–1141, 2005.
Laprise, R.: The resolution of global spectral models, B. Am. Meteorol. Soc., 73, 1453–1454, 1992.
Lattuati, M.: Contribution à l'étude du bilan de l'ozone troposphérique à l'interface de l'Europe et de l'Atlantique Nord: modélisation lagrangienne et mesures en altitude, Thèse de sciences, Université Paris 6, France, 1997.
Lawrence, M. G., Hov, Ø., Beekmann, M., Brandt, J., Elbern, H., Eskes, H., Feichter, H., and Takigawa, M.: The chemical weather, Environ. Chem., 2, 6–8, https://doi.org/10.1071/EN05014, 2005.
Lefèvre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.: Chemistry of the 1991–1992 stratospheric winter: three-dimensional model simulations, J. Geophys. Res., 99, 8183–8195, 1994.
Leith, C. E.: Numerical simulation of the Earth's atmosphere, in: Methods in Computational Physics, Vol. 4, edited by: Alder, B., Fernbach, S., and Rotenberg, M., Academic Press, New York, 1–28, 1965.
Lewis, J. M.: Roots of ensemble forecasting, Mon. Weather Rev., 133, 1865–1885, 2005.
Levin, Z. and Cotton, W. R (Eds.): Aerosol Pollution Impact on Precipitation – a Scientific Review, Springer, Dordrecht, ISBN 978-1-4020-8689-2, 45–89, 386 pp., 2009.
Lin, J.-T., McElroy, M. B., and Boersma, K. F.: Constraint of anthropogenic NOx emissions in China from different sectors: a new methodology using multiple satellite retrievals, Atmos. Chem. Phys., 10, 63–78, https://doi.org/10.5194/acp-10-63-2010, 2010.
Lindfors, V., Joffre, S. M., and Damski, J.: Determination of the Wet and Dry Deposition of Sulphur and Nitrogen Compounds Over the Baltic Sea Using Actual Meteorological Data, Finnish Meteorological Institute contributions No. 4, Finnish Meteorological Institute, Helsinki, Finland, 1991.
Livezey, R. E. and Chen, W. Y.: Statistical field significance and its determination by Monte Carlo techniques, Mon. Weather Rev., 111, 46–59, 1983.
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B.: A new boundary layer mixing scheme, Part I: Scheme description and single-column model tests, Mon. Weather Rev., 128, 3187–3199, 2000.
Loosmore, G. A. and Cederwall, R. T.: Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data, Atmos. Environ., 38, 993–1003, 2004.
Loosmore, G. A. and Hunt, J. R.: Dust resuspension without saltation, J. Geophys. Res., 105, 20663–20671, 2000.
Lorenz, E. N.: Deterministic non-periodic flow, J. Atmos. Sci., 20, 130–141, 1963.
Lorenz, E. N.: A study of the predictability of a 28-variable atmospheric model, Tellus, 17, 321–333, 1965.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, 1979.
Louis, J. F., Tiedtke, M., and Geleyn, J. F.: A short history of the operational PBL-parameterization at ECMWF, Workshop on boundary layer parameterization, November 1981, ECMWF, Reading, England, 25–27 November 1981, 59–79, 1982.
Luecken, D. J., Phillips, S., Sarwar, G., and Jang, C.: Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: ozone and gas-phase photochemical precursor concentrations, Atmos. Environ., 42, 5805–5820, 2008.
Madronich, S.: Photodissociations in the atmosphere, 1, Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92, 9740–9752, 1987.
Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., and Wergen, W.: The operational global icosahedral–hexagonal gridpoint model GME: description and high-resolution tests, Mon. Weather Rev., 130, 319–338, 2002.
Mahura, A., Petersen, C., Baklanov, A., Amstrup, B., Korsholm, U. S., and Sattler, K.: Verification of long-term DMI-HIRLAM NWP model runs using urbanization and building effect parameterization modules, HIRLAM Newsl., 53, 50–60, 2008.
Mahura, A., Baklanov, A., and Korsholm, U.: Parameterization of the birch pollen diurnal cycle, Aerobiologia, 25, 203–208, https://doi.org/10.1007/s10453-009-9125-7, 2009.
Mallet, V. and Sportisse, B.: Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: an ensemble approach applied to ozone modelling, J. Geophys. Res., 111, D01302, https://doi.org/10.1029/2005JD006149, 2006.
Malm, W., Schichtel, B. A., Pitchford, M., Ashbaugh, L., and Eldred, R. A.: Spatial and monthly trends in speciated fine particle concentration in the United States, J. Geophys. Res., 109, 1–22, D03306, 2004.
Manders, A. M. M., Schaap, M., and Hoogerbrugge, R.: Testing the capability of the chemistry transport model LOTOS-EUROS to forecast PM10 levels in The Netherlands, Atmos. Environ., 43, 4050–4059, https://doi.org/10.1016/j.atmosenv.2009.05.006, 2009.
Mapes, B. E.: Equilibrium versus activation control of large-scale variations of tropical deep convection, in: The Physics and Parameterization of Moist Atmospheric Convection, NATO ASI Series, Vol. 505, edited by: Smith, R. K., Kluwer Academic Publishers, Amsterdam, The Netherlands, 321–358, 1997.
Marchuk, G. I.: Mathematical models in environmental problems, in: Studies in mathematics and its applications, 16, Elseview Sci. Pub, Co. ISBN 044487965X, 217 pp., 1986.
Mari, C., Jacob, D. J., and Betchold, P.: Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 22255–22267, 2000.
Markakis, K., Poupkou, A., Melas, D., Tzoumaka, P., and Petrakakis, M.: A computational approach based on GIS technology for the development of an anthropogenic emission inventory of gaseous pollutants in Greece, Water Air Soil Poll., 207, 157–180, 2010.
Martensson, E. M., Nilsson, E. D., de Leeuw, G., Cohen, L. H., and Hansson, H.-C.: Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108, 4297, https://doi.org/10.1029/2002JD002263, 2003.
Martet, M., Peuch, V.-H., Laurent, B., Marticorena, B., and Bergametti, G.: Evaluation of long-range transport and deposition of desert dust with the CTM Mocage, Tellus, 61B, 449–463, 2009.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res., 100, 16415–16430, 1995.
Maryon, R. H., Saltbones, J., Ryall, D. B., Bartnicki, J., Jakobsen, H. A., and Berge, E.: An intercomparison of three long range dispersion models developed for the UK meteorological office, DNMI and EMEP, UK Met Office Turbulence and Diffusion, Note 234, ISBN 82-7144-026-08, 44 pp., 1996.
Matthijsen, J., Sauter, F. J., and de Waal, E. S.: Modelling of particulate matter on a European scale, in: Proceedings of GLOREAM Symposium, 2001, edited by: Keller, J. and Andreani-Aksojoglu, S., Wengen, Switzerland, 2002.
McNider, R. T., Lapenta, W. M., Biazar, A. P., Jedlovec, G. J., Suggs, R. J., and Pleim, J.: Retrieval of model grid-scale heat capacity using geostationary satellite products, Part I: First case-study application, J. Appl. Meteorol., 44, 1346–1360, 2005.
Medina, J., Nenes, A., Sotiropoulou, R.-E. P., Cottrell, L. D., Ziemba, L. D., Beckman, P. J., and Griffin, R. J.: Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: effects of size-resolved composition, J. Geophys. Res., 112, D10S31, https://doi.org/10.1029/2006JD007588, 2007.
Mellor, G. L. and Yamada, T.: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791–1806, 1974.
Ménégoz, M., Salas y Melia, D., Legrand, M., Teyssèdre, H., Michou, M., Peuch, V.-H., Martet, M., Josse, B., and Dombrowski-Etchevers, I.: Equilibrium of sinks and sources of sulphate over Europe: comparison between a six-year simulation and EMEP observations, Atmos. Chem. Phys., 9, 4505–4519, https://doi.org/10.5194/acp-9-4505-2009, 2009.
Meng, F., Zhang, B., Gbor, P., Wen, D., Yang, F., Shi, C., Aronson, J., and Sloan, J.: Models for gas/particle partitioning, transformation and air/water surface exchange of PCBs and PCDD/Fs in CMAQ, Atmos. Environ., 41, 9111–9127, 2007.
