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Abstract. Land surface changes can have substantial impacts on biosphere–atmosphere interactions. In South
America, rainforests abundantly emit biogenic volatile organic compounds (BVOCs), which, when coupled with
pyrogenic emissions from deforestation fires, can have substantial impacts on regional air quality. We use novel
and long-term satellite records of five trace gases, namely isoprene (C5H8), formaldehyde (HCHO), methanol
(CH3OH), carbon monoxide (CO), and nitrogen dioxide (NO2), in addition to aerosol optical depth (AOD), veg-
etation (land cover and leaf area index), and burned area. We characterise the impacts of biogenic and pyrogenic
emissions on atmospheric composition for the period 2001 to 2019 in the southern Amazon, a region of substan-
tial deforestation. The seasonal cycle for all of the atmospheric constituents peaks in the dry season (August–
October), and the year-to-year variability in CO, HCHO, NO2, and AOD is strongly linked to the burned area.
We find a robust relationship between the broadleaf forest cover and total column C5H8 (R2

= 0.59), while the
burned area exhibits an approximate fifth root power law relationship with tropospheric column NO2 (R2

= 0.32)
in the dry season. Vegetation and burned area together show a relationship with HCHO (R2

= 0.23). Wet-season
AOD and CO follow the forest cover distribution. The land surface variables are very weakly correlated with
CH3OH, suggesting that other factors drive its spatial distribution. Overall, we provide a detailed observational
quantification of biospheric process influences on southern Amazon regional atmospheric composition, which in
future studies can be used to help constrain the underpinning processes in Earth system models.

1 Introduction

Over 2010–2020, 10 million hectares of forest on average
were cut down globally each year (Ritchie and Roser, 2021).
Such land cover changes can substantially modify the emis-
sions of biogenic gases and aerosols, for example, biogenic
volatile organic compounds (BVOCs) (Fowler et al., 2009;
Pacifico et al., 2012). BVOCs are emitted during photosyn-
thesis and particular plant development stages, e.g. leaf mat-

uration, flowering, or senescence, or as a response to stresses
on plants, such as droughts and insect infestations (Loreto
and Fares, 2013). Estimates of the global emission of iso-
prene (C5H8), the globally dominant BVOC, are within the
ranges of 300–600 TgC yr−1 (Arneth et al., 2011; Cao et al.,
2021; Szopa et al., 2021). This large range is predominantly
driven by uncertainties in the emission rates from different
plant functional types (Szopa et al., 2021).
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While BVOCs are associated with a wide range of veg-
etation, particular plant species or functional types emit
different amounts of specific BVOCs. This has driven the
use of emission factors, empirically derived values used to
scale calculated trace gas emissions, to describe the sensi-
tivity of emission strength to plant type (e.g. Guenther et
al., 1995, 2012; Pacifico et al., 2011; Weber et al., 2023).
For example, isoprene is associated with tropical broadleaf
trees, while monoterpenes (C10H16) are primarily associated
with needleleaf trees (Artaxo et al., 2022), which has impli-
cations for the geographical distribution of different BVOC
emissions. In the Amazon Rainforest, isoprene and methanol
(CH3OH), both analysed in this study, are the most strongly
emitted biogenic compounds based on mixing ratio measure-
ments (Yáñez-Serrano et al., 2020). Although biogenic emis-
sions are the largest sources of isoprene, monoterpenes, and
methanol, they are also emitted during biomass burning (Ak-
agi et al., 2011; Ciccioli et al., 2014; Bates et al., 2021).

Satellite measurements of formaldehyde (HCHO), a com-
mon oxidation product of BVOCs, are often used to estimate
BVOC emissions (e.g. Palmer et al., 2006; Millet et al., 2008;
Marais et al., 2012; Kefauver et al., 2014; Stavrakou et al.,
2015; Strada et al., 2023). However, the pyrogenic source
of HCHO is more significant than the pyrogenic emission
of isoprene. Furthermore, HCHO is an oxidation product of
many other non-biogenic gases, introducing challenges to the
interpretation of the data (Freitas and Fornaro, 2022; Palmer
et al., 2007). Recent work has enabled the measurement of
isoprene column densities from space (Fu et al., 2019; Wells
et al., 2020, 2022; Palmer et al., 2022). The new isoprene
measurements have created opportunities to address the un-
certainties in regional isoprene emissions. This is particu-
larly relevant for regions experiencing land cover change,
as well as in the Southern Hemisphere, where ground level
measurements are sparse despite the major BVOC emis-
sion sources being located in the tropical Southern Hemi-
sphere (Paton-Walsh et al., 2022). In this study, we analyse
these satellite-derived datasets of column isoprene alongside
the more established HCHO product to quantify vegetation-
driven changes in composition in the southern Amazon (see
Sect. 2.1).

The Amazon and neighbouring savannas and grasslands
experience significant impacts from fire activity, which have
been reviewed by Pivello (2011). Fires in the region have
both natural and anthropogenic causes. Lightning can ig-
nite the savanna and grassland vegetation; these ecosystems
are fire-dependent, meaning that many of the species have
adapted to recurrent fires. However, unlike the savanna re-
gion, the Amazon Rainforest is sensitive to burning, and the
ecosystem can be destroyed through fire activity. In the 21st
century, the majority of the wildfires in Brazil have anthro-
pogenic causes as natural vegetation (e.g. the rainforest) is re-
moved for agriculture. In fact, fire is one of the major causes
of land cover change globally (Heald and Spracklen, 2015).
This suggests that regions of land-cover-change-driven shifts

in biogenic emissions will also often experience substantial
pyrogenic impacts on the atmospheric composition.

Nitrogen dioxide (NO2) is a trace gas measurable from
space that is primarily emitted during combustion, whether
from biomass burning or anthropogenic emissions. Due to
its short lifetime, NO2 can be indicative of biomass-burning
activity. In the context of land cover change through biomass
burning, the burning of different land cover types is associ-
ated with different NO2 emission rates (Schreier et al., 2014).
Wiedinmyer et al. (2023) assign the highest NO2 emission
factors for the burning of tropical forests, followed by sa-
vanna grasslands, and lower values for crops and woody sa-
vanna. This is in contrast to earlier emission inventory esti-
mates from Akagi et al. (2011), where the biomass-burning
emission factor for NOx for tropical forests was lower than
for savannas, although uncertainties were substantial. These
biomass-burning NOx emissions can play a key role in en-
abling ozone (O3) formation from volatile organic compound
(VOC) emissions, including BVOCs (e.g. Helas et al., 1995).
Particularly in the Amazon, a NOx-limited region abundant
in BVOCs, O3 production increases substantially over the
rainforest in plumes of anthropogenic or pyrogenic emissions
(Kuhn et al., 2010; Bela et al., 2015).

Fires also emit significant amounts of aerosols and carbon
monoxide (CO) (Badr and Probert, 1994; Wiedinmyer et al.,
2023) and are a key factor in driving regional aerosol concen-
trations in the dry season (Reddington et al., 2015). In addi-
tion to the pyrogenic sources of these species, in areas such
as the Amazon Rainforest, there may be substantial biogenic
contributions, for example, through the role of BVOCs in the
formation and growth of secondary organic aerosol (SOA)
(Artaxo et al., 2013; Shrivastava et al., 2017; Artaxo et al.,
2022). SOA, as a component of particulate matter (PM) air
pollution, is detrimental to human health (Kim et al., 2015).
In the Amazon, the biogenic source of aerosols and CO has a
greater relative contribution to regional atmospheric compo-
sition outside the wildfire season, which is when pyrogenic
emissions decrease (Artaxo et al., 2022). Understanding the
drivers of biogenic and pyrogenic emissions of O3 and PM
precursors is important for both regional air quality and cli-
mate.

Overall, land cover change influences regional at-
mospheric composition through biogenic and pyrogenic
sources, which can vary substantially over time and space.
In this study, we aim to quantify the relevance of vegetation
and fire to spatial and temporal variations in regional atmo-
spheric composition over the last 2 decades, as observed us-
ing satellite remote sensing, over an area of significant land
cover change and biomass burning in the southern Amazon.

