Articles | Volume 25, issue 14
https://doi.org/10.5194/acp-25-7563-2025
https://doi.org/10.5194/acp-25-7563-2025
Research article
 | 
18 Jul 2025
Research article |  | 18 Jul 2025

Source-explicit estimation of brown carbon in the polluted atmosphere over the North China Plain: implications for distribution, absorption, and the direct radiative effect

Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li

Related authors

Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: implications for radiative effect
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020,https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary

Cited articles

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
Bai, K., Li, K., Ma, M., Li, K., Li, Z., Guo, J., Chang, N.-B., Tan, Z., and Han, D.: LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion, Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022, 2022 (data available at: https://doi.org/10.12041/geodata.1776940.ver1.db). 
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley, ISBN 9780471293408, https://doi.org/10.1002/9783527618156, 1998. 
Bond, T. C.: Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075–4078, https://doi.org/10.1029/2001GL013652, 2001. 
Download
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Share
Altmetrics
Final-revised paper
Preprint