Menut, L.: Adjoint modeling for atmospheric pollution process sensitivity at regional scale, J. Geophys. Res.-Atmos., 108, 8562, https://doi.org/10.1029/2002JD002549, 2003.
Menut, L., Coll, I., and Cautenet, S.: Impact of meteorological data resolution on the forecasted ozone concentrations during the ESCOMPTE IOP2a and b, Atmos. Res., 74, 139–159, 2005.
Menut, L., Forêt, G., and Bergametti, G.: Sensitivity of mineral dust concentrations to the model size distribution accuracy, J. Geophys. Res., 112, D10210, https://doi.org/10.1029/2006JD007766, 2007.
Mesinger, F., Janjić, Z. I., Nickovic, S., and Gavrilov, D.: The step-mountain co-ordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment, Mon. Weather Rev., 116, 1497–1518, 1988.
Metzger, S.: Gas/Aerosol partitioning: a simplified method for global modeling. Ph.D. thesis, University Utrecht, available at: http://igitur-archive.library.uu.nl/dissertations/1930853/inhoud.htm, 2000.
Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J.: Gas/aerosol partitioning: 1. A computationally efficient model, J. Geophys. Res., 107, 4312, https://doi.org/10.1029/2001JD001102, 2002
Michou, M., Laville, P., Serça, D., Fotiadi, A., Bouchou, P., and Peuch, V.-H.: Measured and modeled dry deposition velocities over the ESCOMPTE area, Atmos. Res., 74, 89–116, 2004.
Middleton, P., Stockwell, W. R., and Carter, W. P. L.: Aggregation and analysis of volatile organic compound emissions for regional modeling, Atmos. Environ., 24, 1107–1133, 1990.
Millán, M., Salvador, R., Mantilla, E., and Artnano, B.: Meteorology and photochemical air pollution in Southern Europe: experimental results from EC research projects, Atmos. Environ., 30, 1909–1924, 1996.
Mircea, M. and Stefan, S.: A theoretical study of the microphysical parameterization of the scavenging coeffcient as a function of precipitation type and rate, Atmos. Environ., 32, 2931–2938, 1998.
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The new ECMWF ensemble prediction system: methodology and validation, Q. J. Roy. Meteor. Soc., 122, 73–119, 1996.
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine aerosol generation via whitecaps and wave disruption, in: Oceanic Whitecaps and Their Role in Air/Sea Exchange, edited by: Monahan, E. C., Mac Niocaill, G., and Reidel, D., Norwell, Mass., USA, 167–174, 1986.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M., Akimoto, H., Amman, M., Baklanov, A., Baltensperger, U., Bey, I., Blakem, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G., Generoso, S., Ginoux, P., Grewet, V., Guenther, A., Hansson, H. C., Hennew, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S. A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd, C., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Poeschl, U., Prevot, A. S. H., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.: Atmospheric composition change – global and regional air quality, Atmos. Environ., 43, 5268–5350, https://doi.org/10.1016/j.atmosenv.2009.08.021, 2009.
Morss, R. E., Wilhelmi, O. V., Downton, M. W., and Gruntfest, E.: Flood risk, uncertainty, and scientific information for decision making: lessons from an interdisciplinary project, B. Am. Meteorol. Soc., 86, 1593–1601, 2005.
Morss, R. E., Demuth, J. L., and Lazo, J. K.: Communicating uncertainty in weather forecasts: a survey of the U. S. public, Weather Forecast., 23, 974–991, 2008.
Moussiopoulos, N.: An efficient scheme to calculate radiative transfer in mesoscale models, Environ. Softw., 2, 172–191, 1987.
Moussiopoulos, N.: The EUMAC zooming model, a tool for local-to-regional air quality studies, Meteorol. Atmos. Phys., 57, 115–133, 1995.
Moussiopoulos, N., Sahm, P., Kunz, R., Voegele, T., Schneider, C., and Kessler, C.: High resolution simulations of the wind flow and the ozone formation during the Heilbronn ozone experiment, Atmos. Environ., 31, 3177–3186, 1997.
Moussiopoulos, N., de Leeuw, F., Karatzas, K., and Bassoukos, A.: The air quality model documentation system of the European Environment Agency, Int. J. Environ. Pollut., 14, 10–17, 2000.
Napelenok, S. L., Cohan, D. S., Hu, Y. T., and Russell, A. G.: Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM), Atmos. Environ., 40, 6112–6121, 2006.
NATAIR: Improving and applying methods for the calculation of natural and biogenic emissions and assessment of impacts to the air quality, European Commission – Sixth Framework Programme, Specific Targeted Research or Innovation Project, Final activity report, Chapter 4.2, 15 August 2007, Proposal No. 513699, available at: http://natair.ier.uni-stuttgart.de/, last access: 10 February 2011, 2007.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998a.
Nenes, A., Pilinis, C., and Pandis, S. N.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmos. Environ., 33, 1553–1560, 1998b.
Nho-Kim, E.-Y., Michou, M., and Peuch, V.-H.: Parameterization of size dependent particle dry deposition velocities for global modeling, Atmos. Environ., 38, 1933–1942, 2004.
Nho-Kim, E.-Y., Peuch, V.-H., and Oh, S. N.: Estimation of the global distribution of black carbon aerosols with MOCAGE, the CTM of Météo-France, J. Korean Meteor. Soc., 41, 587–598, 2005.
Nickovic, S., Kallos, G., Papadopoulos, A., and Kakaliagou, O.: A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res., 106, 18113–18129, 2001.
Nordeng, T. E.: Extended versions of the convection parametrization scheme at ECMWF and their impacts upon the mean climate and transient activity of the model in the tropics, Research Department Technical Memorandum No. 206, ECMWF, Shinfield Park, Reading, RG2 9AX, UK, 1994.
Novak, D. R., Bright, D. R., and Brennan, M. J.: Operational forecaster uncertainty needs and future roles, Weather Forecast., 23, 1069–1084, 2008.
Nowak, J. B., Huey, L. G., Russell, A. G., Neuman, J. A., Orsini, D., Sjostedt, S. J., Sullivan, A. P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E., and Fehsenfeld, F. C.: Analysis of urban gas-phase ammonia measurements from the 2002 Atlanta aerosol nucleation and real-time characterization experiment (ANARChE), J. Geophys. Res., 111, D17308, https://doi.org/10.1029/2006JD007113, 2006.
Nutter, P., Stensrud, D., and Xue, M.: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts, Mon. Weather Rev., 132, 2358–2377, 2004.
Näslund, E. and Thaning, L.: On the settling velocity in a nonstationary atmosphere, Aerosol Sci. Tech., 14, 247–256, 1991.
Odman, M. T.: Research on Numerical Transport Algorithms for Air Quality Simulation Models, EPA Report, EPA/660/R-97/142, National Exposure Research Laboratory, US EPA, Research Triangle Park, NC, 1998.
O'Neill, S. M. and Lamb, B. K.: Intercomparison of the community multiscale air quality model and CALGRID using process analysis, Environ. Sci. Technol., 39, 5742–5753, 2005.
Orthofer, R., Humer, H., Winiwarter, W., Kutschera, P., Loibl, W., Strasser, T., und Peters-Anders, J.: emikat.at – Emissionsdatenmanagement für die Stadt Wien, ARC system research, Bericht ARC-sys-0049, ARC systems research GmbH, Seibersdorf, Austria, April 2005.
Pace, T. G.: Methodology to Estimate the Transportable Fraction (TF) of Fugitive Dust Emissions for Regional and Urban Scale Air Quality Analyses, US EPA, Research Triangle Park NC, August 2005, http://www.epa.gov/ttnchie1/emch/dustfractions/transportable_fraction_080305_rev.pdf, 2005
Palmer, T. N., Molteni, F., Mureau, R., Buizza, R., Chapelet, P., and Tribbia, J.: Ensemble prediction, in: Proceedings of the ECMWF seminar on validation of models over Europe: Vol. I, ECMWF, Shinfield Park, Reading, RG2 9AX, UK, 21–66 (285 pp.), 1993.
