Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-881-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-881-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the cross-tropopause transport of water by tropical convective overshoots: a mesoscale modelling study constrained by in situ observations during the TRO-Pico field campaign in Brazil
Abhinna K. Behera
CORRESPONDING AUTHOR
GSMA, UMR CNRS 7331, UFR Sciences Exactes et Naturelles, 51687 Reims CEDEX 2, France
now at: Univ. Lille, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, 59000 Lille, France
Emmanuel D. Rivière
GSMA, UMR CNRS 7331, UFR Sciences Exactes et Naturelles, 51687 Reims CEDEX 2, France
Sergey M. Khaykin
LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC University Paris 06, CNRS, Guyancourt, France
Virginie Marécal
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Mélanie Ghysels
GSMA, UMR CNRS 7331, UFR Sciences Exactes et Naturelles, 51687 Reims CEDEX 2, France
Jérémie Burgalat
GSMA, UMR CNRS 7331, UFR Sciences Exactes et Naturelles, 51687 Reims CEDEX 2, France
Gerhard Held
Instituto de Pesquisas Meteorológicas (IPMet)/Universidade Estadual Paulista (UNESP), Bauru, São Paulo, Brazil
Related authors
Abhinna K. Behera, Marie Boichu, François Thieuleux, Nicolas Henriot, and Souichiro Hioki
EGUsphere, https://doi.org/10.5194/egusphere-2023-2545, https://doi.org/10.5194/egusphere-2023-2545, 2023
Preprint archived
Short summary
Short summary
Volcanic eruptions release sulfur dioxide (SO2), affecting air quality, ecosystems, and aviation. Current global observations lack high temporal-resolution quantitative information, which limits our understanding of volcanic SO2 emissions and their impacts. This study uses advanced satellite data and inverse modeling to track and comprehend emissions from the 2018 Ambrym eruption, the world's leading SO2 emitter. It enhances our ability to effectively monitor and respond to volcanic activity.
Samuel Trémoulu, Fabrice Chane Ming, Sitraka Fabrice Raharimanjato, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
EGUsphere, https://doi.org/10.5194/egusphere-2025-3719, https://doi.org/10.5194/egusphere-2025-3719, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We developed a new method to better detect and study small-scale gravity waves in the middle atmosphere using lidar data. This technique more clearly reveals wave patterns than older methods and gives more accurate energy estimates, especially high up near the stratopause. Our approach helps scientists understand how these waves behave and interact across different scales, improving knowledge of atmospheric dynamics.
Sergey Khaykin, Slimane Bekki, Sophie Godin-Beekmann, Michael D. Fromm, Philippe Goloub, Qiaoyun Hu, Béatrice Josse, Alexandra Laeng, Mehdi Meziane, David A. Peterson, Sophie Pelletier, and Valérie Thouret
EGUsphere, https://doi.org/10.5194/egusphere-2025-3152, https://doi.org/10.5194/egusphere-2025-3152, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In 2023, massive wildfires in Canada injected huge amounts of smoke into the atmosphere. Surprisingly, despite their intensity, the smoke didn’t rise very high but lingered at flight cruising altitudes, causing widespread pollution. This study shows how two different pathways lifted smoke into the lower stratosphere and reveals new insights into how wildfires affect air quality and climate, challenging what we thought we knew about fire and atmospheric impacts.
Simone Brunamonti, Harald Saathoff, Albert Hertzog, Glenn Diskin, Masatomo Fujiwara, Karen Rosenlof, Ottmar Möhler, Béla Tuzson, Lukas Emmenegger, Nadir Amarouche, Georges Durry, Fabien Frérot, Jean-Christophe Samake, Claire Cenac, Julio Lopez, Paul Monnier, and Mélanie Ghysels
EGUsphere, https://doi.org/10.5194/egusphere-2025-1029, https://doi.org/10.5194/egusphere-2025-1029, 2025
Short summary
Short summary
Water vapor is a strong greenhouse gas and accurate measurements of its concentration in the upper atmosphere (~8–25 km altitude) are crucial for reliable climate predictions. We investigated the performance of four airborne hygrometers, deployed on aircraft or stratospheric balloon platforms and based on different techniques, in a climate simulation chamber. The results demonstrate the high accuracy and reliability of the involved sensors for atmospheric monitoring and research applications.
