Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8137-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8137-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
Pavle Arsenovic
Risk Management Solutions, London, UK
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
Annika Seppälä
Department of Physics, University of Otago, Dunedin, New Zealand
Hilde Nesse Tyssøy
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
Related authors
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021, https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Short summary
We simulate ozone variability over the 21st century with different greenhouse gas scenarios. Our results highlight a novel mechanism of additional reactive nitrogen species descending to the Antarctic stratosphere from the thermosphere/upper mesosphere due to the accelerated residual circulation under climate change. This excess descending NOx can potentially prevent a super recovery of ozone in the Antarctic upper stratosphere.
Hannah E. Kessenich, Annika Seppälä, Dan Smale, Craig J. Rodger, and Mark Weber
EGUsphere, https://doi.org/10.5194/egusphere-2025-873, https://doi.org/10.5194/egusphere-2025-873, 2025
Short summary
Short summary
We use observational data to track a mass of mesospheric air which descends into the Antarctic polar vortex each spring. The altitude of the air mass at the end of October is used to create a new diagnostic metric. The metric captures the dynamical conditions of the vortex and can be used to estimate the amount of poleward ozone transport in October. When used as a proxy for October polar total column ozone, the metric explains the majority (63%) of the observed variance from 2004–2024.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021, https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh
Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021, https://doi.org/10.5194/acp-21-11041-2021, 2021
Short summary
Short summary
We simulate ozone variability over the 21st century with different greenhouse gas scenarios. Our results highlight a novel mechanism of additional reactive nitrogen species descending to the Antarctic stratosphere from the thermosphere/upper mesosphere due to the accelerated residual circulation under climate change. This excess descending NOx can potentially prevent a super recovery of ozone in the Antarctic upper stratosphere.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Noora Partamies, Fasil Tesema, Emma Bland, Erkka Heino, Hilde Nesse Tyssøy, and Erlend Kallelid
Ann. Geophys., 39, 69–83, https://doi.org/10.5194/angeo-39-69-2021, https://doi.org/10.5194/angeo-39-69-2021, 2021
Short summary
Short summary
About 200 nights of substorm activity have been analysed for their magnetic disturbance magnitude and the level of cosmic radio noise absorption. We show that substorms with a single expansion phase have limited lifetimes and spatial extents. Starting from magnetically quiet conditions, the strongest absorption occurs after 1 to 2 nights of substorm activity. This prolonged activity is thus required to accelerate particles to energies, which may affect the atmospheric chemistry.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Ales Kuchar, William Ball, Pavle Arsenovic, Ellis Remsberg, Patrick Jöckel, Markus Kunze, David A. Plummer, Andrea Stenke, Daniel Marsh, Doug Kinnison, and Thomas Peter
Atmos. Chem. Phys., 21, 201–216, https://doi.org/10.5194/acp-21-201-2021, https://doi.org/10.5194/acp-21-201-2021, 2021
Short summary
Short summary
The solar signal in the mesospheric H2O and CO was extracted from the CCMI-1 model simulations and satellite observations using multiple linear regression (MLR) analysis. MLR analysis shows a pronounced and statistically robust solar signal in both H2O and CO. The model results show a general agreement with observations reproducing a negative/positive solar signal in H2O/CO. The pattern of the solar signal varies among the considered models, reflecting some differences in the model setup.
Fasil Tesema, Noora Partamies, Hilde Nesse Tyssøy, and Derek McKay
Ann. Geophys., 38, 1191–1202, https://doi.org/10.5194/angeo-38-1191-2020, https://doi.org/10.5194/angeo-38-1191-2020, 2020
Short summary
Short summary
In this study, we present the ionization level from EISCAT radar experiments and cosmic noise absorption level
from KAIRA riometer observations during pulsating auroras. We found thick layers of ionization that reach down
to 70 km (harder precipitation) and higher cosmic noise absorption during patchy pulsating aurora than
during amorphous pulsating and patchy auroras.