Park, S. H., Gong, S. L., Gong, W., Makar, P. A., Moran, M. D., Zhang, J., and Stroud, C. A.: Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5 on air quality in North America, J. Geophys. Res., 115, D16210, https://doi.org/10.1029/2009JD013144, 2010
Pedersen, L. B. and Prahm, L. P.: A method for numerical solution of the advection equation, Tellus, XXVI, 594–602, 1974.
Péréz, C., Nickovic, S., Baldasano, J. M., Sicard, M., Rocadenbosch, F., and Cachorro, V. E.: A long Saharan dust event over the Western Mediterranean: Lidar, Sun photometer observations, and regional dust modelling, J. Geophys. Res., 111, D15214, https://doi.org/10.1029/2005JD006579, 2006.
Peters, K. and Eiden, R.: Modelling the dry deposition velocity of aerosol particles to a spruce forest, Atmos. Environ., 26A, 2555–2564, 1992.
Petroff, A., Mailliat, A., Amielh, M., and Anselmet, F.: Aerosol dry deposition on vegetative canopies, Part I: Review of present knowledge, Atmos. Environ., 42, 3625–3653, 2008.
Pielke Sr., R. A.: A recommended specific definition of "resolution", B. Am. Meteor. Soc., 72, 1914, 1991.
Pielke Sr., R. A.: Further comments on "The differentiation between grid spacing and resolution and their application to numerical modeling", B. Am. Meteor. Soc., 82, 699–700, 2001.
Pielke, R. A., Cotton, W. R., Walko, R. L. Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: A comprehensive meteorological modeling system RAMS. Meteorol. Atmos. Phys., 49, 69–91, 1992.
Pinder, R. W., Gilliam, R. C., Appel, K. W., Napelenok, S. L., Foley, K. M., and Gilliland, A. B.: Efficient probabilistic estimates of surface ozone concentration using an ensemble of model configurations and direct sensitivity calculations, Environ. Sci. Technol., 43, 2388–2393, 2009.
Piriou, J.-M., Redelsperger, J.-L., Geleyn, J.-F., Lafore, J.-P., and Guichard, F.: An approach for convective parameterization with memory: separating microphysics and transport in grid-scale equations, J. Atmos. Sci., 64, 4127–4139, 2007.
Pirovano, G., Coll, I., Bedogni, M., Alessandrini, A., Costa, M. P., Gabusi, V., Lasry, F., Menut, L., and Vautard, R.: On the influence of meteorological input on photochemical modelling of a severe episode over a coastal area, Atmos. Environ., 41, 6445–6464, 2007.
Pittini, T., Morselli, M. G., Finardi, S., D'Allura, A., Guerrini, E., Manazza, S., Muraro, M., Bande, S., Clemente, M., and De Maria, R.: An air quality forecasting modelling system for Novara Province, Northern Italy, in: Proceedings of the 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 2–5 July 2007, Cambridge UK, 2007.
Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing, J. Appl. Meteorol. Clim., 46, 1383–1395, 2007a.
Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model, J. Appl. Meteorol. Clim., 46, 1396–1409, 2007b.
Pleim, J. E. and Chang, J. S.: A non-local closure model for vertical mixing in the convective boundary layer, Atmos. Environ., 26A, 965–981, 1992.
Pleim, J. E. and Xiu, A.: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models, J. Appl. Meteorol., 34, 16–32, 1995
Pleim, J. E., Venkatram, A., and Yamartino, R.: ADOM/TADAP Model Development Program, The Dry Deposition Module, Vol. 4, Ontario Ministry of the Environment, Rexdale, Canada, 1984.
Pleim, J. E., Clarke, J. F., Finkelstein, P. L., Cooter, E. J., Ellestad, T. G., Xiu, A., and Angevine, W. M.: Comparison of measured and modeled surface fluxes of heat, moisture and EPA/600/R-99/030 12–77 chemical dry deposition, in: Air Pollution Modeling and its Application XI, edited by: Gryning, S.-E. and Schiermeier, F. A., Plenum Press, New York, 1996.
Pleim, J. E., Xiu, A., Finkelstein, P. L., and Clarke, J. F.: Evaluation of a coupled landsurface and dry deposition model through comparison to field measurements of surface heat, moisture, and ozone fluxes, in: Proceedings of the 12th Symposium on Boundary Layers and Turbulence, July 28–August 1997, Vancouver, BC, 1997.
Pleim, J. E., Xiu, A., Finkelstein, P. L., and Otte, T. L.: A coupled land-surface and dry deposition model and comparison to field measurements of surface heat, moisture, and ozone fluxes, Water Air Soil Poll. Focus, 1, 243–252, 2001.
Pohjola, M. A., Rantamäki, M., Kukkonen, J., Karppinen, A., and Berge, E.: Meteorological evaluation of a severe air pollution episode in Helsinki on 27–29 December 1995. Boreal Environ. Res., 9, 75–87, 2004.
Pohjola, M. A., Pirjola, L., Karppinen, A., Härkönen, J., Korhonen, H., Hussein, T., Ketzel, M., and Kukkonen, J.: Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki – Part I: Modelling results within the LIPIKA project, Atmos. Chem. Phys., 7, 4065–4080, https://doi.org/10.5194/acp-7-4065-2007, 2007.
Poupkou, A., Melas, D., Kioutsioukis, I., Lisaridis, I., Symeonidis, P., Balis, D., Karathanasis, S., and Kazadzis, S.: Regional air quality forecasting over Greece within PROMOTE, Atmospheric Science Conference, 8–12 May 2006, ESA ESRIN, Frascati, ESA SP-628, published on CD-ROM, p. 85.1, 2006.
Poupkou, A., Kioutsioukis, I., Lisaridis, I., Markakis, K., Giannaros, T., Katragkou, E., Melas, D., Zerefos, C., and Viras, L.: Evaluation in the greater Athens area of an air quality forecast system, in: Proceedings of the IX EMTE National-International Conference of Meteorology-Climatology and Atmospheric Physics, Thessaloniki, Greece, 28–31 May 2008, 759–766, 2008.
Poupkou, A., Giannaros, T., Markakis, K., Kioutsioukis, I., Curci, G., Melas, D., and Zerefos, C.: A model for European biogenic volatile organic compound emissions: software development and first validation, Environ. Modell. Softw., 25, 1845–1856, 2010.
Potempski, S., Galmarini, S., Addis, R., Astrup, P., Bader, S., Bellasio, R., Bianconi, R., Bonnardot, F., Buckley, R., D'Amours, R., van Dijk, A., Geertsema, G., Jones, A., Kaufmann, P., Pechinger, U., Persson, C., Polreich, E., Prodanova, M., Robertson, L., Sorensen, J., and Syrakov, D.: Multi-model ensemble analysis of the ETEX-2 experiment, Atmos. Environ., 42, 7250–7265, 2008.
Pour-Biazar, A., McNider, R. T., Roselle, S. J., Suggs, R., Jedlovec, G., Kim, S., Byun, D. W., Lin, J. C., Ho, T. C., Haines, S., Dornblaser, B., and Cameron, R.: Correcting photolysis rates on the basis of satellite observed clouds, J. Geophys. Res., 112, D10302, https://doi.org/10.1029/2006JD007422, 2007.
Prahm, L. P. and Christensen, O.: Long range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model, J. Appl. Meteorol., 16, 896–910, 1977.
Prank, M., Sofiev, M., Denier van der Gon, H. A. C., Kaasik, M., Ruuskanen, T. M., and Kukkonen, J.: A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling, Atmos. Chem. Phys., 10, 10849–10865, https://doi.org/10.5194/acp-10-10849-2010, 2010.
Prather, M. J.: Numerical advection by conservation of second-order moment, J. Geophys. Res., 91, 6671–6681, 1986.
Pressman, A. Y., Galperin, M. V., Popov, V. A., Afinogenova, O. G., Subbotin, S. R., Grigoryan, S. A., and Dedkova, I. S.: A routine model of chemical transformation and transport of nitrogen compounds, ozone, and PAN within a regional scale, Atmos. Environ., 25, 1851–1862, 1991.