Tanja J. Schuck, Johannes Degen, Timo Keber, Katharina Meixner, Thomas Wagenhäuser, Mélanie Ghysels, Georges Durry, Nadir Amarouche, Alessandro Zanchetta, Steven van Heuven, Huilin Chen, Johannes C. Laube, Sophie L. Baartman, Carina van der Veen, Maria Elena Popa, and Andreas Engel
Atmos. Chem. Phys., 25, 4333–4348, https://doi.org/10.5194/acp-25-4333-2025, https://doi.org/10.5194/acp-25-4333-2025, 2025
Short summary
Short summary
A balloon was launched in 2021 in the Arctic to carry instruments for trace gas measurements up to 32 km. One purpose was to compare measurement techniques. We focus on the major greenhouse gases. To measure these, air was sampled with the AirCore technique and with flask sampling, and samples were analysed after the flight. In flight, observations were done with an optical method. In a companion paper, we report on observations of chlorine and bromine containing trace gases.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Joan Alexander, Alexis Mariaccia, Philippe Keckhut, and Antoine Mangin
EGUsphere, https://doi.org/10.5194/egusphere-2025-394, https://doi.org/10.5194/egusphere-2025-394, 2025
Short summary
Short summary
This study investigates how tropical convection generates gravity waves, which play a key role in transporting energy across the atmosphere. By combining Aeolus satellite data with ERA5 reanalysis data and radio-occultation measurements, we identified significant wave activity overlooked by ERA5, particularly over the Indian Ocean. Aeolus fills major gaps in wind data, offering a clearer picture of wave dynamics and challenging assumptions about their behavior, improving climate models.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Sullivan Carbone, Emmanuel D. Riviere, Mélanie Ghysels, Jérémie Burgalat, Georges Durry, Nadir Amarouche, Aurélien Podglajen, and Albert Hertzog
EGUsphere, https://doi.org/10.5194/egusphere-2024-3249, https://doi.org/10.5194/egusphere-2024-3249, 2024
Short summary
Short summary
During the two first Strateole 2 campaigns, instruments have flown under super pressure balloons between 18 and 20 km for several weeks at the equator and performed in situ measurements of water vapor. The present article exposes the methodology used to quantify the modulation of water vapor by atmospheric waves and deep convective cases. This methodology allows to put to the fore the influence of atmospheric waves and extremely deep convection on the observed water vapor anomalies.
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-98, https://doi.org/10.5194/amt-2024-98, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The water molecule comes in several different varieties, which are nearly indistinguishable in daily life. However, slight differences between the water molecule types can be exploited to achieve better scientific understanding of parts of Earth's atmosphere. In this work we describe the design, construction, and operation of an instrument meant to measure these molecules aboard research aircraft up to altitudes of 20 kilometers.
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024, https://doi.org/10.5194/amt-17-4471-2024, 2024
Short summary
Short summary
We present a top-down approach to quantify CO2 and CH4 emissions at the scale of an industrial site, based on a mass balance model relying on atmospheric concentrations measurements from a new sensor embarked on board uncrewed aircraft vehicles (UAVs). We present a laboratory characterization of our sensor and a field validation of our quantification method, together with field application to the monitoring of two real-world offshore oil and gas platforms.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Dale Hurst, Emrys Hall, Kensy Xiong, Jean-Charles Dupont, Jean-Christophe Samake, Fabien Frérot, Raghed Bejjani, and Emmanuel D. Riviere
Atmos. Meas. Tech., 17, 3495–3513, https://doi.org/10.5194/amt-17-3495-2024, https://doi.org/10.5194/amt-17-3495-2024, 2024
Short summary
Short summary
A tunable diode laser hygrometer, “Pico-Light H2O”, is presented and its performances are evaluated during the AsA 2022 balloon-borne intercomparison campaign from Aire-sur-l'Adour (France) in September 2022. A total of 15 balloons were launched within the framework of the EU-funded HEMERA project. Pico-Light H2O has been compared in situ with the NOAA Frost Point Hygrometer in the upper troposphere and stratosphere, as well as with meteorological sondes (iMet-4 and M20) in the troposphere.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024, https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Short summary
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Abhinna K. Behera, Marie Boichu, François Thieuleux, Nicolas Henriot, and Souichiro Hioki
EGUsphere, https://doi.org/10.5194/egusphere-2023-2545, https://doi.org/10.5194/egusphere-2023-2545, 2023
Preprint archived
Short summary
Short summary
Volcanic eruptions release sulfur dioxide (SO2), affecting air quality, ecosystems, and aviation. Current global observations lack high temporal-resolution quantitative information, which limits our understanding of volcanic SO2 emissions and their impacts. This study uses advanced satellite data and inverse modeling to track and comprehend emissions from the 2018 Ambrym eruption, the world's leading SO2 emitter. It enhances our ability to effectively monitor and respond to volcanic activity.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Jason E. Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022, https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Short summary
The global CAMS air quality model is used for providing tropospheric ozone information to end users. This paper updates the chemical mechanism employed (CBA) and compares it against two other mechanisms (MOCAGE, MOZART) and a multi-decadal dataset based on a previous version of CBA. We perform extensive validation for the US using multiple surface and aircraft datasets, providing an assessment of biases and the extent of correlation across different seasons during 2014.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Claire Lamotte, Jonathan Guth, Virginie Marécal, Martin Cussac, Paul David Hamer, Nicolas Theys, and Philipp Schneider
Atmos. Chem. Phys., 21, 11379–11404, https://doi.org/10.5194/acp-21-11379-2021, https://doi.org/10.5194/acp-21-11379-2021, 2021
Short summary
Short summary
Improvements are made in a global chemical transfer model by considering a new volcanic SO2 emissions inventory, with more volcanoes referenced and more information on the altitude of injection. Better constraining volcanic emissions with this inventory improves the global, but mostly local, tropospheric sulfur composition. The tropospheric sulfur budget shows a nonlinearity to the volcanic contribution, especially to the sulfate aerosol burden and sulfur wet deposition.