Six measures of trace gases and aerosols in the atmosphere
were chosen to represent a range of chemical species that
may be impacted by biogenic and/or pyrogenic emissions.
These are isoprene, methanol, formaldehyde, carbon monox-
ide, nitrogen dioxide, and aerosol optical depth (AOD),
which indicates the amount of aerosol in the atmospheric col-
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umn. These will be referred to as atmospheric constituents
throughout this paper. We compare this range of atmospheric
constituents to vegetation and fire proxies using both new
and complementary satellite datasets to build a comprehen-
sive picture of the relative impact of both biogenic and py-
rogenic sources on regional atmospheric composition during
the period 2001–2019. The paper will introduce the region,
data, and methodology in Sect. 2, before looking at the spa-
tial and seasonal distribution of the atmospheric constituents
in the region and their links to both land cover and burned
area (see Sect. 3 for the results and Sect. 4 for the discussion
and conclusions).

2 Data and methodology

2.1 Study region

The southern Amazon is one of the regions that has under-
gone substantial deforestation in the 21st century. The region
investigated in this study, 5–25° S, 50–70° W (Fig. 1) covers
the majority of the “arc of deforestation”, which forms the
epicentre of Amazon deforestation (dos Santos et al., 2021;
Silva Junior et al., 2021; Reddington et al., 2015). The area
includes parts of the southern Amazon, as well savannas and
grasslands such as the Cerrado.

2.2 Remote-sensing data sources

2.2.1 Land surface data

The Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover data at 0.05° resolution (product
MCD12C1; Friedl and Sulla-Menashe, 2015) were chosen
as a measure of vegetation type based on the long temporal
record of annual data (Table 1) and a comparison of the
magnitude and timing of Amazon deforestation in three land
cover datasets (see the Supplement). The MODIS sensor
operates on two satellites: Terra (launched in December
1999) and Aqua (launched in May 2002). For 2001–2020,
the time period for which the data were used, the Terra
and Aqua crossing times were, respectively, 10:30 and
13:30 local time. Both had sun-synchronous, near-polar
orbits and an altitude of 705 km. The land cover data have
been available since 2001 and combine retrievals from both
satellites. From the multiple land cover classifications avail-
able in the MCD12C1 product, the 17-class International
Geosphere–Biosphere Programme classification (IGBP;
Loveland and Belward, 1997) was chosen for this project,
as it has been used in relevant work, such as the FINNv2.5
fire emission inventory (Wiedinmyer et al., 2023). The C6
MODIS Land Cover product is assessed to have an accuracy
of 73.6 % (Sulla-Menashe et al., 2019).

The leaf area index (LAI) data are also a MODIS product
(MOD15A2H; Myneni et al., 2021) and can represent veg-
etation abundance. The LAI product is based on measure-
ments from the Terra satellite at an 8 d temporal resolution

and, validated against ground measurements, has a root mean
square error of 0.69 across all biomes (Devadiga and Nicke-
son, 2023). It has been available since February 2000 to the
present day. We used the LAI product to calculate the an-
nual and monthly mean values for the period 2001–2020 at
1°× 1° resolution in the Google Earth Engine (Gorelick et
al., 2017).

The burned area to represent fire activity was obtained
from version 4.1s of the Global Fire Emissions Database
(GFED4.1s; Giglio et al., 2013). Monthly burned area is
available at 0.25° spatial resolution from August 2000 to De-
cember 2016. The data for 2001–2016 were used in the anal-
ysis. For the period of interest, the GFED4.1s burned area
is predominantly based on the MCD64A1 product, which
has been found to have a 68 % burned area omission error
(Padilla et al., 2015). However, GFED4.1s includes the ad-
dition of small fire burned areas, which likely counter some
of the omission error, as the GFED4.1s burned area is 37 %
greater than that of GFED3, which did not include small fire
estimates (van der Werf et al., 2017). A summary of the land
surface and atmospheric composition datasets is provided in
Table 1.

2.2.2 Atmospheric composition data

Gridded total isoprene columns for 2012–2020 at
0.5°× 0.625° spatial resolution at monthly resolution
were obtained from Wells et al. (2020). These data are
derived from measurements taken using the Cross-track
Infrared Sounder (CrIS), a Fourier transform spectrometer,
on board the Suomi National Polar-orbiting Partnership
(Suomi NPP) satellite. Suomi NPP was launched in October
2011 and has a sun-synchronous orbit and near-global
twice daily coverage, with a daytime local overpass time of
13:30 LT. Isoprene column densities were calculated using
two isoprene infrared absorption features in the spectral
range 890–910 cm−1. This novel data product has been
quality assessed through comparison against ground-based
isoprene column measurements in the Amazon, which
found the retrieved isoprene column amounts differ by
20 % to 50 % when compared to ground-based column
measurements (Fu et al., 2019; Wells et al., 2020, 2022).

The total column methanol data, another recently devel-
oped dataset, comes from the Infrared Atmospheric Sound-
ing Interferometers (IASIs) on board the MetOp-A and
MetOp-B satellites. These EUMETSAT MetOp satellites
have/had (MetOp-A was deorbited in 2021) sun-synchronous
polar orbits at an altitude of around 817 km and local over-
pass times of 09:30 and 21:30 LT. The daytime (09:30 LT)
data for 2008–2018 were produced using the Infrared Mi-
crowave Sounding (IMS) scheme developed by the Ruther-
ford Appleton Laboratory (RAL) (Pope et al., 2021). Pope
et al. (2021) found a systematic difference of around 30 %
compared to the Atmospheric Tomography Mission (ATom)
flight measurements in areas of methanol enhancement, as
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Figure 1. Change in forest cover (% of grid cell area deforested or re- or afforested) between 2001 and 2019 calculated using MODIS land
cover data. The region analysed in this study is marked with the purple box.

Table 1. Summary of satellite datasets analysed in the study. All datasets were analysed on 1°× 1° spatial resolution. Lifetimes are taken
from Jacob (1999), Holloway et al. (2000), Pacifico et al. (2009), Hodzic et al. (2016), Wells et al. (2020), Bates et al. (2021), and Pommier
(2023).

Variable Source Temporal period Period of data Lifetime

Land cover MODIS, Terra, and Aqua Annual 2001–2020 n/a
Leaf area index (LAI) MODIS, Terra Monthly/annual 2001–2020 n/a
Burned area GFED4.1s Monthly 2001–2016 n/a
Isoprene CrIS, Suomi NPP Monthly 2012–2020 < 1 d
Methanol IASI, MetOp-A/MetOp-B Monthly 2008–2018 Days–months
Formaldehyde (HCHO) OMI, EOS Aura Monthly 2005–2018 < 1 d
Carbon monoxide (CO) MOPITT, Terra Monthly 2001–2019 Months
Nitrogen dioxide (NO2) OMI, EOS Aura Monthly 2005–2020 < 1 d
Aerosol optical depth (AOD) MODIS, Terra Monthly 2000–2019 SOA: days–weeks

n/a: not applicable.

well as an uncertainty of 40 % to 50 % for an individual
sounding, which will have been reduced here by averaging.

HCHO and NO2 are measured using the Ozone Monitor-
ing Instrument (OMI) located on the Earth Observing Sys-
tem (EOS) Aura satellite. OMI employs spectrometers in
visible and ultraviolet wavelengths and has provided daily
global coverage since late 2004. Aura flies at 705 km and
has an Equator-crossing time of 13:45 LT. Level 2 total col-
umn HCHO data were downloaded from the NASA God-
dard Earth Sciences Data and Information Services Center
(GES DISC; Chance, 2007). Only pixels with the “good”
main quality flag, which includes checks of fit convergence,
column uncertainty and absolute column value, and cloud
cover of less than 20 %, were used to calculate monthly
mean values. Uncertainties in individual retrievals of the

HCHO columns range within 50 % to 105 %, with HCHO
hotspots characterised by lower uncertainty values and av-
eraging leading to uncertainty reduction (OMI Team, 2012).
We found an underlying positive trend in the HCHO data,
possibly associated with instrument degradation (Wang et al.,
2022), and anomalous values in 2019. Consequently, only
the HCHO data for 2005–2018 were used, and the monthly
values were detrended based on a remote Pacific region (see
the Supplement). This highlights local variations due to bio-
genic and pyrogenic emissions, as opposed to those driven
by changes to the global background.