Pryor, S. C., Barthelmie, R. J., Schoof, J. T., Sorensen, L. L., and Erickson, D. J.: Implications of heterogeneous chemistry of nitric acid for nitrogen deposition to marine ecosystems: observations and modeling, Water Air Soil Poll. Focus, 1, 99–107, 2001.
Putaud, J.-P., Raes, F., Van Dingenen, R., Bruggemann, E., Facchini, M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Huglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Muller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Torseth, K., and Wiedensohler, A.: A European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.
Radhakrishnan, K. and Hindmarsh, A.: Description and Use of LSODE, the Livermore Solver for Differential Equations, NASA reference publication 1327, CA, US, 1993.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate and the hydrological cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Rantamäki, M., Pohjola, M. A., Tisler, P., Bremer, P., Kukkonen, J., and Karppinen, A.: Evaluation of two versions of the HIRLAM numerical weather prediction model during an air pollution episode in southern Finland, Atmos. Environ., 39, 2775–2786, 2005.
Rao, S. T., Galmarini, S., and Puckett, K.: Air Quality Model Evaluation International Initiative (AQMEII) – Advancing the state of the science in regional photochemical modeling and its applications, B. Am. Meteor. Soc., 92, 23–30, 2011.
Rasch, P. J. and Kristjánsson, J. E.: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Climate, 11, 1587–1614, 1998.
Rauhala, J. and Schultz, D. M.: Severe thunderstorm and tornado warnings in Europe, Atmos. Res., 93, 369–380, 2009.
Reff, A., Bhave, P., Simon, H., Pace, T., Pouliot, G, Mobley, D., and Houyoux, M.: Emissions Inventory of PM2.5 Trace Elements across the United States, Environ. Sci. Technol., 43, 5790–5796, 2009.
Reimer, E. and Dlabka, M.: Local forecast of low level ozone by use of cluster methods and fuzzy-models, in: Air Pollution Modeling and its Application XIII, edited by: Gryning, S. and Batchvarova, E., Kluwer Academic/Plenum Publisher, New York, 2000.
Reimer, E. and Scherer, B.: An operational meteorological diagnostic system for regional air pollution analysis and long-term modelling. Air Poll. Modelling and its Applications IX, Plenum Press, 1992.
Reimer, E., Wiegand, G., Flemming, J., Dlabka, M., Enke, W., Berendorf, K., Wei{ß}, W., and Stern, R.: Development of an Ozone Short Range Forecast for the Smog Warning system, Final Report, UBA F{&}E project 29543817, Berlin, Germany, 2000 (in German).
Resler, J., Eben, K., Jurus, P., and Liczki, J.: Inverse modelling of emissions and their time profiles, Atmos. Poll. Res., 1, 288–295, https://doi.org/10.5094/APR.2010.036, 2010.
Riccio, A., Giunta, G., and Galmarini, S.: Seeking for the rational basis of the Median Model: the optimal combination of multi-model ensemble results, Atmos. Chem. Phys., 7, 6085–6098, https://doi.org/10.5194/acp-7-6085-2007, 2007.
Richardson, D. S.: The relative effect of model and analysis differences on ECMWF and UKMO operational forecasts, in: Proceedings of the ECMWF Workshop on Predictability, 20–22 October 1997, ECMWF, Shinfield Park, Reading RG2 9AX, UK, 1998.
Richtmyer, R. D.: A Survey of Difference Methods for Non-Steady Fluid Dynamics, NCAR Technical Note 63–2, National Center for Atmospheric Research, Boulder, CO, 1962, 325 pp., 1962.
Roach, P.: Computational Hydrodynamics, Hermosa Publishers, Albuquerque, New Mexico, 453 pp., ISBN 0-913478-05-9, 1976.
Robertson, L., Langner, J., and Engardt, M.: An Eulerian limited-area atmospheric transport model, J. Appl. Meteorol., 38, 190–210, 1999.
Roebber, P. J.: Visualizing multiple measures of forecast quality, Weather Forecast., 24, 601–608, 2009.
Roebber, P. J., Schultz, D. M., Colle, B. A., and Stensrud, D. J.: Toward improved prediction: high-resolution and ensemble modeling systems in operations, Weather Forecast., 19, 936–949, 2004.
Roselle, S. J. and Binkowski, F. S.: Chapt. 11: Cloud dynamics and chemistry, in: Science Algorithms of the EPA Models-3, Technical Report 600/R-99/030, EPA, Research Triangle Park, NC, 1999.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
Rouil, L., Honoré, C., Vautard, R., Beekmann, M., Bessagnet, B., Malherbe, L., Méleux, F., Dufour, A., Elichegaray, C., Flaud, J.-M., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, N.: PREV'AIR: an operational forecasting and mapping system for air quality in Europe, B. Am. Meteorol. Soc., 90, 73–83, https://doi.org/10.1175/2008BAMS2390.1, 2009. Russell, A. and Dennis, R.: NARSTO critical review of photochemical models and modeling, Atmos. Environ., 34, 2261–2282, 2000.
Russell, G. L. and Lerner, J. A.: A new finite-differencing scheme for the tracer transport equation, J. Appl. Meteorol., 20, 1483–1498, 1981.
Ryall, D. B. and Maryon, R. H.: Validation of the UK Met Office's NAME model against the ETEX dataset, Atmos. Environ., 32, 4265–4276, 1998.
Rötzer, T. and Chmielewski, F.-M.: Phenological maps of Europe, Clim. Res., 18, 249–257, 2001.
Saarnio, K., Aurela, M., Timonen, H., Saarikoski, S., Teinilä, K., Mäkelä, T., Sofiev, M., Koskinen, J., Aalto, P. P., Kulmala, M., Kukkonen, J., and Hillamo, R.: Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe, Sci. Total Environ., 408, 2527–2542, 2010.
Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., and Hillamo, R.: Chemical composition of aerosols during a major biomass burning episode over Northern Europe in spring 2006: experimental and modelling assessments, Atmos. Environ., 41, 3577–3589, 2007.
Saltelli, A., Chan, K., and Scott, E. (Eds.): Sensitivity Analysis, John Wiley & Sons, 475 pp., 2000.
Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E., and Minin, A.: Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland, Aerobiologia, 24, 211–230, https://doi.org/10.1007/s10453-008-9100-8, 2008.
Sandu, A., Daescu, D., and Carmichael, G. R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: I – Theory and software tools, Atmos. Environ., 37, 5083–5096, 2003.
Sandu, A., Daescu, D. N., Carmichael, G. R., and Chai, T. F.: Adjoint sensitivity analysis of regional air quality models, J. Comput. Phys., 204, 222–252, 2005.
San José, R., Salas, I., Mart\'{i}n, A., Pérez, J. L., Carpintero, A. B., Ramos, M. C., Peña, J. I., and González, R. M.: Development of a global-through-urban scale nested air quality forecast model (RSM-ANA): Application over the Madrid domain, SAMS, 42, 1551–1560, 2002.
San José, R., Pérez, J. L., and Gonzzález, R. M.: The evaluation of the air quality impact of an incinerator by using MM5-CMAQ-EMIMO modeling system: north of Spain case study, Thrid International Symposium on Air Quality Management at Urban, Regional and Global Scales, Istanbul, Turkey, 26–30 September 2005, 461–470, 2005.
San José, R., Baklanov, A., Sokhi, R. S., Karatzas, K., and Pérez, J. L.: Air quality modeling-state of the art, in: Proceedings of the iEMSs Third Biennial Meeting: "Summit on Environmental Modelling and Software", edited by: Voinov, A., Jakeman, A., and Rizzoli, A., International Environmental Modelling and Software Society, Burlington, USA, July 2006, CD-ROM, available at: http://www.iemss.org/iemss2006/sessions/all.html, last access: 10 February 2011, ISBN:1-4243-0852-6 978-1-4243-0852-1, 2006.