Lucí Hidalgo Nunes, Gerhard Held, Ana Maria Gomes, Kleber Pinheiro Naccarato, and Raul Reis Amorim
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-35, https://doi.org/10.5194/wcd-2021-35, 2021
Preprint withdrawn
Short summary
Short summary
During the night of 04/05 June 2016 Campinas, Brazil, was hit by a tornado and by intense lightning activity. The day (Sunday) and time of the tornado occurrence probably contributed to the fact that only a small number of persons suffered injuries, without any fatalities. The phenomenon was evaluated by means of radar observations, lightning activity and damages. The occurrence of the phenomenon has shown that the municipal government and citizens are unprepared to face this kind of event.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Yann Cohen, Virginie Marécal, Béatrice Josse, and Valérie Thouret
Geosci. Model Dev., 14, 2659–2689, https://doi.org/10.5194/gmd-14-2659-2021, https://doi.org/10.5194/gmd-14-2659-2021, 2021
Short summary
Short summary
Assessing long-term chemistry–climate simulations with in situ and frequent observations near the tropopause is possible with the IAGOS commercial aircraft data set. This study presents a method that distributes the IAGOS data (ozone and CO) on a monthly model grid, limiting the impact of resolution for the evaluation of the modelled chemical fields. We applied it to the CCMI REF-C1SD simulation from the MOCAGE CTM and notably highlighted well-reproduced O3 behaviour in the lower stratosphere.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Mélanie Ghysels, Georges Durry, Nadir Amarouche, Jean-Christophe Samake, Fabien Frérot, and Emmanuel D. Rivière
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-269, https://doi.org/10.5194/amt-2020-269, 2020
Publication in AMT not foreseen
Short summary
Short summary
Understanding the processes which regulate the entry of water into the lower stratosphere is essential to address the impact of water vapor on the climate, but also for the future balance of the ozone layer. Developing lightweight hygrometers is of importance to allow frequent sounding in support of such understanding. In this frame, a new lightweight hygrometer, named Pico-Light H2O, has been tested twice in-flight under rubber balloon in 2019.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Cited articles
Aligo, E. A., Gallus, W. A., and Segal, M.: On the impact of WRF model
vertical grid resolution on Midwest summer rainfall forecasts, Weather
Forecast., 24, 575–594, https://doi.org/10.1175/2008WAF2007101.1, 2009. a
Behera, A. K., Rivière, E. D., Marecal, V., Rysman, J. F., Chantal, C., Sèze, G., Amarouche, N., Ghysels, M., Khaykin, S. M., Pommereau, J. P., and Held, G.: Modeling the TTL at Continental Scale for a Wet Season: An
Evaluation of the BRAMS Mesoscale Model Using TRO-Pico Campaign, and
Measurements From Airborne and Spaceborne Sensors, J. Geophys.
Res.-Atmos., 123, 2491–2508, https://doi.org/10.1002/2017JD027969, 2018. a, b, c, d
Betts, A. and Miller, M.: A new convective adjustment scheme. Part II: Single
column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets,
Q. J. Roy. Meteor. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308, 1986. a
Brabec, M., Wienhold, F. G., Luo, B. P., Vömel, H., Immler, F., Steiner, P., Hausammann, E., Weers, U., and Peter, T.: Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling, Atmos. Chem. Phys., 12, 9135–9148, https://doi.org/10.5194/acp-12-9135-2012, 2012. a
BRAMS: Welcome to the Brazilian developments on the Regional Atmospheric Modeling System, BRAMS [code], available at: http://brams.cptec.inpe.br/, last access: 14 January 2022. a
Brewer, A.: Evidence for a world circulation provided by the measurements of
helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949. a
Carminati, F., Ricaud, P., Pommereau, J.-P., Rivière, E., Khaykin, S., Attié, J.-L., and Warner, J.: Impact of tropical land convection on the water vapour budget in the tropical tropopause layer, Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014, 2014. a
Chaboureau, J.-P., Cammas, J.-P., Duron, J., Mascart, P. J., Sitnikov, N. M., and Voessing, H.-J.: A numerical study of tropical cross-tropopause transport by convective overshoots, Atmos. Chem. Phys., 7, 1731–1740, https://doi.org/10.5194/acp-7-1731-2007, 2007. a
Chemel, C., Russo, M. R., Pyle, J. A., Sokhi, R. S., and Schiller, C.:
Quantifying the imprint of a severe Hector thunderstorm during
ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower
stratosphere, Mon. Weather Rev., 137, 2493–2514, https://doi.org/10.1175/2008MWR2666.1, 2009. a, b, c, d
Corti, T., Luo, B. P., De Reus, M., Brunner, D., Cairo, F., Mahoney, M. J., Martucci, G., Matthey, R., Mitev, V., Dos Santos, F. H., and Schiller, C.: Unprecedented evidence
for deep convection hydrating the tropical stratosphere, Geophys. Res.