Cited articles
Anderson, J. G., Toohey, D. W., and Brune, W. H.: Free radicals within the
Antarctic vortex: the role of CFCs in Antarctic ozone loss, Science, 251,
39–46, https://doi.org/10.1126/science.251.4989.39, 1991. a
Andersson, M. E., Verronen, P. T., Rodger, C. J., Clilverd, M. A., and
Seppälä, A.: Missing driver in the Sun-Earth connection from
energetic electron precipitation impacts mesospheric ozone, Nat. Commun., 5,
5197, https://doi.org/10.1038/ncomms6197, 2014. a
Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A., Päivärinta,
S.-M., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and van de Kamp, M.:
Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time
Scales: The Role of Medium-Energy Electrons, J. Geophys. Res.-Atmos., 123,
607–622, https://doi.org/10.1002/2017JD027605, 2018. a
Arsenovic, P., Damiani, A., Rozanov, E., Funke, B., Stenke, A., and Peter, T.: Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter, Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, 2019. a
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and
Physics of the Stratosphere and Mesosphere, Atmospheric and Oceanographic Sciences Library, Vol. 32, Springer, https://doi.org/10.1007/1-4020-3824-0,
2005. a, b, c
Calisto, M., Usoskin, I., Rozanov, E., and Peter, T.: Influence of Galactic Cosmic Rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556, https://doi.org/10.5194/acp-11-4547-2011, 2011. a, b, c
Cleveland, W. S. and Devlin, S. J.: Locally-weighted regression: An
approach to regression analysis by local fitting, J. Am. Stat. Assoc., 83,
596–610, https://doi.org/10.2307/2289282, 1988. a
Egorova, T., Rozanov, E., Zubov, V., and Karol, I.: Model for investigating
ozone trends (MEZON), Izv. Atmos. Ocean. Phys., 39, 277–292, 2003. a
Funke, B., López-Puertas, M., Stiller, G. P., and Clarmann, T.:
Mesospheric and stratospheric NOy produced by energetic particle
precipitation during 2002–2012, J. Geophys. Res., 119, 4429–4446,
https://doi.org/10.1002/2013JD021404, 2014. a, b
Funke, B., López-Puertas, M., Stiller, G. P., Versick, S., and von Clarmann, T.: A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation, Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, 2016. a, b
Gordon, E. M., Seppälä, A., Funke, B., Tamminen, J., and Walker, K. A.: Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss, Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, 2021. a, b, c, d
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming, E. L., Labow, G. J., Randall, C. E., López-Puertas, M., Funke, B., von Clarmann, T., and Stiller, G. P.: Short- and medium-term atmospheric constituent effects of very large solar proton events, Atmos. Chem. Phys., 8, 765–785, https://doi.org/10.5194/acp-8-765-2008, 2008. a
Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Randall, C. E.,
Fleming, E. L., and Frith, S. M.: Long-term middle atmospheric influence of
very large solar proton events, J. Geophys. Res.-Atmos., 114, D11304,
https://doi.org/10.1029/2008JD011415, 2009. a, b, c
Jackman, C. H., Marsh, D. R., Kinnison, D. E., Mertens, C. J., and Fleming, E. L.: Atmospheric changes caused by galactic cosmic rays over the period 1960–2010, Atmos. Chem. Phys., 16, 5853–5866, https://doi.org/10.5194/acp-16-5853-2016, 2016. a, b
Maliniemi, V., Asikainen, T., and Mursula, K.: Spatial distribution of Northern
Hemisphere winter temperatures during different phases of the solar cycle, J.