San José, R., Pérez, J. L., and González, R. M.: An operational real time air quality modelling system for industrial plants, Environ. Modell. Softw., 22, 297–307, 2007.
San José, R., Pérez, J. L., Morant, J. L., and Gonzalez, R. M.: European operational air quality forecasting systemby using MM5-CMAQ-EMIMO tool, Simul. Model. Pract. Th., 16, 1534–1540, 2008a.
San José, R., Perez, J. L., and Gonzalez, R. M.: The evaluation of the air quality impact of an incinerator by using MM5-CMAQ-EMIMO modeling system: north of Spain case study, Environ. Int., 34, 714–719, 2008b.
Sarwar, G., Luecken, D., Yarwood, G., Whitten, G., and Carter, W. P. L.: Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: preliminary assessment, J. Appl. Meteorol. Clim., 47, 3–14, 2008.
Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Builtjes, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys., 4, 857–874, https://doi.org/10.5194/acp-4-857-2004, 2004.
Schaap, M., Timmermans, R. M. A., Roemer, M., Boersen, G. A. C., Builtjes, P. J. H., Sauter, F. J., Velders, G. J. M., and Beck, J. P.: The LOTOS-EUROS model: description, validation and latest developments, Int. J. Environ. Pollut., 32, 270–290, 2008.
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system, J. Geophys. Res., 106, 28275–28293, 2001.
Schmidt, H., Derognat, C., Vautard, R., and Beekmann, M.: A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe, Atmos. Environ., 35, 6277–6297, 2001.
Schlünzen, K. H. and Fock, B. H. (Eds.): Model applications and model evaluation, Results of COST 728 Workshop at ZMAW, University of Hamburg, Germany – 15 and 16 May 2008, 2010.
Schlüenzen, K. H. and Sokhi, R. S.: Overview of tools and methods for meteorological and air pollution mesoscale model evaluation and user training, Joint report by WMO and COST 728, WMO/TD-No. 1457, Geneva, Switzerland, Electronic version: November 2008, 2008.
Schoenemeyer, T., Richter, K., and Smiatek, G.: Vorstudie uber ein raumlich und zeitlich aufgelostes Kataster anthropogener und biogener Emissionen fuer Bayern mit Entwicklung eines Prototyps und Anwendung fur Immissionsprognosen, Abschluss bericht an das Bayerische Landesamt fur Umweltschutz, Fraunhofer-Institut fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen, 1997.
Schulz, M., Chin, M., and Kinne, S.: The aerosol model comparison project, AeroCom, Phase II: Clearing up diversity, IGAC Newsl., No 41, May 2009.
Scott, B. C.: Parameterization of sulphate removal by precipitation, J. Appl. Meteorol., 17, 1375–1389, 1978.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, Inc., NY, 1998.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn., John Wiley & Sons, New Jersey, 2006.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France convective-scale operational model, Mon. Weather Rev., 139, 976–991, 2010.
Shankar, U., Bhave, P. V., Vukovich, J. M., and Roselle, S. J.: Implementation and initial applications of sea salt aerosol emissions and chemistry algorithms in the CMAQ v4.5-AERO4 module, in: 4th annual CMAS Models-3 Users' Conference, Chapel Hill, NC, 26–28 September 2005, available at: http://www.cmascenter.org/conference/2005/abstracts/p7.pdf, p. 6, 2005.
Silibello, C., Calori, G., Brusasca, G., Giudici, A., Angelino, E., Fossati, G., Peroni, E., and Buganza, E.: Modelling of PM10 concentrations over Milano urban area using two aerosol modules, Environ. Modell. Softw., 23, 333–343, 2008.
Simmons, A. J., Mureau, R., and Petroliagis, T.: Error growth and predictability estimates for the ECMWF forecasting system, Q. J. Roy. Meteor. Soc., 121, 1739–1771, 1995.
Simmonds, P. G., Derwent, R. G., McHulloch, A., O'Doherty, S., and Gaudry, A.: Long term trends in concentrations of halocarbons and radiatively active gases in Atlantic and European air masses monitored at Mace Head, Ireland from 1987–1994, Atmos. Environ., 30, 4041–4063, 1996.
Simpson, D.: Long period modeling of photochemical oxidants in Europe, Calculations for July 1985, Atmos. Environ., 26, 1609–1634, 1992.
Simpson, D., Andersson-Sköld, Y., and Jenkin, M. E.: Updating the Chemical Scheme for the EMEP MSC-W Oxidant Model: Current Status, Norwegian Meteorological Institute, EMEP MSC-W Note 2/93, Oslo, Norway, 1993.
Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R.: Biogenic emissions in Europe 1, Estimates and uncertainties, J. Geophys. Res., 100, 22875–22890, 1995.
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G.: Inventorying emissions from nature in Europe, J. Geophys. Res., 104, 8113–8152, 1999.
Simpson, D., Fagerli, H., Jonson, J. E., Tsyro, S., Wind, P., and Tuovinen, J.-P.: Transboundary Acidification and Eutrophication and Ground Level Ozone in Europe: Unified EMEP Model Description, EMEP Status Report 1/2003 Part I, EMEP/MSC-W Report, The Norwegian Meteorological Institute, Oslo, Norway, 2003.
Sioutas, C., Pandis, S. N., Allen, D. T., and Solomon, P. A.: Preface: Special Issue of Atmospheric Environment on Findings from EPA’s Particulate Matter Supersites Program, Atmos. Environ., 38, 3101–3106, 2004.
Skamarock, W. C.: Positive-definite and montonic limiters for unrestricted-timestep transport schemes, Mon. Weather Rev., 134, 2241–2250, 2006.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for research and NWP applications, J. Comput. Phys., 227, 3465–3485, 2008.
Skamarock, W. C. and Weisman, M. L.: The impact of positive-definite moisture transport on NWP precipitation forecasts, Mon. Weather Rev., 137, 488–494, 2009.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2, available at: http://www.wrf-model.org/wrfadmin/publications.php, last access: 10 February 2011, 2005.
Slinn, W. G. N.: Predictions for particle deposition to vegetative canopies, Atmos. Environ., 16, 1785–1794, 1982.
Slinn, S. A. and Slinn, W. G. N.: Predictions for particle deposition on natural waters, Atmos. Environ., 14, 1013–1026, 1980.
Slørdal, L. H., McInnes, H., and Krognes, T.: The air quality information system AirQUIS, Environ. Sci. Eng., 1, 40–47, 2008.
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963.
Smith, F. B. and Clark, M. J.: The transport and deposition of radioactive debris from the Chernobyl nuclear power plant accident with special emphasis on consequences to the UK, Meterorological Office Scientific Paper, N42, HMSO, London, 1989.
Smolarkiewicz, P. K.: The multidimensional Crowley advection scheme, Mon. Weather Rev., 113, 1109–1130, 1982.
Sofiev, M.: A model for the evaluation of long-term airborne pollution transport at regional and continental scales, Atmos. Environ., 34, 2481–2493, 2000.
Sofiev, M. and Atlaskin, E.: An example of application of data assimilation technique and adjoint dispersion modelling to an inverse dispersion problem based on the ETEX experiment, in: Air Pollution Modelling and its Applications XVII, edited by: Borrego, C. and Norman, A.-L., Springer (2007), New York, USA, ISBN-10:0-387-28255-6, 438–449, 2004.
Sofiev, M., Gusev, L., and Strijkina, I.: Results of MSC-East current model calibration with measurement of \chem{SO_x}, NOx, \chem{NH_x} 1987–93, EMEP/MSC-E Report 4/94, Co-operative programme for monitoring and evalutation of the long-range transmission of air pollutants in Europe, March 1994, Meteorological Synthesizing Center East, Moscow, Russia, 125 pp., 1994
Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., and Kukkonen, J.: A dispersion modelling system SILAM and its evaluation against ETEX data, Atmos. Environ., 40, 674–685, 2006a.
Sofiev, M., Siljamo, P., Ranta, H., and Rantio-Lehtimäki, A.: Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study, Int. J. Biometeorol., 50, 392–402, 2006b.
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., and Kukkonen, J.: An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys., 9, 6833–6847, https://doi.org/10.5194/acp-9-6833-2009, 2009.