Lett., 35, L10810, https://doi.org/10.1029/2008GL033641, 2008. a
Cotton, W. R., Pielke Sr, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P.: RAMS 2001:
Current status and future directions, Meteorol. Atmos. Phys.,
82, 5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003. a
Danielsen, E. F.: A dehydration mechanism for the stratosphere, Geophys.
Res. Lett., 9, 605–608, https://doi.org/10.1029/GL009i006p00605, 1982. a
Dauhut, T., Chaboureau, J.-P., Escobar, J., and Mascart, P.: Large-eddy
simulations of Hector the convector making the stratosphere wetter,
Atmos. Sci. Lett., 16, 135–140, https://doi.org/10.1002/asl2.534, 2015. a, b
Dauhut, T., Chaboureau, J.-P., Haynes, P. H., and Lane, T. P.: The mechanisms
leading to a stratospheric hydration by overshooting convection, J.
Atmos. Sci., 75, 4383–4398, https://doi.org/10.1175/JAS-D-18-0176.1, 2018. a
Deriaz, E. and Haldenwang, P.: Non-linear CFL Conditions Issued from the von
Neumann Stability Analysis for the Transport Equation, J. Sci.
Comput., 85, 1–17, https://doi.org/10.1007/s10915-020-01302-0, 2020. a
ESPRI Aeris: TRO-pico: overview, ESPRI Data Centre [data set], available at: https://cds-espri.ipsl.upmc.fr/etherTypo/index.php?id=1671&L=1, last access: 14 January 2022. a
Folkins, I., Loewenstein, M., Podolske, J., Oltmans, S. J., and Proffitt, M.:
A barrier to vertical mixing at 14 km in the tropics: Evidence from
ozonesondes and aircraft measurements, J. Geophys. Res.-Atmos., 104, 22095–22102, https://doi.org/10.1029/1999JD900404, 1999. a
Forster, P. M. D. F. and Shine, K.: Assessing the climate impact of trends in
stratospheric water vapor, Geophys. Res. Lett., 29, 10-1–10-4, https://doi.org/10.1029/2001GL013909, 2002. a
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., Chatfield, R., Silva Dias, P., Artaxo, P., Andreae, M. O., Grell, G., Rodrigues, L. F., Fazenda, A., and Panetta, J.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation, Atmos. Chem. Phys., 9, 2843–2861, https://doi.org/10.5194/acp-9-2843-2009, 2009. a
Fueglistaler, S., Bonazzola, M., Haynes, P., and Peter, T.: Stratospheric
water vapor predicted from the Lagrangian temperature history of air entering
the stratosphere in the tropics, J. Geophys. Res.-Atmos., 110, D08107, https://doi.org/10.1029/2004JD005516, 2005. a
Fueglistaler, S., Dessler, A., Dunkerton, T., Folkins, I., Fu, Q., and Mote,
P. W.: Tropical tropopause layer, Rev. Geophys., 47, https://doi.org/10.1029/2008RG000267, 2009. a
Ghysels, M., Riviere, E. D., Khaykin, S., Stoeffler, C., Amarouche, N., Pommereau, J.-P., Held, G., and Durry, G.: Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS, Atmos. Meas. Tech., 9, 1207–1219, https://doi.org/10.5194/amt-9-1207-2016, 2016. a, b, c, d
Grabowski, W. W.: Coupling cloud processes with the large-scale dynamics using
the cloud-resolving convection parameterization (CRCP), J.
Atmos. Sci., 58, 978–997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001. a
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys.
