Articles | Volume 10, issue 22
Atmos. Chem. Phys., 10, 10705–10716, 2010
https://doi.org/10.5194/acp-10-10705-2010
Atmos. Chem. Phys., 10, 10705–10716, 2010
https://doi.org/10.5194/acp-10-10705-2010

Research article 16 Nov 2010

Research article | 16 Nov 2010

Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields

A. M. Sayer et al.

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Satellite retrieval of aerosol combined with assimilated forecast
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021,https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021,https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021,https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020,https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary
Aerosol-enhanced high precipitation events near the Himalayan foothills
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020,https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary

Cited articles

Birks, A.: Improvements to the AATSR IPF relating to land surface temperature, ESA Technical note, 2004.
Brennan, J. I., Kaufman, Y. J., Koren, I., and Li, R. R.: Aerosol-cloud interaction-misclassification of MODIS clouds in heavy aerosol, IEEE Trans. Geosci. Remote Sens., 43, 911–915, https://doi.org/10.1109/TGRS.2005.844662, 2005.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in atmospheric constituents and in radiative forcing, Cambridge University Press, in: Climate Change 2007, the physical science basis. Contribution of Working Group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007.
Grey, W. M. F., North, P. R. J., Los, S. O., and Mitchell, R. M.: Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons, IEEE Trans. Geosci. Remote Sens., 44, 2184–2197, https://doi.org/10.1109/TGRS.2006.872079, 2006.
Download
Altmetrics
Final-revised paper
Preprint