Articles | Volume 23, issue 5
https://doi.org/10.5194/acp-23-2983-2023
https://doi.org/10.5194/acp-23-2983-2023
Research article
 | 
07 Mar 2023
Research article |  | 07 Mar 2023

Aggravated air pollution and health burden due to traffic congestion in urban China

Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang

Related authors

Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd)
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024,https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Diagnosing drivers of PM2.5 simulation biases in China from meteorology, chemical composition, and emission sources using an efficient machine learning method
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024,https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Impacts of land cover changes on biogenic emission and its contribution to ozone and secondary organic aerosol in China
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023,https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Unexpected enhancement of ozone exposure and health risks during National Day in China
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021,https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021,https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary

Cited articles

Ahmad, S. S. and Aziz, N.: Spatial and temporal analysis of ground level ozone and nitrogen dioxide concentration across the twin cities of Pakistan, Environ. Monit. Assess., 185, 3133–3147, 2013. 
Anenberg, S., Miller, J., Henze, D., and Minjares, R.: A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015, International Council on Clean Transportation, Washington, DC, USA, 2019. 
Atkinson-Palombo, C. M., Miller, J. A., and Balling, R. C.: Quantifying the ozone “weekend effect” at various locations in Phoenix, Arizona, Atmos. Environ., 40, 7644–7658, https://doi.org/10.1016/j.atmosenv.2006.05.023, 2006. 
Bao, C., Chai, P., Lin, H., Zhang, Z., Ye, Z., Gu, M., Lu, H., Shen, P., Jin, M., Wang, J., and Chen, K.: Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China, JAPCA J. Air Waste Ma., 66, 1202–1213, https://doi.org/10.1080/10962247.2016.1206996, 2016. 
Bigazzi, A. Y., Figliozzi, M. A., and Clifton, K. J.: Traffic congestion and air pollution exposure for motorists: comparing exposure duration and intensity, Int. J. Sustain. Transp., 9, 443–456, 2015. 
Download
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Altmetrics
Final-revised paper
Preprint