Res. Lett., 29, 38–1, https://doi.org/10.1029/2002GL015311, 2002. a
Grosvenor, D. P., Choularton, T. W., Coe, H., and Held, G.: A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations, Atmos. Chem. Phys., 7, 4977–5002, https://doi.org/10.5194/acp-7-4977-2007, 2007. a
Hassim, M. E. E. and Lane, T. P.: A model study on the influence of overshooting convection on TTL water vapour, Atmos. Chem. Phys., 10, 9833–9849, https://doi.org/10.5194/acp-10-9833-2010, 2010. a
Held, G., Gomes, J. L., and Nascimento, E.: Forecasting Severe Weather
Occurrences in the State of São Paulo, Brazil, Using the Meso-Eta Model,
in: Proceedings, 4th European Conference on Severe Storms, 10–14 September 2007, Trieste, Italy,
2007. a
Herman, R. L., Drdla, K., Spackman, J. R., Hurst, D. F., Popp, P. J., Webster, C. R., Romashkin, P. A., Elkins, J. W., Weinstock, E. M., Gandrud, B. W., and Toon, G. C.: Hydration,
dehydration, and the total hydrogen budget of the 1999/2000 winter Arctic
stratosphere, J. Geophys. Res.-Atmos., 107, SOL 63-1–SOL 63-12, https://doi.org/10.1029/2001JD001257,
2002. a
Hervig, M., Carslaw, K., Peter, T., Deshler, T., Gordley, L., Redaelli, G.,
Biermann, U., and Russell III, J.: Polar stratospheric clouds due to vapor
enhancement: HALOE observations of the Antarctic vortex in 1993, J.
Geophys. Res.-Atmos., 102, 28185–28193, https://doi.org/10.1029/97JD02464, 1997. a
Holton, J. R. and Gettelman, A.: Horizontal transport and the dehydration of
the stratosphere, Geophys. Res. Lett., 28, 2799–2802, https://doi.org/10.1029/2001GL013148, 2001. a
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys.,
33, 403–439, https://doi.org/10.1029/95RG02097, 1995. a
Homeyer, C. R.: Numerical simulations of extratropical tropopause-penetrating
convection: Sensitivities to grid resolution, J. Geophys.
Res.-Atmos., 120, 7174–7188, https://doi.org/10.1002/2015JD023356, 2015. a
Homeyer, C. R. and Kumjian, M. R.: Microphysical characteristics of
overshooting convection from polarimetric radar observations, J.
Atmos. Sci., 72, 870–891, https://doi.org/10.1175/JAS-D-13-0388.1, 2015. a, b, c
Homeyer, C. R., Pan, L. L., and Barth, M. C.: Transport from convective
overshooting of the extratropical tropopause and the role of large-scale
lower stratosphere stability, J. Geophys. Res.-Atmos.,
119, 2220–2240, https://doi.org/10.1002/2013JD020931, 2014. a
Iwasaki, S., Shibata, T., Nakamoto, J., Okamoto, H., Ishimoto, H., and Kubota,
H.: Characteristics of deep convection measured by using the A-train
constellation, J. Geophys. Res.-Atmos., 115, D06207, https://doi.org/10.1029/2009JD013000, 2010. a
Iwasaki, S., Shibata, T., Okamoto, H., Ishimoto, H., and Kubota, H.: Mixtures
of stratospheric and overshooting air measured using A-Train sensors,
J. Geophys. Res.-Atmos., 117, D12207, https://doi.org/10.1029/2011JD017402, 2012. a
James, R., Bonazzola, M., Legras, B., Surbled, K., and Fueglistaler, S.: Water
vapor transport and dehydration above convective outflow during Asian
monsoon, Geophys. Res. Lett., 35, L20810, https://doi.org/10.1029/2008GL035441, 2008. a
Jensen, E. and Pfister, L.: Transport and freeze-drying in the tropical
tropopause layer, J. Geophys. Res.-Atmos., 109, D02207, https://doi.org/10.1029/2003JD004022, 2004. a
Jensen, E. J., Pan, L. L., Honomichl, S., Diskin, G. S., Krämer, M., Spelten, N., Günther, G., Hurst, D. F., Fujiwara, M., Vömel, H., and Selkirk, H. B.:
Assessment of observational evidence for direct convective hydration of the
lower stratosphere, J. Geophys. Res.-Atmos., 125, e2020JD032793,
https://doi.org/10.1029/2020JD032793, 2020. a
Khairoutdinov, M. and Randall, D.: High-resolution simulation of
shallow-to-deep convection transition over land, J. Atmos.