The tropospheric column NO2 data are the Quality As-
surance for Essential Climate Variables (QA4ECV) tropo-
spheric NO2 product (Boersma et al., 2011) available as
global monthly averages at 0.125°× 0.125° spatial resolu-
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tion. The data were downloaded for 2005–2020. The monthly
mean values only include retrievals with cloud radiance frac-
tions under 50 %, which is approximately equivalent to ge-
ometric cloud fractions under 20 %. Boersma et al. (2011)
estimated the uncertainty for individual retrievals of the NO2
tropospheric columns to be 1.0×1015 molec. cm−2

+ 25 %
of the retrieval.

AOD is a measure of the light attenuation by atmospheric
aerosols due to either absorbance or reflectance (Wei et al.,
2020). Low AOD values (< 0.1) indicate a clear sky and
low aerosol amounts, while values of 1 suggest very hazy
conditions with high aerosol concentrations. Consequently,
an increase in aerosol concentration, e.g. due to emissions
of particles during combustion, should lead to higher AOD
values. AOD is provided as part of a level 3 1°× 1° spatial
resolution monthly product from MODIS measurements on
board the Terra satellite (MOD08_M3; Platnick et al., 2015).
Each monthly statistically derived dataset (SDS) is based on
the relevant MODIS Atmosphere Daily Global Joint Product.
The quality-controlled overland AOD data are available at
three wavelengths: 0.47, 0.55, and 0.66 µm. AOD retrievals
are expected to have errors within the ±0.05+ 0.2×AOD
value (Levy et al., 2013; Sayer et al., 2014). The 0.47 µm
data for 2000–2019 are used throughout the analysis, as these
were found to exhibit the strongest statistical relationship
with the land variables (not shown).

The total column CO data are from the Measurement of
Pollution in the Troposphere (MOPITT) sensor also on board
the Terra satellite. Monthly mean values at 1°× 1° resolution
were calculated for 2001–2019 from the version 7 level 2
product (NASA/LARC/SD/ASDC, 2000). The CO total col-
umn values have biases of less than 0.2×1018 molec. cm−2

and standard deviations of around 0.2×1018 molec. cm−2

compared to NOAA validation sites and a field campaign
(Deeter et al., 2017). The data for 2000 was omitted due to
large data gaps that year. Only clear-sky scenes are included
in the MOPITT retrievals.

2.3 Analysis of remote-sensing data for the southern
Amazon

All observational data were re-gridded to a 1°× 1° horizontal
resolution using linear interpolation to provide spatially con-
sistent datasets for analysis and inter-comparison. The atmo-
spheric composition and burned area data were all analysed
on a monthly temporal resolution, while the land cover and
LAI data were annual, with the exception of calculating the
LAI seasonal cycle. To better understand the impacts of sea-
sonality, we separated the monthly data into wet (February,
March, and April) and dry (August, September, and Octo-
ber) seasons. The 3-month intervals were chosen based on
seasonal variations in precipitation and compatibility with
previous definitions (Barkley et al., 2009; Reddington et al.,
2015). The dry-season data were further separated into high-
burned-area (monthly burned areas ≥ 0.04 % grid cell area)

and low-burned-area grid cells. The threshold for defining
the high burned area of ≥ 0.04 % was chosen to ensure suf-
ficient sample sizes in each category, while identifying areas
with clear fire signals (see the Supplement). There is a 6 km
difference in elevation within the region with maximum ele-
vations in the south west (SW). As some of the satellite re-
trievals are associated with high errors over the high altitudes
of the Andes, a small portion of the domain > 1000 m a.s.l.
was not included in our analysis.

Whenever data for different domains are compared
(e.g. difference in isoprene over regions of low and high
burned area at a given forest cover), the mean across all avail-
able data satisfying the domain conditions was calculated.
First, the relevant datasets were subset in time, so the only
years included are those for which land cover, burned area,
and composition data are all available. Next, the data were
split based on the burned area threshold. Each subset (high
and low burned area) was then sorted into land cover bins,
and then the mean and standard error for each bin were cal-
culated.

Regression analysis was used to quantify the relationship
between the following surface variables: land cover, LAI and
burned area, and the atmospheric constituents. A Spearman
rank correlation (Dodge, 2008),

r = 1−
6
∑n
i=1d

2
i

n
(
n2− 1

) , (1)

where r is the Spearman rank correlation coefficient, n is
the sample size, and di represents the difference between the
ranks of the ith values from each sample. The ordinary least
squared (OLS) and Theil–Sen regression methods (Fernan-
des and Leblanc, 2005) were utilised. The OLS regression
aims to minimise the sum of the squared differences between
the observations and the model (residual sum of squares)
when fitting a linear model. The Theil–Sen regression is
more robust to outliers than OLS regression, as it fits a slope
and intercept based on the spatial median of these parame-
ters calculated on subpopulations of the data. Where a clear
relationship (OLS coefficient of determination (R2)≥ 0.25)
was identified between an atmospheric constituent and land
cover or burned area, the data were binned by the explana-
tory variable, and a weighted least-squares (WLS) regression
was used to account for the variance of the data in each bin.
Throughout the text, we use standard errors to represent un-
certainty ranges.

3 Results

3.1 Change in atmospheric constituents, land cover,
and burned area through time

Over the early 21st century (2001–2019), forest cover aver-
aged over the southern Amazon region decreases by 3.8 %
from 52.0 % to 48.2 % of the study region (Fig. 2a). The
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Figure 2. Annual mean values for (a) broadleaf forest cover per-
centage, (b) savanna and grassland cover percentage, (c) LAI,
(d) burned area (based on monthly sums), and the atmospheric
constituents. These include (e) isoprene, (f) methanol, (g) HCHO,
(h) CO, (i) NO2, and (j) AOD and are averaged for the southern
Amazon region for all years available for each variable. The shad-
ing represents the standard error based on all data included in cal-
culating the annual mean, i.e. the values of each grid cell for a given
year for the land cover and LAI or the monthly values of each grid
cell for the burned area and the atmospheric constituents. The larger
amount of data used in calculating the mean values for panels (d)–
(j) results in smaller standard errors.

deforestation is greatest in the north (N) of the domain at
around 10° S (see Fig. 1). Generally across the region, for-
est cover reduces substantially from 2001 to 2013, with a
smaller decline thereafter. Over the same period, savanna and
grassland expand from 46.7 % to 50.5 % (Fig. 2b) (see the
Supplement for the separated savanna and grassland time se-
ries). The two land cover categories, broadleaf forest and sa-
vanna and/or grassland, display opposite trends through time
(Fig. 2a, b), reflecting that broadleaf forest cover is being re-
placed by the savanna/grassland modal land cover type.

Mean LAI and total annual burned area averaged over the
study region do not have consistent trends over 2001–2019
and 2001–2016, respectively (Fig. 2c, d). Average annual

LAI values in the region fluctuate around a value of 3.1, with
a standard deviation of 0.06. As the regional estimate of LAI
is dependent on all vegetation types in the domain, any de-
crease in LAI due to decreases in broadleaf forest (high LAI
values) may be of a lesser magnitude than year-to-year vari-
ability in the vegetation overall due to, e.g., weather or dis-
ease. Burned area also exhibits substantial year-to-year vari-
ability, with maximum values observed in 2007 and 2010,
while the least burning occurs in 2009. Since 2011, the
monthly average burned area has remained below 200 km2

in the peak burning months, and the inter-annual variability
has decreased.

The year-to-year variability for annual regional mean CO,
NO2, and AOD is similar to that for the burned area (min-
ima in 2009 and maxima in 2007 and 2010; Fig. 2h, i, j).
These atmospheric constituents also show reduced year-to-
year variability from 2011 onwards, with the exception of
elevated values in 2015 for AOD and CO. The 2007 and
2010 maxima are also observed in the HCHO record, al-
though the year-to-year variability does not reduce for this
trace gas (Fig. 2g). The similarities in the temporal record
suggest that the burned area has an influence on the domain-
averaged AOD, CO, NO2, and HCHO.

