Articles | Volume 24, issue 19
https://doi.org/10.5194/acp-24-11081-2024
https://doi.org/10.5194/acp-24-11081-2024
Research article
 | 
02 Oct 2024
Research article |  | 02 Oct 2024

Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon

Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey

Related authors

Biosphere-atmosphere related processes influence trace-gas and aerosol satellite-model biases
Emma Sands, Ruth M. Doherty, Fiona M. O'Connor, Richard J. Pope, James Weber, and Daniel P. Grosvenor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4014,https://doi.org/10.5194/egusphere-2024-4014, 2025
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimation of diurnal emissions of CO2 from thermal power plants using spaceborne integrated path differential absorption (IPDA) lidar
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
Atmos. Chem. Phys., 25, 6725–6740, https://doi.org/10.5194/acp-25-6725-2025,https://doi.org/10.5194/acp-25-6725-2025, 2025
Short summary
Increase in carbon monoxide (CO) and aerosol optical depth (AOD) observed by satellites in the Northern Hemisphere over the summers of 2008–2023, linked to an increase in wildfires
Antoine Ehret, Solène Turquety, Maya George, Juliette Hadji-Lazaro, and Cathy Clerbaux
Atmos. Chem. Phys., 25, 6365–6394, https://doi.org/10.5194/acp-25-6365-2025,https://doi.org/10.5194/acp-25-6365-2025, 2025
Short summary
Monitoring of total and off-road NOx emissions from Canadian oil sands surface mining using the Ozone Monitoring Instrument
Chris A. McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nickolay Krotkov, and Lok N. Lamsal
Atmos. Chem. Phys., 25, 6093–6120, https://doi.org/10.5194/acp-25-6093-2025,https://doi.org/10.5194/acp-25-6093-2025, 2025
Short summary
Large reductions in satellite-derived and modelled European lower-tropospheric ozone during and after the COVID-19 pandemic (2020–2022)
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Wuhu Feng, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4391–4401, https://doi.org/10.5194/acp-25-4391-2025,https://doi.org/10.5194/acp-25-4391-2025, 2025
Short summary
Air quality trends and regimes in South Korea inferred from 2015–2023 surface and satellite observations
Yujin J. Oak, Daniel J. Jacob, Drew C. Pendergrass, Ruijun Dang, Nadia K. Colombi, Heesung Chong, Seoyoung Lee, Su Keun Kuk, and Jhoon Kim
Atmos. Chem. Phys., 25, 3233–3252, https://doi.org/10.5194/acp-25-3233-2025,https://doi.org/10.5194/acp-25-3233-2025, 2025
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a, b
Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11, 8037–8052, https://doi.org/10.5194/acp-11-8037-2011, 2011. a
Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O.: Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday Discuss., 165, 203–235, https://doi.org/10.1039/C3FD00052D, 2013. a
Artaxo, P., Hansson, H.-C., Andreae, M. O., Bäck, J., Alves, E. G., Barbosa, H. M. J., Bender, F., Bourtsoukidis, E., Carbone, S., Chi, J., Decesari, S., Després, V. R., Ditas, F., Ezhova, E., Fuzzi, S., Hasselquist, N. J., Heintzenberg, J., Holanda, B. A., Guenther, A., Hakola, H., Heikkinen, L., Kerminen, V.-M., Kontkanen, J., Krejci, R., Kulmala, M., Lavric, J. V., de Leeuw, G., Lehtipalo, K., Machado, L. A. T., McFiggans, G., Franco, M. A. M., Meller, B. B., Morais, F. G., Mohr, C., Morgan, W., Nilsson, M. B., Peichl, M., Petäjä, T., Praß, M., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Von Randow, C., Riipinen, I., Rinne, J., Rizzo, L. V., Rosenfeld, D., Silva Dias, M. A. F., Sogacheva, L., Stier, P., Swietlicki, E., Sörgel, M., Tunved, P., Virkkula, A., Wang, J., Weber, B., Yáñez-Serrano, A. M., Zieger, P., Mikhailov, E., Smith, J. N., and Kesselmeier, J.: Tropical and Boreal Forest – Atmosphere Interactions: A Review, Tellus B, 74, 24–163, https://doi.org/10.16993/tellusb.34, 2022. a, b, c, d, e
Badr, O. and Probert, S. D.: Sources of atmospheric carbon monoxide, Appl. Energ., 49, 145–195, https://doi.org/10.1016/0306-2619(94)90036-1, 1994. a
Download
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Share
Altmetrics
Final-revised paper
Preprint