Sci., 63, 3421–3436, https://doi.org/10.1175/JAS3810.1, 2006. a
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the atmospheric
general circulation using a cloud-resolving model as a superparameterization
of physical processes, J. Atmos. Sci., 62, 2136–2154, https://doi.org/10.1175/JAS3453.1,
2005. a
Khairoutdinov, M. F. and Randall, D. A.: A cloud resolving model as a cloud
parameterization in the NCAR Community Climate System Model: Preliminary
results, Geophys. Res. Lett., 28, 3617–3620, https://doi.org/10.1029/2001GL013552, 2001. a
Khaykin, S., Pommereau, J.-P., Korshunov, L., Yushkov, V., Nielsen, J., Larsen, N., Christensen, T., Garnier, A., Lukyanov, A., and Williams, E.: Hydration of the lower stratosphere by ice crystal geysers over land convective systems, Atmos. Chem. Phys., 9, 2275–2287, https://doi.org/10.5194/acp-9-2275-2009, 2009. a, b
Khaykin, S. M., Pommereau, J.-P., Riviere, E. D., Held, G., Ploeger, F., Ghysels, M., Amarouche, N., Vernier, J.-P., Wienhold, F. G., and Ionov, D.: Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations, Atmos. Chem. Phys., 16, 12273–12286, https://doi.org/10.5194/acp-16-12273-2016, 2016. a, b, c, d, e, f, g, h, i
Lee, K.-O., Dauhut, T., Chaboureau, J.-P., Khaykin, S., Krämer, M., and Rolf, C.: Convective hydration in the tropical tropopause layer during the StratoClim aircraft campaign: pathway of an observed hydration patch, Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, 2019. a, b
Lelieveld, J., Brühl, C., Jöckel, P., Steil, B., Crutzen, P. J., Fischer, H., Giorgetta, M. A., Hoor, P., Lawrence, M. G., Sausen, R., and Tost, H.: Stratospheric dryness: model simulations and satellite observations, Atmos. Chem. Phys., 7, 1313–1332, https://doi.org/10.5194/acp-7-1313-2007, 2007. a
Li, Y., Zipser, E. J., Krueger, S. K., and Zulauf, M. A.: Cloud-resolving
modeling of deep convection during KWAJEX. Part I: Comparison to TRMM
satellite and ground-based radar observations, Mon. Weather Rev., 136,
2699–2712, https://doi.org/10.1175/2007MWR2258.1, 2008. a
Liu, X. M., Rivière, E. D., Marécal, V., Durry, G., Hamdouni, A., Arteta, J., and Khaykin, S.: Stratospheric water vapour budget and convection overshooting the tropopause: modelling study from SCOUT-AMMA, Atmos. Chem. Phys., 10, 8267–8286, https://doi.org/10.5194/acp-10-8267-2010, 2010. a, b, c, d, e, f
Marécal, V., Durry, G., Longo, K., Freitas, S., Rivière, E. D., and Pirre, M.: Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign, Atmos. Chem. Phys., 7, 1471–1489, https://doi.org/10.5194/acp-7-1471-2007, 2007. a
Mesinger, F., Chou, S. C., Gomes, J. L., Jovic, D., Bastos, P., Bustamante, J. F., Lazic, L., Lyra, A. A., Morelli, S., Ristic, I., and Veljovic, K.: An upgraded
version of the Eta model, Meteorol. Atmos. Phys., 116, 63–79,
2012. a
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R.: New RAMS
cloud microphysics parameterization. Part II: The two-moment scheme,
Atmos. Res., 45, 3–39, https://doi.org/10.1016/S0169-8095(97)00018-5, 1997. a
Oltmans, S. J., Vömel, H., Hofmann, D. J., Rosenlof, K. H., and Kley, D.:
The increase in stratospheric water vapor from balloonborne, frostpoint
hygrometer measurements at Washington, DC, and Boulder, Colorado,
Geophys. Res. Lett., 27, 3453–3456, https://doi.org/10.1029/2000GL012133, 2000. a
Penide, G., Giraud, V., Bouniol, D., Dubuisson, P., Duroure, C., Protat, A.,
and Cautenet, S.: Numerical simulation of the 7 to 9 September 2006 AMMA
mesoscale convective system: Evaluation of the dynamics and cloud
microphysics using synthetic observations, Q. J. Roy.
Meteor. Soc., 136, 304–322, https://doi.org/10.1002/qj.558, 2010. a
Pommereau, J.-P., Garnier, A., Held, G., Gomes, A. M., Goutail, F., Durry, G., Borchi, F., Hauchecorne, A., Montoux, N., Cocquerez, P., Letrenne, G., Vial, F., Hertzog, A., Legras, B., Pisso, I., Pyle, J. A., Harris, N. R. P., Jones, R. L., Robinson, A. D., Hansford, G., Eden, L., Gardiner, T., Swann, N., Knudsen, B., Larsen, N., Nielsen, J. K., Christensen, T., Cairo, F., Fierli, F., Pirre, M., Marécal, V., Huret, N., Rivière, E. D., Coe, H., Grosvenor, D., Edvarsen, K., Di Donfrancesco, G., Ricaud, P., Berthelier, J.-J., Godefroy, M., Seran, E., Longo, K., and Freitas, S.: An overview of the HIBISCUS campaign, Atmos. Chem. Phys., 11, 2309–2339, https://doi.org/10.5194/acp-11-2309-2011, 2011. a
Qu, Y., Khain, A., Phillips, V., Ilotoviz, E., Shpund, J., Patade, S., and
Chen, B.: The role of ice splintering on microphysics of deep convective
clouds forming under different aerosol conditions: Simulations using the
model with spectral bin microphysics, J. Geophys. Res.-Atmos., 125, e2019JD031312, https://doi.org/10.1029/2019JD031312, 2020. a
Randall, D., DeMott, C., Stan, C., Khairoutdinov, M., Benedict, J., McCrary,
R., Thayer-Calder, K., and Branson, M.: Simulations of the tropical general
circulation with a multiscale global model, Meteor. Mon., 56,
15–1, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0016.1, 2016. a
Randel, W. J. and Jensen, E. J.: Physical processes in the tropical tropopause
layer and their roles in a changing climate, Nat. Geosci., 6, 169–176, https://doi.org/10.1038/ngeo1733,
2013. a
Randel, W. J., Wu, F., Gettelman, A., Russell III, J., Zawodny, J. M., and
Oltmans, S. J.: Seasonal variation of water vapor in the lower stratosphere
observed in Halogen Occultation Experiment data, J. Geophys.