Methanol and isoprene are also characterised by substan-
tial inter-annual variability, and neither shows a clear trend
through time for the region average (Fig. 2e, f). Conse-
quently, other annually varying factors affecting these con-
stituents, such as meteorology or changes in other sources
and sinks (Pacifico et al., 2009; Wohlfahrt et al., 2015), may
have a greater impact than the decrease in broadleaf forest
cover, which is limited in its spatial extent, over this time pe-
riod. It is noted that the annual mean isoprene and methanol
datasets do not extend as far back in time as the land cover
dataset, and the change in broadleaf forest cover is smaller
during the period covered by these datasets.

3.2 Seasonal cycle in atmospheric composition and
burned area

The regional average seasonal cycles of the six atmospheric
constituents are found to be similar with a peak in the dry
season (August to October) for all species (Fig. 3). Uniquely,
isoprene shows a secondary peak earlier in the calendar year
in March/April, which is when the isoprene column densities
reach 80 % of the annual maximum (August regional mean
of 8.6± 0.5× 1015 molec. cm−2).

Several of the constituents also have co-occurring min-
ima. Isoprene, methanol, and AOD all have the lowest val-
ues of 4.7± 0.1×1015 molec. cm−2, 0.1± 0.01 ppbv, and
0.11± 0.004, respectively, around June. HCHO, CO, and
NO2 remain more stable between December and June.

The amplitudes of the seasonal cycles of the different con-
stituents vary. Isoprene, HCHO, and CO have relatively low
intra-annual variation, as their column amounts remain above
50 % of their maxima throughout the year. In comparison,
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Figure 3. Seasonal cycles of domain-averaged LAI, burned area,
isoprene, methanol, HCHO, CO, NO2, and AOD for the periods
where each dataset is available between 2001 and 2020. All vari-
ables have been normalised (to a value of 1) against their respective
regional maximum monthly mean. The shaded areas represent the
standard error for each variable for a given month.

methanol, AOD, and NO2 exhibit a more extreme seasonal-
ity, with values dropping below 30 % of their annual max-
ima. This pronounced dry-season peak in the atmospheric
constituents is consistent with the burned area seasonal cy-
cle, which rises from 0.02± 0.002 % of the study region in
July to 0.06± 0.009 % in September, before decreasing to
0.02± 0.002 % again in October. Burned area values remain
below 10 % of the September peak for the rest of the year.

The LAI seasonality is substantially different, as values re-
main above 70 % of the maximum throughout the whole year.
LAI is elevated at > 3 (> 90 % of the maximum value) be-
tween April and October. The regional monthly mean drops
slightly (< 2.7 or < 80 %) from December to February. The
lower-percentage amplitude of the LAI seasonal cycle may
be driven by different phenologies of the vegetation in the
domain; e.g. the Cerrado savanna grassland flowering is rel-
atively consistent throughout the year, while Amazon Rain-
forest vegetation tends to flower in the dry season (Morellato
et al., 2013). Other research in Brazil has found that while
seasonal changes in forests are associated with solar radia-
tion, they are driven by rainfall for savannas and grasslands,
resulting in opposite cycles for the different land cover types
(Myneni et al., 2007). A comparison of six LAI datasets con-
sistently shows that in the southern Amazon the LAI in re-
gions of broadleaf forest cover is higher in July, compared
to January, while the savanna/grassland region has the oppo-
site LAI signal (Fang et al., 2013). Consequently, phenology-
driven LAI values may peak at different times, depending on
the land cover types, resulting in full/partial vegetation cov-
erage of the region throughout the year.

The magnitudes of all atmospheric constituents examined
in this study increase in the dry season when the burned area
is largest, suggestive of changes to the atmospheric chem-
istry due to a substantial pyrogenic source. In particular, the
seasonal variability in NO2 and AOD closely matches the
seasonality in the burned area, while methanol does so with a
lag of 1 month. As outlined above, vegetation cover, as repre-
sented by the LAI, shows more consistent values throughout
the year. Therefore, constituents with lower seasonal ampli-
tudes are potentially more strongly linked to the seasonality
of biogenic emission sources, although other factors such as
atmospheric lifetime will have an important impact on the
respective atmospheric constituent concentrations.

3.3 Spatial distribution of vegetation, fire, and
atmospheric composition

Across the southern Amazon, broadleaf forest, savanna, and
grasslands represent the dominant vegetation types. Annual
average broadleaf forest cover dominates in the northwest
(NW), with land surface coverage typically between 80 %
and 100 %, while savannas and grasslands represent the main
land cover (80 %–100 % coverage) in the southeast (SE)
(Fig. 4). In the centre of the domain, a transitional region ex-
ists, where the competing phenologies typically have 40 %–
60% coverage. The corresponding LAI spatial distribution
highlights larger values (3.5 to > 5.0) in the NW and lower
values (2.0–3.5) in the SE. This is consistent with broadleaf
forest having a larger biomass (per unit area) in comparison
to savanna/grassland vegetation types.

For the dry-season burned area data, there are sporadic
hotspots peaking at> 0.3 %. The most coherent spatial struc-
tures are a filament of burned area values between 0.2 % and
0.3 %, stretching along the Bolivian eastern border down into
Paraguay in the south (S) of the region, and the cluster of
western Brazilian burned area values at > 0.1 %, peaking at
0.3 %–0.5 %. This latter feature is generally consistent with
the reported “arc of deforestation” in the Amazon (Redding-
ton et al., 2015; dos Santos et al., 2021). The hatching in
Fig. 4d represents at least a 2.5 % decrease in broadleaf for-
est between 2001 and 2019, which coincides with the burned
area patterns reported here. Therefore, the fire activity may
be related to regions undergoing deforestation and, to a cer-
tain extent, the land cover classifications. For instance, the
burned area filament in Fig. 4d closely follows the high
(> 90 %) or low (< 20 %) savanna/grassland and broadleaf
forest structure in Fig. 4a and b. Thus, it is suggestive of
transitional regions between biomes driven by predominately
anthropogenic pyrogenic activity. Overall, the spatial distri-
bution of burned area exhibits more localised maxima than
vegetation cover.

The spatial distributions of multi-annual mean values of
total column isoprene are similar to those of broadleaf for-
est cover and LAI for both the wet and dry season (cf.
Figs. 5a, b and 4b, c). Values decrease from the far NW
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Figure 4. The annual mean distribution for 2001–2019 of (a) savanna and grassland and (b) broadleaf forest cover, represented as the percent
of each grid cell covered by the respective land cover type, and (c) annual mean LAI for 2001–2019. Dry-season (August–October) monthly
mean burned area (% grid cell area) for 2005–2016 is shown in panel (d), along with regions where at least 2.5 % of the area has been
deforested marked by hatching. Areas over 1000 m a.s.l., based on the GMTED2010 digital elevation model (Danielson and Gesch, 2011),
have been masked on all panels.

(maximum of 2.7 × 1016 molec. cm−2 in the dry season)
to < 0.5× 1016 molec. cm−2 in the S, following the NW–
SE transition from forest to savanna/grassland as evident in
the dry-season total column isoprene values (see Figs. 4b
and 5b). Over the broadleaf forest region, isoprene is el-
evated in the west (W), where the maximum forest cover
occurs, compared to the east (E). The spatial similarities
between broadleaf forest cover and total column isoprene
amounts suggest that the broadleaf forest is the dominant

source of this BVOC for this region, especially in the dry sea-
son. This finding is also consistent with the short lifetime of
isoprene confining the peak concentrations to the source re-
gion. The W–E gradient in mean total column isoprene over
the forested region itself suggests variability in the isoprene
emissions within the broadleaf forest biome due to different
plant species or local environmental conditions, as found by
Gu et al. (2017), who identify an elevation gradient in iso-
prene emissions in the tropical forest N of the region studied
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here, probably driven by plant species distributions. In this
study, the highest total column isoprene values occur at el-
evations of around 200 m a.s.l., with lower isoprene column
densities in the N of the forest, where elevations decrease to
below 100 m a.s.l.