Sofiev, M., Genikhovich, E., Keronen, P., and Vesala, T.: Diagnosing the Surface Layer Parameters for Dispersion Models within the Meteorological-to-Dispersion Modeling Interface, J. Appl. Meteorol. Clim., 49, 221–233, https://doi.org/10.1175/2009JAMC2210.1, 2010.
Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Jaeger, C., Rassmussen, A., Severova, E., Oksanen, Karppinen, A., and Kukkonen, J.: From Russia to Iceland: an evaluation of a large-scale pollen and chemical air pollution episode during April and May, 2006, in: Aerobiological Monographs, edited by: Clot, B., Comtois, P., and Escamilla-Garcia, B., v.1. MeteoSwiss and Univ. of Montreal, Montreal, Canada, 95–114, 2011a.
Sofiev, M., Soares, J., Prank, M., de Leeuw, G., and Kukkonen, J.: A regional-to-global model of emission and transport of sea salt particles in the atmosphere, J. Geophys. Res., 116, D21302, https://doi.org/10.1029/2010JD014713, 2011b.
Sokhi, R., Baklanov, A., and Schluenzen, H. (Eds.): Mesoscale Meteorological Modelling for air Pollution and Dispersion Applications, COST728 Final Book, Anthem Press, in press, 260 pp., 2010.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): Climate Change: the Physical Basis, IPCC Report 2007, Cambridge University Press, Cambridge, UK, 2007.
Solomos, S., Kallos, G., Kushta, J., Astitha, M., Tremback, C., Nenes, A., and Levin, Z.: An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys., 11, 873–892, https://doi.org/10.5194/acp-11-873-2011, 2011.
Sportisse, B.: A review of parameterizations for modelling dry deposition and scavenging of radionuclides, Atmos. Environ., 41, 2683–2698, 2007.
Spyrou, C., Mitsakou, C., Kallos, G., Louka, P., and Vlastou, G.: An improved limited-area model for describing the dust cycle in the atmosphere, J. Geophys. Res., 115, D17211, https://doi.org/10.1029/2009JD013682, 2010.
Stanier, C. O. and Solomon, P. A.: Preface to Special Section on Particulate Matter Supersites Program and Related Studies, J. Geophys. Res., 111, D10S01, https://doi.org/10.1029/2006JD007381, 2006.
Staniforth, A.: Regional modeling: A theoretical discussion, Meteorol. Atmos. Phys., 63, 15–29, 1997.
Staniforth, A. and Côté, J.: Semi-Lagrangian integration schemes for atmospheric models – a review, Mon. Weather Rev., 119, 2206–2223, 1991.
Steinbrecher, R.: Isoprene: production by plants and ecosystem-level estimates, in: Biogenic Volatile Hydrocarbon Compounds in the Atmosphere, edited by: Helas, G., Slanina, J., and Steinbrecher, R., SPF Academic Publishing, Amsterdam, 101–104, 1997.
Stensrud, D. J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, New York, 459 pp., 2007.
Stern, R.: Entwicklung und Anwendung des chemischen Transportmodells REM/CALGRID, Abschlussbericht zum Forschungs- und Entwicklungsvorhaben 298 41 252 des Umweltbundesamts, Modellierung und Prüfung von Strategien zur Verminderung der Belastung durch Ozon, Freie Universität Berlin, Institut für Meteorologie, 2003 (in German).
Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., Memmesheimer, M., Feldmann, H., Renner, E., Wolke, R., and Kerschbaumer, A.: A model inter-comparison study focussing on episodes with elevated PM10 concentrations, Atmos. Environ., 42, 4567–4588, 2008.
Stockwell, W. R.: A homogeneous gas phase mechanism for use in a regional acid deposition model, Atmos. Environ., 20, 1615–1632, 1986.
Stockwell, W. R. and Kley, D.: The Euro-RADMechanism, A Gas-Phase Chemical Mechanism for European Air Quality Studies, Berichte des Forschungszentrums Jülich 2686, Research Centre Juelich, Germany, 114 pp., 1994.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95, 16343–16367, 1990.
Stockwell, W. R., Kirchner, F., Khun, M., and Seefeld, S.: A new mechanism for regional atmospheric chemistry modelling, J. Geophys. Res., 102, 25847–25879, 1997.
Stohl, A., Williams, E., Wotawa, G., and Kromp-Kolb, H.: A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone in Europe, Atmos. Environ., 30, 3741–3755, 1996.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Straka, J.: Cloud and Precipitation Microphysics: Principles and Parameterizations, Cambridge University Press, Cambridge, England, 384 pp., 2009.
Symeonidis, P., Poupkou, A., Gkantou, A., Melas, D., Yay, O. D., Pouspourika, E., and Balis, D.: Development of a computational system for estimating biogenic NMVOCs emissions based on GIS technology, Atmos. Environ., 42, 1777–1789, 2008.
Syrakov, D.: On the TRAP advection scheme – description, tests and applications, in: Regional Modelling of Air Pollution in Europe, edited by: Geernaert, G., Walloe-Hansen, A., and Zlatev, Z., National Environmental Research Institute, Denmark, 141–152, 1996.
Syrakov, D. and Galperin, M.: On a new BOTT-type advection scheme and its further improvement, in: Proceedings of the first GLOREAM Workshop, September 1997, edited by: Hass, H. and Ackermann, I. J., Ford Forschungszentrum Aachen, Aachen, Germany, 103–109, 1997.
Syrakov, D. and Galperin, M.: On some explicit advection schemes for dispersion modelling applications, Int. J. Environ. Pollut., 14, 267–277, 2000.
Sørensen, J. H., Baklanov, A., and Hoe, S.: The Danish emergency response model of the atmosphere, J. Environ. Radioactiv., 96, 122–129, 2007.
Tainio, M., Sofiev, M., Hujo, M., Tuomisto, J. T., Loh, M., Jantunen, M. J., Karppinen, A., Kangas, L., Karvosenoja, N., Kupiainen, K., Porvari, P., and Kukkonen, J.: Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions, Atmos. Environ., 43, 3052–3059, https://doi.org/10.1016/j.atmosenv.2009.03.030, 2009.
Tainio, M., Tuomisto, J. T., Pekkanen, J., Karvosenoja, N., Kupiainen, K., Porvari, P., Sofiev, M., Karppinen, A., Kangas, L., and Kukkonen, J.: Uncertainty in health risks due to anthropogenic primary fine particulate matter from different source types in Finland, Atmos. Environ., 44, 2125–2132, https://doi.org/10.1016/j.atmosenv.2010.02.036, 2010.
Tang, Y., Carmichael, G. R., Thongboonchoo, N., Chai, T., Horowitz, L. W., Pierce, R. B., Al-Saadi, J. A., Pfister, G., Vukovich, J. M., Avery, M. A., Sachse, G. W., Ryerson, T. B., Holloway, J. S., Atlas, E. L., Flocke, F. M., Weber, R. J., Huey, L. G., Dibb, J. E., Streets, D. G., and Brune, W. H.: The influence of lateral and top boundary conditions on regional air quality prediction: a multi-scale study coupling regional and global chemical transport models, J. Geophys. Res., 112, D10S18, https://doi.org/10.1029/2006JD007515, 2007.
Tang, X., Wang, Z., Zhu, J., Gbaguidi, A. E., Wu, Q., Li, J., and Zhu, T.: Sensitivity of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme, Atmos. Environ., 44, 3833–3842, 2010.
Tanimoto, H., Sawa, Y., Yonemura, S., Yumimoto, K., Matsueda, H., Uno, I., Hayasaka, T., Mukai, H., Tohjima, Y., Tsuboi, K., and Zhang, L.: Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data, Atmos. Chem. Phys., 8, 3867–3880, https://doi.org/10.5194/acp-8-3867-2008, 2008.