Res.-Atmos., 106, 14313–14325, https://doi.org/10.1029/2001JD900048, 2001. a
Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., and Forster, P.:
Decreases in stratospheric water vapor after 2001: Links to changes in the
tropical tropopause and the Brewer-Dobson circulation, J.
Geophys. Res.-Atmos., 111, D12312, https://doi.org/10.1029/2005JD006744, 2006. a
Renard, J.-B., Dulac, F., Berthet, G., Lurton, T., Vignelles, D., Jégou, F., Tonnelier, T., Jeannot, M., Couté, B., Akiki, R., Verdier, N., Mallet, M., Gensdarmes, F., Charpentier, P., Mesmin, S., Duverger, V., Dupont, J.-C., Elias, T., Crenn, V., Sciare, J., Zieger, P., Salter, M., Roberts, T., Giacomoni, J., Gobbi, M., Hamonou, E., Olafsson, H., Dagsson-Waldhauserova, P., Camy-Peyret, C., Mazel, C., Décamps, T., Piringer, M., Surcin, J., and Daugeron, D.: LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights, Atmos. Meas. Tech., 9, 3673–3686, https://doi.org/10.5194/amt-9-3673-2016, 2016. a
Rind, D.: Just Add Water Vapor, Science, 281, 1152–1153, https://doi.org/10.1126/science.281.5380.1152, 1998. a
Rosenlof, K. H., Oltmans, S. J., Kley, D., Russell, J. M., Chiou, E.-W., Chu,
W. P., Johnson, D. G., Kelly, K. K., Michelsen, H. A., Nedoluha, G. E.,
Remsberg, E. E., Toon, G. C., and McCormick, M. P.: Stratospheric water vapor
increases over the past half-century, Geophys. Res. Lett., 28,
1195–1198, https://doi.org/10.1029/2000GL012502, 2001. a
Rowe, A. K. and Houze, R. A.: Microphysical characteristics of MJO convection
over the Indian Ocean during DYNAMO, J. Geophys. Res.-Atmos., 119, 2543–2554, https://doi.org/10.1002/2013JD020799, 2014. a
Sang, W., Huang, Q., Tian, W., Wright, J. S., Zhang, J., Tian, H., Luo, J., Hu,
D., and Han, Y.: A large eddy model study on the effect of overshooting
convection on lower stratospheric water vapor, J. Geophys.
Res.-Atmos., 123, 10023–10036, https://doi.org/10.1029/2017JD028069, 2018. a
Sargent, M. R., Smith, J. B., Sayres, D. S., and Anderson, J. G.: The roles of
deep convection and extratropical mixing in the tropical tropopause layer: An
in situ measurement perspective, J. Geophys. Res.-Atmos., 119, 12355–12371, https://doi.org/10.1002/2014JD022157, 2014. a
Scherer, M., Vömel, H., Fueglistaler, S., Oltmans, S. J., and Staehelin, J.: Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE, Atmos. Chem. Phys., 8, 1391–1402, https://doi.org/10.5194/acp-8-1391-2008, 2008. a
Schiller, C., Grooß, J.-U., Konopka, P., Plöger, F., Silva dos Santos, F. H., and Spelten, N.: Hydration and dehydration at the tropical tropopause, Atmos. Chem. Phys., 9, 9647–9660, https://doi.org/10.5194/acp-9-9647-2009, 2009. a
Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433–8446, https://doi.org/10.5194/acp-11-8433-2011, 2011. a
Schoeberl, M. R., Dessler, A. E., and Wang, T.: Simulation of stratospheric water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12, 6475–6487, https://doi.org/10.5194/acp-12-6475-2012, 2012. a, b
Schoeberl, M. R., Jensen, E. J., Pfister, L., Ueyama, R., Avery, M., and
Dessler, A. E.: Convective hydration of the upper troposphere and lower
stratosphere, J. Geophys. Res.-Atmos., 123, 4583–4593, https://doi.org/10.1029/2018JD028286,
2018. a, b
Seidel, D. J. and Randel, W. J.: Variability and trends in the global
tropopause estimated from radiosonde data, J. Geophys. Res.-Atmos., 111, D21101, https://doi.org/10.1029/2006JD007363, 2006. a
Sherwood, S. C. and Dessler, A. E.: On the control of stratospheric humidity,
Geophys. Res. Lett., 27, 2513–2516, https://doi.org/10.1029/2000GL011438, 2000. a
Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: Solar
cycle variability, ozone, and climate, Science, 284, 305–308, https://doi.org/10.1126/science.284.5412.305, 1999. a
Shindell, D. T.: Climate and ozone response to increased stratospheric water
vapor, Geophys. Res. Lett., 28, 1551–1554, https://doi.org/10.1029/1999GL011197, 2001. a