Two other atmospheric constituents, namely CO and AOD,
have similar distributions in the wet season to that of
broadleaf forest cover. CO is elevated in the NW (> 16×
1017 molec. cm−2; maximum of 18.2 × 1017 molec. cm−2),
compared to the SE (< 14 × 1017 molec. cm−2). AOD is
similarly elevated in the N (> 0.2, maximum of 0.35) and
reaches a minimum in the SE of the study region (< 0.1)
(Fig. 6a, c). The spatial patterns of CO and AOD during the
wet season are consistent with the broadleaf forest acting as
a source of biogenic precursors of CO and aerosols as val-
ues increase over more densely forested areas (compare with
Fig. 4b). This is consistent with biogenic sources having a
greater relative impact on CO and aerosols in the wet season,
which is when pyrogenic emissions are minimal (Artaxo et
al., 2022).

In contrast, wet-season HCHO and NO2 increase from the
NW (HCHO and NO2 column values of ∼ 0.8 × 1016 and
< 0.6 × 1015 molec. cm−2, respectively) to the SE, where
HCHO reaches a maximum of 3.2 × 1016 molec. cm−2 and
NO2 is 1.36 × 1015 molec. cm−2. This spatial pattern is not
consistent with biogenic emissions from the forest being the
dominant controlling factor (Figs. 5e and 6e; compare to
Fig. 4b). Furthermore, biomass burning is minimal in the
wet season (see Sect. 3.2), suggesting that another source or
sink is driving total column HCHO and tropospheric column
NO2 in this season. The wet-season methanol concentrations
are also different to that of vegetation cover. The highest
methanol concentrations of ≥ 0.4 ppbv are recorded in the
far E of the domain between 10 and 16° S (Fig. 5c).

The dry-season spatial patterns of HCHO, CO, and AOD
differ somewhat from their wet-season distributions, suggest-
ing a change in dominant sources/sinks e.g. from vegetation
to fires, transport, and/or atmospheric chemistry processes.
CO appears more well-mixed compared to the other trace
gases, as expected, with its relatively longer lifetime com-
pared to the other species (average CO tropospheric lifetime
of 1–3 months; Seinfeld and Pandis, 2016; compare with Ta-
ble 1) (Fig. 6b). HCHO, CO, and AOD reach maximum val-
ues (up to 3.7× 1016 molec. cm−2, 32.7× 1017 molec. cm−2,
and 0.88, respectively) over the transition zone between
forests and other land cover classes, although the exact lo-
cations of these peaks vary. This region is most strongly af-
fected by deforestation and proximate to the highest average
dry-season burned areas (compare with Fig. 4). Total column
HCHO decreases beyond this zone, consistent with a signif-
icant pyrogenic source (Freitas and Fornaro, 2022; Palmer
et al., 2007), both further into the broadleaf forest (1.2 to
1.6×1016 molec. cm−2) and to the S, where values drop to
< 0.6×1016 molec. cm−2 (Fig. 5f). Minima in the AOD and
CO data are also found in the S at the foot of the Andes and

in the SE (< 0.2 and < 18×1017 molec. cm−2, respectively)
(Fig. 6d). Peak total column CO is found slightly further S
to the HCHO maximum (10–12° S compared to 8–11° S).
AOD is characterised by two maxima (> 0.8), within the
same region as CO, which occur in areas of mixed land cover
(forest cover 10 %–100 %) that have experienced substan-
tial deforestation (> 2.5 % area deforested) and some burn-
ing (dry-season monthly mean burned area ∼ 0.01 %) (com-
pare Figs. 6d and 4). However, this does not correspond to
the locations of maximum dry-season burned areas. The co-
location of these maximum values with regions of deforesta-
tion and biomass burning suggests that a pyrogenic source,
potentially emissions from deforestation fires, is important
for these constituents. These constituents were also elevated
to the N of this region, where the forests are dominant, sug-
gesting the presence of a biogenic source for this region or
the transport of pyrogenic emissions. Particularly in the case
of HCHO, the presence of NOx associated with biomass
burning could affect the HCHO yield from BVOC emissions
(Langford et al., 2022), potentially increasing HCHO forma-
tion from isoprene oxidation over the broadleaf forest.

Methanol dry-season concentration values are similarly
elevated (> 0.6 ppbv) in the N over the forest to savanna–
grassland transition, but they are also consistently high fur-
ther into the Amazon Rainforest, as well as in the NE.
Some of the maxima are located over areas of mixed vegeta-
tion, which experienced substantial deforestation over 2001–
2019, as found for HCHO, CO, and AOD (compare Fig. 5d
with Figs. 1 and 4), but other regions do not reflect any of the
studied land surface variables.

The dry-season NO2 column densities had several dis-
tinct maxima> 2.7× 1015 molec. cm−2, with the highest be-
ing 3.5×1015 molec. cm−2, which are all located 9–16° S.
Some of these overlap with the two AOD maxima. Unlike
AOD, NO2 is clearly elevated over the maximum burned ar-
eas recorded at 15° S, 65° W and in the E of the study region
(Figs. 6d, f and 4d). In regions of minimal fire activity, such
as deeper into the Amazon Rainforest and the edge of the An-
des, tropospheric column NO2 is < 0.9 × 1015 molec. cm−2.
The spatial pattern of the tropospheric column NO2 closely
resembles that of burned area, highlighting the close relation-
ship between the trace gas and fire activity, owing to its much
shorter lifetime (around 1 d for NOx at the surface; Jacob,
1999) compared to CO and aerosols.

3.4 Influence of vegetation and fire on atmospheric
composition

3.4.1 Variations in atmospheric composition with
broadleaf forest cover

In this section, the variation in the atmospheric composition
as a function of broadleaf forest cover (i.e. percentage cover
in 10 % bins) is considered for the dry and wet seasons over
the whole region and the time period of co-existing data.
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Figure 5. Regional distributions of column mean isoprene (a, b; molec. cm−2), methanol (c, d; parts per billion by volume – ppbv), and
formaldehyde (e, f; molec. cm−2; note that the colour bar starts at 0.5× 1016 molec. cm−2) for the wet season (a, c, e) and dry season (b, d, f).
The wet season includes the months of February–April, while the dry season covers August–October. The time period varies with constituent.
Areas over 1000 m a.s.l. based on the GMTED2010 digital elevation model (Danielson and Gesch, 2011) have been masked on all panels
and are not included in further analysis.

Within the dry season, the impact of pyrogenic activity is
assessed by splitting the atmospheric constituent data into
“low fire” (≤ 0.04 % burned area) and “high fire” (> 0.04 %
burned area) regimes. Our results are relatively insensitive to
the burned area threshold, as well as the bin width choice (see
the Supplement).

Isoprene consistently increases with higher broadleaf for-
est cover in all four regimes (Fig. 7a). The spatial dis-
tributions rather than temporal variations drive this signal.
Values are lower in the wet season (approximately 0.5–
0.7×1015 molec. cm−2) than the dry season for broadleaf
forest cover values > 20 %. In densely forested areas
(broadleaf forest cover> 90 %), the dry-season isoprene col-

umn density is 50 % greater than in the wet season at approx-
imately 1.0–1.5×1015 molec. cm−2. The greater change be-
tween seasons in isoprene column amounts at higher forest
cover suggests that isoprene emissions from broadleaf for-
est have a stronger seasonality than those from other vegeta-
tion types. The differences in mean isoprene column densi-
ties between areas of high and low fire activity remain within
0.3×1015 molec. cm−2. Consequently, isoprene responds to
the change in forest cover more than the change in burned
area, highlighting the importance of its biogenic source, as
suggested in Sect. 3.3.