Tarrasón, L., Fagerli, H., Jonson, J. E., Klein, H., van Loon, M., Simpson, D., Tsyro, S., Vestreng, V., Wind, P., Posch, M., Solberg, S., Spranger, T., Cuvelier, K., Thunis, P., and White, L.: Transboundary Acidification, Eutrophication and Ground Level Ozonein Europe, EMEP Report 1/2004, ISSN 0806-4520, 2004.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, M. S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment, Atmos. Chem. Phys., 7, 4489–4501, https://doi.org/10.5194/acp-7-4489-2007, 2007.
Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, J.-L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R. J., Volz-Thomas, A., and Chéroux, F.: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes, Atmos. Chem. Phys., 7, 5815–5860, https://doi.org/10.5194/acp-7-5815-2007, 2007.
Tiedtke, M.: A comprehensive mass flux convection scheme for cumulus parametrization in large-scale model, Mon. Weather Rev., 117, 1779–1800, 1989.
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather Rev., 121, 3040–3061, 1993.
Tilmes, S., Brandt, J., Flatoy, F., Bergström, R., Flemming, J., Langner, J., Christensen, J. H., Frohn, L. M., Hov, O., Jacobson, I., Reimer, E., Stern, R., and Zimmermann, J.: Comparison of five eulerian air pollution forcasting systems for the Summer of 1999 using the german Ozone monitoring data, J. Atmos. Chem., 42, 91–121, 2002.
Timin, B., Wesson, K., Dolwick, P., Possiel, N., and Phillips, S.: An exploration of model concentration differences between CMAQ and CAMx, in: Proceedings of the 6{th} Annual CMAS Conference, Chapel Hill, NC, available online at: http://www.cmascenter.org/conference/2007/agenda.cfm, last access: 9 February 2011, 1–3 October 2007.
TNO Report: LOTOS-EUROS: Documentation, B{&}O-A R 2005/297, Order No: 36584, TNO Built Environment and Geosciences, The Netherlands, 2005.
Tracton, M. S. and Kalnay, E.: Operational ensemble prediction at the National Meteorological Center: practical aspects, Weather Forecast., 8, 379–398, 1993.
Tribbia, J. J. and Anthes, R. A.: Scientific basis of modern weather prediction, Science, 31, 493–499, 1987.
Tsyro, S.: First Estimates of the Effect of Aerosol Dynamics in the Calculation of PM10 and PM2.5, EMEP/MSC-W Note 4/2002, Norwegian Meteorological Institute, Oslo, Norway, Research Note no. 76, http://emep.int/publ/reports/2002/mscw_note_4_2002.pdf, last access: 11 February 2011, 2002.
Tunved, P., Hansson, H.-C., Kerminen, V.-M., Ström, J., Dal Maso, M., Lihavainen, H., Viisanen, Y., Aalto, P. P., Komppula, M., and Kulmala, M.: High natural aerosol loading over boreal forests, Science, 312, 261–263, 2006.
Tørseth, K. and Fahre Vik, A.: An overview of WG1: "Exhange of AQ Forecasts and input data", in: Quality of life information services towards a sustainable society for the atmospheric environment, COST Action ES0602, Workshop Proceedings, edited by: Karatzas, K. and Kukkonen, J., Sofia Publications S. A., Thessaloniki, Greece, ISBN 978-960-6706-20-2, 39–42, 2009.
Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W., Ødegaard, V., Rodriguez, E., Rummukainen, M., Rõõm, R., Sattler, K., Hansen, B. S., Savijärvi, H., Schreur, B. W., Sigg, R., The, H., and Tijm, A.: HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, c/o Per Undén SMHI, SE-601 76 Norrköping, Sweden, available at: http://hirlam.org/index.php?option=com_docman&task=doc_download&gid=270&Itemid=70, last access: 9 February 2011, 2002.
van der Gon Denier, H. A. C., Visschedijk, A. J. H., van der Brugh, H., Dröge, R., and Kuenen, J.: A Base Year (2005) MEGAPOLI European Gridded Emission Inventory, 1st version, Deliverable 1.2, MEGAPOLI Scientific Report 09-02, 17 pp., MEGAPOLI-02-REP-2009-10, ISBN 978-87-992924-2-4, TNO Built Environment and Geosciences, Utrecht, The Netherlands, 2009.
van Leer, B.: Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361–370, 1974.
van Leer, B.: Towards the ultimate conservative difference scheme, IV. A new approach to numerical convection, J. Comput. Phys., 23, 276–299, 1977.
van Loon, M., Roemer, M. G. M., and Builtjes, P. J. H.: Model Intercomparison in the framework of the review of the Unified EMEP model, TNO-Report R 2004/282, 53 pp., 2004.
van Loon, M., Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, C., Graff, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L., and Wind, P.: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble, Atmos. Environ., 41, 2083–2097, 2007.
Vautard, R., Beekmann, M., and Menut, L.: Applications of adjoint modelling in atmospheric chemistry: sensitivity and inverse modelling, Environ. Modell. Softw., 15, 703–709, 2000
Vautard, R., Beekmann, M., Roux, J., and Gombert, D.: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area, Atmos. Environ., 35, 2449–2461, 2001.
Vautard, R., Menut, L., Beekmann, M., Chazette, P., Flamant, P. H., Gombert, D., Guédalia, D., Kley, D., Lefebvre, M.-P., Martin, D., Mégie, G., Perros, P., and Toupance, G.: A synthesis of the air pollution over the Paris region (ESQUIF) field campaign, J. Geophys. Res., 108, 8558, https://doi.org/10.1029/2003JD003380, 2003.
Vautard, R., Bessagnet, B., Chin, M., and Menut, L.: On the contribution of natural Aeolian sources to particulate matter concentrations in Europe: testing hypotheses with a modeling approach, Atmos. Environ., 39, 3291–3303, 2005.
Vautard, R., Van Loon, M., Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P. H. J., Christensen, J. H., Cuvelier, C., Graff, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L., and Wind, P.: Is regional air quality model diversity representative of uncertainty for ozone simulation?, Geophys. Res. Lett., 33, L24818, https://doi.org/10.1029/2006GL027610, 2006.
Vautard, R., Builtjes, P. H. J., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., Honoré, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Stern, R., Tarrasón, L., and Wind, P.: Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project, Atmos. Environ., 41, 173–188, 2007.
Vautard, R., Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P. H. J., Christensen, J. H., Cuvelier, C., Foltescu, V., Graff, A., Kerschbaumer, A., Krol, M., Roberts, P., Rouil, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., and Wind, P.: Skill and uncertainty of a regional air quality model ensemble, Atmos. Environ., 43, 4822–4832, https://doi.org/10.1016/j.atmosenv.2008.09.083, 2008.
Venkatram, A.: The expected deviation of observed concentrations from predicted ensemble means, Atmos. Environ., 13, 1547–1549, 1979.
Venkatram, A.: Inherent uncertainty in air quality modeling, Atmos. Environ., 22, 1221–1227, 1988.
Venkatram, A. and Pleim, J.: The electrical analogy does not apply to modelling dry deposition of particles, Atmos. Environ., 33, 3075–3076, 1999.
Veriankaitë, L., Siljamo, P., Sofiev, M., Šaulienë, I., and Kukkonen, J.: Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania, Aerobiologia, 26, 47–62, 2010.
Vestreng, V., Rigler, E., Adams, M., Kindbom, K., Pacyna, J. M., Denier van der Gon, H., Reis, S., and Travnikov, O.: Inventory Review 2006, Emission Data Reported to LRTAP and NEC Directive, Stage 1, 2 and 3 Review and Evaluation of Inventories of HM and POPs, EMEP/MSC-W Technical Report 1/2006, ISSN 1504-6179, Oslo, Norwegian Meteorological Institute, http://www.emep.int/publ/reports/2006/emep_technical_1_2006.pdf, 2006.
Vignati, E., Wilson, J., and Stier, P.: M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models, J. Geophys. Res., 109, D22202, https://doi.org/10.1029/2003JD004485, 2004.
Vijayaraghavan, K., Seigneur, C., Karamchandani, P., and Chen, S.-Y.: Development and application of a multi-pollutant model for atmospheric mercury deposition, J. Appl. Meteorol. Clim., 46, 1341–1353, 2007.