Smith, J. B.: Convective hydration of the stratosphere, Science, 373,
1194–1195, https://doi.org/10.1126/science.abl8740, 2021. a
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water
vapor to decadal changes in the rate of global warming, Science, 327,
1219–1223, https://doi.org/10.1126/science.1182488, 2010. a
Staquet, C.: Gravity and inertia-gravity internal waves: Breaking processes
and induced mixing, Surv. Geophys., 25, 281–314, https://doi.org/10.1007/s10712-003-1280-8, 2004. a
Toon, O. B., Browell, E. V., Kinne, S., and Jordan, J.: An analysis of lidar
observations of polar stratospheric clouds, Geophys. Res. Lett., 17,
393–396, https://doi.org/10.1029/GL017i004p00393, 1990. a
Tripoli, G. and Cotton, W.: The Colorado State University three-dimensional
cloud/mesoscale model-1982 Part I: General theoretical framework and
sensitivity experiments, J. Rech. Atmos., 16, 185–219, 1982. a
Ueyama, R., Jensen, E. J., Pfister, L., and Kim, J.-E.: Dynamical, convective,
and microphysical control on wintertime distributions of water vapor and
clouds in the tropical tropopause layer, J. Geophys. Res.-Atmos., 120, 10483–10500, https://doi.org/10.1002/2015JD023318, 2015. a, b
Ueyama, R., Jensen, E. J., and Pfister, L.: Convective influence on the
humidity and clouds in the tropical tropopause layer during boreal summer,
J. Geophys. Res.-Atmos., 123, 7576–7593, https://doi.org/10.1029/2018JD028674, 2018.
a
Vernier, J.-P., Fairlie, T. D., Deshler, T., Venkat Ratnam, M., Gadhavi, H., Kumar, B. S., Natarajan, M., Pandit, A. K., Akhil Raj, S. T., Hemanth Kumar, A., Jayaraman, A., Singh, A. K., Rastogi, N., Sinha, P. R., Kumar, S., Tiwari, S., Wegner, T., Baker, N., Vignelles, D., Stenchikov, G., Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V., Bhate, J., Ravikiran, V., Durga Rao, M., Ravindrababu, S., Patel, A., Vernier, H., Wienhold, F. G., Liu, H., Knepp, T. N., Thomason, L., Crawford, J., Ziemba, L., Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jégou, F., and Renard, J.-B.: BATAL: The
balloon measurement campaigns of the Asian tropopause aerosol layer, B. Am. Meteorol. Soc., 99, 955–973, https://doi.org/10.1175/BAMS-D-17-0014.1, 2018. a
Walko, R. L., Cotton, W. R., Meyers, M., and Harrington, J.: New RAMS cloud
microphysics parameterization part I: the single-moment scheme, Atmos.
Res., 38, 29–62, https://doi.org/10.1016/0169-8095(94)00087-T, 1995. a, b
Weisman, M. L., Skamarock, W. C., and Klemp, J. B.: The resolution dependence
of explicitly modeled convective systems, Mon. Weather Rev., 125,
527–548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2, 1997. a
Wright, J. S., Fu, R., Fueglistaler, S., Liu, Y. S., and Zhang, Y.: The
influence of summertime convection over Southeast Asia on water vapor in the
tropical stratosphere, J. Geophys. Res.-Atmos., 116, D12302, https://doi.org/10.1029/2010JD015416,
2011. a
Wu, J., Del Genio, A. D., Yao, M.-S., and Wolf, A. B.: WRF and GISS SCM
simulations of convective updraft properties during TWP-ICE, J.
Geophys. Res.-Atmos., 114, D04206, https://doi.org/10.1029/2008JD010851, 2009. a
Young, W. R.: Inertia-gravity waves and geostrophic turbulence, J.
Fluid Mech., 920, F1, https://doi.org/10.1017/jfm.2021.334, 2021. a
Short summary
Deep convection overshooting the stratosphere's contribution to the global stratospheric water budget is still being quantified. We ran three different cloud-resolving simulations of an observed case of overshoots in Bauru during the TRO-Pico balloon campaign in the context of upscaling the impact of overshoots at a large scale. These simulations, which have been validated with balloon-borne and S-band radar measurements, shed light on the local-scale variability and composition of overshoots.
Deep convection overshooting the stratosphere's contribution to the global stratospheric water...
Altmetrics
Final-revised paper
Preprint