For NO2, a similar pattern occurs with larger
column values in the dry season (approximately
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Figure 6. Regional distributions of CO (a, b; molec. cm−2; note that the colour bar starts at 10 × 1017 molec. cm−2), AOD (c, d), and
NO2 (e, f; molec. cm−2) for the wet season (a, c, e) and dry season (b, d, f). The wet season includes the months of February–April, while
the dry season covers August–October. The time period varies with constituent. Areas over 1000 m a.s.l., based on the GMTED2010 digital
elevation model (Danielson and Gesch, 2011), have been masked on all panels and are not included in further analysis.

1.5–2.0×1015 molec. cm−2) than in the wet season
(≤ 0.86×1015 molec. cm−2) (Fig. 7f). However, the rela-
tionship with forest cover is non-linear, with peak dry-season
column NO2 in the 40 %–50 % forest cover bin. When split
into the two fire regimes, there is a large column NO2
difference independent of forest cover bin. When fires are
low, the tropospheric column NO2 ranges between 1.2 and
1.3×1015 molec. cm−2, while in the high fire regime all
column NO2 values are > 2.5×1015 molec. cm−2 (i.e. at
least 60 % larger). Overall, as noted in Sect. 3.3, this result
is suggestive of the largest NO2 emissions from pyrogenic
sources in forested regions and/or transition zones between
vegetation types.

Consistent with the other constituents, column methanol
values are larger (0.5–0.7 ppbv) in the dry season than the
wet season (< 0.3 ppbv). While the low fire regime is very
similar to the dry-season average, the high fire regime col-
umn methanol values are larger (≥ 0.6 ppbv) for all forest
cover bins. Similar to NO2, though, the peak values are in
the 40 %–50 % and 70 %–80 % forest cover bins (Fig. 6b).
Therefore, unlike for isoprene, the methanol columns are not
linearly linked to forest cover, but typically, a larger forest
cover percentage bin will have larger methanol values.

The other atmospheric constituents (Fig. 7c, d, e) also
have some similarities with both isoprene and NO2. The
wet-season values are much lower than those in the dry
season, regardless of forest cover, consistent with the sea-
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Figure 7. Mean monthly atmospheric constituent values, depending on percentage broadleaf forest cover in a given grid cell, for four
categories: high burned area dry season (H), low burned area dry season (L), dry season (D), and wet season (W). Each subplot shows data for
one atmospheric constituent, namely (a) isoprene (1×1016 molec. cm−2), (b) methanol (ppbv), (c) HCHO (1×1016 molec. cm−2), (d) CO
(1×1017 molec. cm−2), (e) AOD, and (f) NO2 (1×1015 molec. cm−2). Each subplot includes data for years when the given atmospheric
constituent, land cover, and burned area datasets overlap.

sonal cycle of the regional averages discussed in Sect. 3.2.
In the dry season, HCHO, CO, and AOD increase as for-
est cover increases from 0 % to 50 %, and values remain
elevated at higher forest covers (≥ 1.5×1016 molec. cm−2,
> 25.7×1017 molec. cm−2, and > 0.55, respectively, for for-
est cover > 50 %). The high fire regime is associated with
higher values of the atmospheric constituents compared to
the low fire regime across all forest cover values. HCHO is
elevated by at least 13 %, AOD by 27 %, and CO by 7 %–
17 %. The overall maxima are associated with both the high
burned area and high forest cover of 80 %–90 %. In the dry-
season average, a secondary maximum occurs for the 40 %–
50 % (40 %–60 % for HCHO) forest cover bin, resembling

that of the peak in NO2 and methanol values. This result sug-
gests that both vegetation and fire are important in driving the
concentration of HCHO, CO, and aerosols in the region in
the dry season through a combination of biogenic emissions,
particularly from the forest, and pyrogenic emissions in the
transition zone and in forested regions, strengthening conclu-
sions drawn from the analysis of spatial maps in Sect. 3.3.

3.4.2 Variations in atmospheric composition with burned
area

In this section, the change in the atmospheric constituents
with burned area is analysed, depending on season (W – wet
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season; D – dry season) and, for the dry season, dominant
land cover (F –≥ 50 % forest cover; S –< 50 % forest cover;
i.e. ≥ 50 % savanna/grassland).

Although isoprene total column amounts are increased
during the dry season, when fire activity is at its high-
est in the southern Amazon (see Sect. 3.2), there is no
clear relationship between the burned area extent and
the isoprene column amount (Fig. 8a), as the highest
dry-season total column isoprene values occur at 0 %–
0.01 % (0.9± 0.01×1015 molec. cm−2) and 0.08 %–0.09 %
(0.9± 0.1×1015 molec. cm−2) burned area. The data do fur-
ther highlight the relevance of the land cover type for this
trace gas. Regardless of the amount of burning, for each re-
spective burned area bin, the total column isoprene is at least
140 % higher in regions of dominant forest cover than in re-
gions dominated by savannas and grasslands. Therefore, the
forest cover is closely connected to isoprene emissions, sup-
porting conclusions reached in Sect. 3.4.1, suggesting that
the broadleaf forest is the dominant source of this BVOC in
the region in the dry season, while the pyrogenic source, lim-
ited in its spatial extent, has a more minimal influence, de-
spite the dry-season maximum (see Sect. 3.2).

The other constituents are also elevated over the forested
area, compared to the savanna/grassland region, although
the relative difference in the atmospheric constituent be-
tween the savanna/grassland and forest categories varies.
This difference is particularly pronounced for HCHO and
AOD (Fig. 8c, e). HCHO and AOD total column amounts
over forests (1.5–2×1016 molec. cm−2 and 0.6–1.1) are, re-
spectively, ≥ 24 % and ≥ 35 % higher than those over savan-
nas/grasslands. NO2 has the smallest difference in values be-
tween the land cover categories (1.4–3.1×1015 molec. cm−2

for savanna/grassland; 1.3–4.2×1015 molec. cm−2 for for-
est) (Fig. 8f). For NO2, AOD, CO, and HCHO, the differ-
ences between land cover types increase at higher burned
area values.

The increase in atmospheric constituents over the for-
est compared to other land cover types may be driven by
the emission of biogenic precursors and/or higher pyro-
genic emissions when forest vegetation, as opposed to sa-
vanna/grassland, is burned. The latter is particularly rele-
vant for NO2, as the difference in the column densities
between the land cover categories is only significant at
high burned area values. At > 0.09 % burned area, NO2
reaches 4.2± 0.1×1015 molec. cm−2 over forest compared
to 3.1± 0.1×1015 molec. cm−2 over savanna/grassland.

On average, most of the same atmospheric constituents
(NO2, AOD, CO, and HCHO) increase with burned area
in the dry season, reaching peak values at 0.08 %–0.09 %
burned area (AOD and CO) or > 0.09 % burned area (NO2
and HCHO). For methanol, the increase with burned area is
limited to values of burned area under 0.05 %. The greater
column amounts of these constituents associated with both
forest cover and burned area are consistent with the dry-

season maxima observed in (or proximate to) forested re-
gions and over burned areas on the spatial maps in Sect. 3.3.

Consequently, all studied atmospheric constituents are in-
fluenced by the land cover type, as their abundances increase
over more densely forested areas. Additionally, maximum
values are reached in the presence of burning, especially
at ≥ 0.07 % burned area for HCHO, CO, AOD, and CO in
forested regions, showcasing the pyrogenic source. At low
burned area values, there is little difference between forests
and savannas/grasslands for NO2, highlighting that burning
is the major source of the trace gas in the region during the
dry season, and the role of land cover is to modify the emis-
sions where burning occurs.

3.5 Statistical relationships among atmospheric
composition and land cover, LAI, and fire

In this section, statistical relationships between land cover,
LAI, and burned area and the atmospheric constituents for
the dry season are explored to quantify the extent to which
land cover variables drive atmospheric composition over
the southern Amazon for the time period during which
both datasets are available. The Spearman rank correlation
(Table 2) and OLS regression (Table 3; see Sect. 2) are
utilised. The results from both methods are very similar, with
the squared Spearman rank correlation coefficients slightly
higher than the equivalent OLS R2 values.