Visschedijk, A. J. H., Zandveld, P. Y. J., and Denier van der Gon, H.: High Resolution Gridded European Emission Database for the EU Integrate Project GEMS, TNO-report 2007-A-R0233/B, 2007.
Visschedijk, A. J. H., Denier van der Gon, H., van der Brugh, H., and Droge. R.: A high resolution European emission data base for the year 2005, TNO Report TNO-034-UT-2010-01895_RPT-ML, 2010.
Vukovich, J. and Pierce, T.: The Implementation of BEIS3 within the SMOKE Modeling Framework, GA, in: Proceedings of the 11th International Emissions Inventory Conference, Atlanta, Georgia, 15–18 April available online: www.epa.gov/ttn/chief/conference/ei11/modeling/vukovich.pdf, 2002.
Walcek, C. J.: Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection, J. Geophys. Res., 105, 9335–9348, 2000.
Walcek, C. J., Brost, R. A., Chang, J. S., and Wesely, M. L.: SO2, sulfate and HNO3, deposition velocities computed using regional landuse and meteorological data, Atmos. Environ., 20, 949–964, 1986.
Wang, H., Skamarock, W. C., and Feingold, G.: Evaluation of scalar advection schemes in the advanced research WRF model using large-Eddy simulations of aerosol-cloud interaction, Mon. Weather Rev., 137, 2547–2558, https://doi.org/10.1175/2009MWR2820.1, 2009.
Wang, Q., Han, Z., Wang, T., and Zhang, R.: Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in Eastern China, Sci. Total Environ., 395, 41–49, 2008.
Wang, X., Zhang, L., and Moran, M. D.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685–5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
Webster, H. N. and Thomson, D. J.: Validation of a Lagrangian model plume rise scheme using the Kincaid dataset, Atmos. Environ., 36, 5031–5042, 2002.
Webster, H. N., Carroll, E. B., Jones, A. R., Manning, A. J., and Thomson, D. J.: The Buncefield oil depot incident: a discussion of the meteorology, Weather, 62, 325–330, 2007.
Weil, J. C., Sykes, R. I., and Venkatram, A.: Evaluating air quality models: review and outlook, J. Appl. Meteorol., 31, 1121–1145, 1992.
Wesely, M. L.: Parametrization of surface resistances to gaseous deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, 1989.
Wesely, M. L. and Hicks, B. B.: Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation, JAPCA J. Air Waste Manage., 27, 1110–1117, 1977.
Wesely, M. L. and Hicks, B. B.: A review of the current status of knowledge on dry deposition, Atmos. Environ., 34, 2261–2282, 2000.
Whitby, E. R. and McMurry, P. H.: Modal aerosol dynamics modelling, Aerosol Sci. Technol., 27, 673–688, 1997.
Wicker, L. J. and Skamarock, W. C.: Time splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088–2097, 2002.
Williams, E. J., Parrish, D. D., and Fehsenfeld, F. C.: Determination of NOx emissions from soils, J. Geophys. Res., 92, 2173–2179, 1987.
Williams, E. J., Guenther, A., and Fehsenfeld, F. C.: An inventory of nitric oxide emissions from soils in the United States, J. Geophys. Res., 97, 7511–7519, 1992.
Williamson, D. L. and Rasch, P. J.: Two-dimensional semi-lagrangian transport with shape-preserving interpolation, Mon. Weather Rev., 117, 102–129, 1989.
Wiman, B. L. B. and Agren, G. I.: Aerosol depletion and deposition in forests – a model analysis, Atmos. Environ., 19, 335–347, 1985.
Woods, A.: Medium-Range Weather Prediction: The European Approach, The Story of the European Centre for Medium-Range Weather Forecasts, Springer, 270 pp., New York, USA, 2006.
Yamartino, R. J.: Nonnegative, conserved scalar transport using grid-cell-centered, spectrally constrained Blackman cubics for applications on a variable-thickness mesh, Mon. Weather Rev., 121, 753–763, 1993.
Yamartino, R. J., Scire, J. S., Carmichael, G. R., and Chang, Y. S.: The CALGRID mesoscale photochemical grid model – Part I. Model formulation, Atmos. Environ., 26A, 1493–1512, 1992.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report to the US EPA, RT-0400675, 2005.
Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J. T., Eder, B., Schere, K., Swall, J., and Robarge, W.: An assessment of the ability of 3-D air quality models with current thermodynamic equilibrium models to predict aerosol \chem{NO_3^-}, J. Geophys. Res., 110, D07S13, https://doi.org/10.1029/2004JD004718, 2005.
Yu, X. and Lee, T.-Y.: Role of convective parameterization in simulations of a convection band at grey-zone resolutions, Tellus, 62A, 617–632, 2010.
Yu, Y., Sokhi, R. S., Kitwiroon, N., Middleton, D. R., and Fisher, B.: Performance characteristics of MM5-SMOKE-CMAQ for a summer photochemical episode in Southeast England, UK, Atmos. Environ., 42, 4870–4883, 2008.
Zakey, A. S., Solmon, F., and Giorgi, F.: Implementation and testing of a desert dust module in a regional climate model, Atmos. Chem. Phys., 6, 4687–4704, https://doi.org/10.5194/acp-6-4687-2006, 2006.
Zakey, A. S., Giorgi, F., and Bi, X.: Modeling of Sea Salt in a Regional Climate Model: Fluxes and Radiative Forcing, J. Geophys. Res.-Atmos., 113, D14221, https://doi.org/10.1029/2007JD009209, 2008.
Zaveri, R. Z. and Peters, L. K.: A new lumped structure photochemical mechanism for long-scale applications, J. Geophys. Res., 104, 30387–30415, 1999.
Zender, C. S., Bian, H., and Newman, D.: Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology, J. Geophys. Res.-Atmos., 108, D14, https://doi.org/10.1029/2002JD002775, 2003.
Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen, G. S.: Size distribution of sea-salt emissions as a function of relative humidity, Atmos. Environ., 39, 3373–3379, 2005b.
Zhang, L., Brook, J. R. S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, 2001.
Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S.: Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system, Atmos. Environ., 36, 537–560, 2002.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2895–2932, https://doi.org/10.5194/acp-8-2895-2008, 2008.
Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z., and Binkowski, F. S.: Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models, Aerosol Sci. Technol., 31, 487–514, 1999.
Zhang, Y., Hu, X., Wang, K., Huang, J., Fast, J. D., Gustafson, W. I., Chu, D. A., and Jang, C. J.: Evaluation of WRF-Chem-MADRID with satellite and surface measurements: chemical and optical properties of aerosols, American Geophysical Union, Fall Meeting 2005, abstract A34A-02, Fall Meeting, 5–9 December, San Francisco, GA, 2005a.
Zhang, Y., Vijayaraghavan, K., and Seigneur, C.: Evaluation of Three Probing Techniques in a Three-Dimensional Air Quality Model, J. Geophys. Res., 110, D02305, https://doi.org/10.1029/2004JD005248, 2005b.
Zhou, Y., Brunner, D., Boersma, K. F., Dirksen, R., and Wang, P.: An improved tropospheric NO2 retrieval for OMI observations in the vicinity of mountainous terrain, Atmos. Meas. Tech., 2, 401–416, https://doi.org/10.5194/amt-2-401-2009, 2009.
Zhu, Y, Hinds, W. C, Kim, S. K, Shen, S, and Sioutas, C.: Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmos. Environ., 36, 4323–4335, https://doi.org/10.1016/S1352-2310(02)00354-0, 2002.
Zilitinkevich, S., Esau, I., and Baklanov, A.: Further comments on the equilibrium height of neutral and stable planetary boundary layers, Q. J. Roy. Meteorol. Soc., 133, 265–271, 2007.
Zlatev, Z.: Coupling advection with chemistry in large air pollution models, Proceedings of the NMR Workshop on Eulerian Air Pollution Models, Helsinki, Finland, 1–2 November, 1995.
Zlatev, Z. and Berkowicz, R.: Numerical treatment of large-scale air pollution model, J. Comput. Appl. Math., 16, 93–109, 1988.
Altmetrics
Final-revised paper
Preprint