There is a strong significant positive relationship between
the two vegetation variables of broadleaf forest cover and
LAI and total column isoprene over the region (Spearman’s
r = 0.77; OLS R2

= 0.59 and 0.54 for broadleaf forest cover
and LAI, respectively), as expected based, on Sect. 3.3–3.4.2.
However, there is a weak negative relationship between iso-
prene and burned area. In contrast, tropospheric column den-
sities of NO2 exhibit a moderate positive relationship with
burned area (Spearman’s r = 0.46; OLS R2

= 0.25) but a
weak relationships with land cover variables over the region.

The relationships for the other atmospheric constituents
are mixed and much weaker. HCHO, CO, and AOD all show
positive weak to moderate relationships with both broadleaf
forest cover and LAI (r values around 0.4; OLS R2

= 0.08 to
0.18), suggesting some influence of vegetation on these at-
mospheric constituents, particularly for HCHO. The relation-
ships between these atmospheric constituents and the burned
area are considerably weaker but also positive (r values from
0.17 for CO to 0.23 for HCHO; OLS R2 between 0.01 and
0.03). Methanol showed a similarly weak positive relation-
ship with both land cover and fire (r values from 0.15 with
burned area to 0.22 with LAI; OLS R2 between 0.01 and
0.04). These weak results, compared to the isoprene rela-
tionship with vegetation, highlight that with the longer life-
times of these trace gases and aerosols, especially CO and
methanol (average lifetimes of 1–3 months and 5 d, respec-
tively; Seinfeld and Pandis, 2016; Bates et al., 2021), there is
more transport and mixing.
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Figure 8. Mean monthly atmospheric composition depending on the percentage of burned area in a given grid cell for four categories:
savanna-/grassland-dominated dry season (S), forest-dominated dry season (L), dry season (D), and wet season (W). Each subplot shows
data for one atmospheric constituent, namely (a) isoprene (1×1016 molec. cm−2), (b) methanol (ppbv), (c) HCHO (1×1016 molec. cm−2),
(d) CO (1×1017 molec. cm−2), (e) AOD, and (f) NO2 (1×1015 molec. cm−2). Each subplot includes data for years when the given atmo-
spheric constituent, land cover, and burned area datasets overlap.

Table 2. Spearman rank correlation coefficients r (with the Spearman rank correlation coefficient squared, r2, for comparison with Table 3 in
parentheses). For each correlation, data for the 3 dry-season months for years when the atmospheric constituent and surface variable datasets
overlap are used. In the case of annual vegetation data, all months of a given year are assumed to have the same vegetation cover. All r values
are significant at the p= 0.05 level.

Isoprene Methanol HCHO CO AOD NO2

Broadleaf forest cover 0.77 (0.59) 0.19 (0.04) 0.44 (0.19) 0.41 (0.17) 0.39 (0.15) −0.14 (0.02)
LAI 0.77 (0.59) 0.22 (0.05) 0.49 (0.24) 0.43 (0.18) 0.38 (0.14) −0.03 (0.00)
Burned area −0.09 (0.01) 0.15 (0.02) 0.23 (0.05) 0.17 (0.03) 0.18 (0.03) 0.46 (0.21)
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Table 3. OLS regression coefficients of determination (R2) for the dry season for single and multiple linear regression calculations. For each
regression, data for the 3 dry-season months for years when the atmospheric constituent and surface variable datasets overlap are used. In the
case of annual vegetation data, all months of a given year are assumed to have the same vegetation cover. All R2 values are significant at the
p= 0.05 level. The equivalent scatter plots for the data used to derive the linear OLS coefficients for broadleaf forest cover vs. isoprene and
burned area vs. NO2 are shown in Figs. 9a and 10, respectively.

Isoprene Methanol HCHO CO AOD NO2

Broadleaf forest cover 0.59 0.02 0.14 0.12 0.08 0.00
LAI 0.54 0.04 0.18 0.14 0.09 0.00
Burned area 0.02 0.01 0.03 0.01 0.02 0.25
Forest and burned area 0.59 0.04 0.19 0.14 0.11 0.25
LAI and burned area 0.54 0.05 0.23 0.15 0.12 0.26

Multiple OLS regression was also performed to test
whether the combination of biogenic and pyrogenic sources
improved their explanatory power for the variation in atmo-
spheric constituents. TheR2 value is unchanged for isoprene,
while for NO2, the R2 values are minimally affected, sug-
gesting one main emission source of vegetation and fire, re-
spectively, for these two atmospheric species. For the other
atmospheric constituents, the combination of broadleaf for-
est cover or LAI and burned area increased the R2 values
(compared to the OLS linear regression results) modestly.
The change is most notable for HCHO (R2 value of 0.23
compared to 0.18) and then for AOD (R2 value of 0.12 com-
pared to 0.09). While the overall R2 values are still much
lower than the R2 value for the linear relationship between
isoprene and broadleaf forest cover, for HCHO the multi-
ple regression R2 values are only slightly lower than for the
NO2–burned area relationship. This illustrates the relevance
of both a biogenic and pyrogenic source to HCHO column
densities, as previously observed elsewhere in Brazil (Freitas
and Fornaro, 2022).

The more robust relationships between broadleaf forest
cover vs. isoprene and burned area vs. NO2 were studied in
more detail (Figs. 9a and 10). The dry-season composition
data were binned based on broadleaf forest cover (for iso-
prene) or burned area (for NO2). We used a bootstrapping ap-
proach to test the significance of the isoprene (NO2) increase
with broadleaf forest cover (burned area) and found that
the results are significant at the 95 % confidence level (not
shown). Over the region, both binned (at 10 % broadleaf for-
est cover intervals) and non-binned data suggest that isoprene
increases by 1.1×1015 molec. cm−2 for every 10 % increase
in broadleaf forest cover in the dry season (OLS R2

= 0.59;
WLS R2

= 0.97) (Fig. 9). Consequently, the values for total
isoprene column densities over completely (100 %) forested
regions are on average 4 times greater than over non-forested
regions (0 %). In non-forested regions, isoprene concentra-
tions reflect the local background arising from emissions
from non-forest species, as well as mixing and transport of
forest-related emissions on short timescales. Tree species
composition, in addition to forest dynamics and environmen-

Figure 9. The relationship between dry-season monthly isoprene
data and broadleaf forest cover (BFC) for 2012–2016 with the best-
fit ordinary least square (OLS) regression line (a). Dry-season iso-
prene data for the same time period are binned based on 10 %
broadleaf forest cover intervals with weighted least squares (WLS)
regression results. The error bars show the standard error for each
land cover bin (b). In panels (a) and (b), the text gives the best-fit
linear regression equations.

tal conditions affecting the plant’s emission efficiency, could
explain the variability in the isoprene column amounts within
each forest cover bin.

The linear burned area–NO2 relationship was found to ex-
hibit different sensitivities, depending on vegetation cover
(Fig. 10). Over regions of high forest cover and high LAI val-
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Figure 10. The distribution of monthly dry-season tropospheric
NO2 columns against monthly dry-season burned area percent
coloured by broadleaf forest cover (a) and LAI (b) for 2005–2019.
The panels display the OLS regression line and associatedR2 value,
as included in Table 3.

ues, tropospheric NO2 increases with burned area more than
over locations with low forest cover and lower LAI (i.e. those
dominated by savannas and grasslands; see Sect. 3.4.2).
These different sensitivities are particularly clear up to
around 0.5 % burned area (Fig. 10; see Fig. 8f for average
conditions for burned areas from 0 % to > 0.1 %). Extremely
high burned areas tend to occur in less forested regions,
though the spatial distributions (Fig. 4) suggest that these
are savanna/grassland fires proximate to the broadleaf forest
in the central part of the region. The dominance of savan-
na/grassland at extremely high burned areas could decrease
the variation in NO2 explainable by the forest cover over the
whole dataset (Tables 2 and 3).

Hence, to represent this more complex burned area–NO2
relationship, we also explored the log–log relationship for
NO2 (loge(NO2)) and burned area (loge(BA)) (R2

= 0.32
for non binned data; WLS R2

= 0.90 for binned data (at
0.25loge(BA) intervals); Fig. 11). This log–log relationship,

Figure 11. Natural logarithm of the monthly dry-season NO2
data (loge(NO2)) against the natural logarithm of the monthly dry-
season burned area (loge(BA)) for 2005–2016 with the results of
the OLS regression (a). The WLS regression analysis on the natu-
ral logarithm of monthly dry-season NO2 data are binned based on
the natural logarithm of the monthly burned area percentage cover
for the same time period (b). The error bars show the standard er-
ror for each burned area bin. In panels (a) and (b), the text shows
the best-fit equation found by the regressions and the respective R2

value.

approximately a fifth root power law, indicates that the
change in tropospheric column NO2 is slightly greater at low
burned area percentages compared to at high burned areas.
This is consistent with the findings for the different vege-
tation types outlined above. The relationship was found to
remain relatively consistent through time by testing the rela-
tionship between the natural logarithm of burned area from
GFED5 (Chen et al., 2023) and natural logarithm of the NO2
tropospheric column for the later time period 2017–2020 (not
shown). For both NO2 and isoprene, the WLS linear regres-
sion results were largely unaltered when the bin sizes were
halved or doubled (not shown).

4 Discussion and conclusions

This study used new and complementary satellite observa-
tions to investigate the relationships between land cover,
LAI, and burned area; five trace gases (isoprene, methanol,
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HCHO, CO, NO2); and AOD in the southern Amazon, with
the aim to understand the influence of vegetation and fire on
atmospheric composition in a region of land cover change.

Biomass burning is identified as a potential driver of year-
to-year variability in several trace gases, namely CO, HCHO,
and NO2, as well as aerosols, as suggested by the AOD
record. Previous studies have identified drought years in
2005, 2007, 2010, 2012, and 2015 for this region (Pope et al.,
2020; Panisset et al., 2018; Reddington et al., 2015), which
may increase burning and modify the relationship between
the burned area and emitted trace gases and aerosols. Al-
though 2007 and 2010 are clearly elevated for burned area,
AOD, CO, NO2, and HCHO, not all of the listed drought
years show maxima for a given variable in this study.

Pyrogenic sources in the dry season may further drive
the seasonal cycle maxima of most of the atmospheric con-
stituents over the region. The observed mean monthly iso-
prene seasonal cycle differs from the other constituents with
a likely vegetation-driven secondary peak in the wet season.
The isoprene seasonality is consistent with greater photosyn-
thetically active radiation (PAR) in the dry season, as well as
potentially greater isoprene emissions in response to water
stress (Yáñez-Serrano et al., 2020). The isoprene minimum
observed here in June has been previously linked to new leaf
growth in the tropical forest in the transition between the wet
and dry seasons, as young leaves start producing isoprene
only after a few weeks (Barkley et al., 2009). The dry-season
peak for HCHO in September is also consistent with a pre-
vious satellite study; however, a secondary wet-season peak
was found in that work (Barkley et al., 2009). A weaker re-
lationship between isoprene and HCHO is suggested for this
region, since HCHO does not appear to respond to the varia-
tions in isoprene at the end of the wet season.

The spatial distributions across the southern Amazon fur-
ther highlight the co-location of isoprene with broadleaf for-
est cover and high LAI and NO2 with burned area. Most
of the other atmospheric constituents show characteristics of
both distributions. Methanol is unusual, due to a greater re-
gion of elevated column values in the N and NE of the region.

Broadleaf forest cover (LAI) explains 59 % (54 %) of the
variation in the total column isoprene across the study re-
gion for the dry season over 2012–2019, which increases to
97 % when the isoprene data are binned based on 10 % for-
est cover bins. In the dry season, isoprene column amounts
increase linearly with tree cover. For every 10 % increase in
the broadleaf forest cover, the isoprene total column amount
increases by 11×1015 molec. cm−2 or around 40 % of the av-
erage background (0 % broadleaf forest cover) total column
isoprene. This result is consistent for both the binned and
original data.

In contrast, the burned area explains 25 % of the variabil-
ity in the tropospheric column NO2 for the dry season. In
total, 32 % of the NO2 variability can be explained when
the natural logarithms of each variable are used, and the re-
lationship is well-captured when these data are binned at

0.25loge(BA) intervals (R2
= 0.90). There is a stronger in-

crease in the trace gas at lower burned area values, which
is captured by the fifth root power law. Additionally, the
NO2 amount varies, depending on burning location, with
greater values of NO2 for an equivalent burned area in re-
gions with at least 50 % broadleaf forest cover. These re-
sults are in agreement with the FINNv2.5 emissions inven-
tory, which has larger biomass-burning emission factors for
tropical forest compared to savanna/grassland (Wiedinmyer
et al., 2023). However, the burned areas can be greater where
tree cover is more sparse, highlighting the potential for sub-
stantial pyrogenic emissions from both forest and savanna/-
grassland regimes.

In the wet-season low tropospheric column, NO2 values
over the forested region and higher values in the SE could be
driven by the forest canopy acting as an NO2 sink through
biological uptake, as suggested by Kang et al. (2023). Alter-
natively, a further NOx emission source, e.g. from soils asso-
ciated with agricultural activities (Wong and Geddes, 2021)
or long-range transport of anthropogenic emissions in the re-
gion of São Paulo (van der A et al., 2008), may influence
NO2 concentrations.

The clear dry-season relationships of isoprene with
broadleaf forest cover and NO2 with burned area contrast
with the mixed signals for the other atmospheric constituents.
However, the combination of broadleaf forest cover and
burned area can explain 23 % of the variation in dry-season
total column HCHO, suggesting interactions between pyro-
genic and biogenic emissions of HCHO and its precursors.
The moderate correlation values of AOD and CO with the
land cover variables suggest some influence of vegetation
through a biogenic source that yields CO and SOA formation
in August–October, although forest emissions are most rele-
vant in the wet season (Yáñez-Serrano et al., 2020; Artaxo
et al., 2022). Methanol does not exhibit a strong relationship
with any land surface variable despite some observed simi-
larities.

A key difference between methanol, AOD, and CO and
isoprene, HCHO, and NO2 is their lifetime. While isoprene,
HCHO and NO2 have lifetimes of up to a day (Pacifico et
al., 2009; Wells et al., 2020; Pommier, 2023; Jacob, 1999),
aerosol, methanol, and CO atmospheric lifetimes range from
several days to months (Bates et al., 2021; Hodzic et al.,
2016; Holloway et al., 2000). The extended time period that
the aerosols, methanol, and CO are present in the atmo-
sphere will increase the role of transport in the observed dis-
tribution, resulting in a less clear local source signal. These
longer-lived species, particularly CO and aerosols, can there-
fore be transported from more distant anthropogenic sources
(e.g. Park et al., 2015; Wang et al., 2015). However, anthro-
pogenic emissions are thought to be minor compared to py-
rogenic and biogenic sources in the study region. Anthro-
pogenic sources are in the SE of the study area and beyond
the region of interest, e.g. the large agglomerations of São
Paulo and Rio de Janeiro located further to the SE (see,
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e.g., the European Commission, 2023, EDGAR v6.1 Global
Air Pollution Emissions database).

The findings confirm the tropical broadleaf forest, as op-
posed to other vegetation types, as the dominant source of
isoprene in the region, consistent with tropical trees being
the dominant source of isoprene globally (Guenther et al.,
2012). NO2 is predominantly driven by pyrogenic emissions
in the dry season, although the land cover type modulates
the emission amount. HCHO, and to a lesser extent CO and
aerosols, is linked to both biogenic and pyrogenic drivers.
More specific land cover categories, and/or a consideration of
other factors, are necessary to identify the potential biogenic
sources of methanol. The study finds that both land cover and
fire have significant impacts on regional atmospheric compo-
sition in the southern Amazon, including modifying amounts
of trace gases and aerosols that have implications for regional
air quality. Therefore, having established the importance of
vegetation and fire activity on South American atmospheric
composition, future work could exploit these relationships
for Earth system model (ESM) evaluation and use ESMs to
explore the underpinning processes and potential feedbacks
between the biosphere and atmosphere.
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