Geophys. Res.-Atmos., 119, 9752–9764, https://doi.org/10.1002/2013JD021343, 2014. a
Maliniemi, V., Asikainen, T., Salminen, A., and Mursula, K.: Assessing North
Atlantic winter climate response to geomagnetic activity and solar irradiance
variability, Q. J. Roy. Meteor. Soc., 145, 3780–3789, https://doi.org/10.1002/qj.3657,
2019. a
Maliniemi, V., Marsh, D. R., Nesse Tyssøy, H., and Smith-Johnsen, C.: Will
climate change impact polar NOx produced by energetic particle
precipitation?, Geophys. Res. Lett., 47, e2020GL087041,
https://doi.org/10.1029/2020GL087041, 2020. a, b, c
Maliniemi, V., Nesse Tyssøy, H., Smith-Johnsen, C., Arsenovic, P., and Marsh, D. R.: Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century, Atmos. Chem. Phys., 21, 11041–11052, https://doi.org/10.5194/acp-21-11041-2021, 2021. a
Maliniemi, V., Arsenovic, P., Seppälä, A., and Nesse Tyssøy, H.: Influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century, Zenodo [data set], https://doi.org/10.5281/zenodo.6553494, 2022. a
Mann, H. B.: Non-parametric test against trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945. a
Marsland, S., Haak, H., Jungclaus, J., Latif, M., and Röske, F.: The
Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear
coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/S1463-5003(02)00015-X,
2003. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017 (data available at: https://solarisheppa.geomar.de/cmip6, last access: 21 June 2022). a, b, c, d
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011. a
Mironova, I. A., Aplin, K. L., Arnold, F., Bazilevskaya, G. A., Harrison,
R. G., Krivolutsky, A. A., Nicoll, K. A., Rozanov, E. V., Turunen, E., and
Usoskin, I. G.: Energetic Particle Influence on the Earth's Atmosphere, Space
Sci. Rev., 194, 1–96, https://doi.org/10.1007/s11214-015-0185-4, 2015. a
Muthers, S., Anet, J. G., Stenke, A., Raible, C. C., Rozanov, E., Brönnimann, S., Peter, T., Arfeuille, F. X., Shapiro, A. I., Beer, J., Steinhilber, F., Brugnara, Y., and Schmutz, W.: The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM, Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, 2014. a
Nesse Tyssøy, H., Haderlein, A., Sandanger, M. I., and Stadsnes, J.:
Intercomparison of the POES/MEPED Loss Cone Electron Fluxes With the CMIP6
Parametrization, J. Geophys. Res.-Space, 124, 628–642, https://doi.org/10.1029/2018JA025745,
2019. a
Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017, Atmos. Chem. Phys., 18, 10881–10913, https://doi.org/10.5194/acp-18-10881-2018, 2018. a, b
Roeckner, E., Bäuml, G., Bonaventura, L., et al.: The atmospheric general circulation model ECHAM 5. PART I: Model description, Report/Max-Planck-Institut für Meteorologie, 349, http://hdl.handle.net/11858/00-001M-0000-0012-0144-5 (last access: 22 June 2022), 2003. a
Rozanov, E., Calisto, M., Egorova, T., Peter, T., and Schmutz, W.:
Influence of the precipitating energetic particles on atmospheric chemistry
and climate, Surv. Geophys., 33, 483–501, https://doi.org/10.1007/s10712-012-9192-0,
2012. a, b, c, d
Semeniuk, K., Fomichev, V. I., McConnell, J. C., Fu, C., Melo, S. M. L., and Usoskin, I. G.: Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation, Atmos. Chem. Phys., 11, 5045–5077, https://doi.org/10.5194/acp-11-5045-2011, 2011. a
Seppälä, A., Verronen, P. T., Clilverd, M. A., Randall, C. E., Tamminen, J.,
Sofieva, V., Backman, L., and Kyrölä, E.: Arctic and Antarctic polar winter
NOx and energetic particle precipitation in 2002–2006, Geophys. Res. Lett.,
34, L12810, https://doi.org/10.1029/2007GL029733, 2007. a, b
Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M.,
Shapiro, A. V., and Nyeki, S.: A new approach to the long-term reconstruction
of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 529,
A67, https://doi.org/10.1051/0004-6361/201016173, 2011. a
Solomon, S., Crutzen, P. J., and Roble, R. G.: Photochemical coupling between
the thermosphere and the lower atmosphere: 1. Odd nitrogen from 50 to 120 km,
J. Geophys. Res., 87, 7206–7220, https://doi.org/10.1029/JC087iC09p07206, 1982. a
Stenke, A., Schraner, M., Rozanov, E., Egorova, T., Luo, B., and Peter, T.: The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm, Geosci. Model Dev., 6, 1407–1427, https://doi.org/10.5194/gmd-6-1407-2013, 2013. a
Stolarski, R. S., Douglass, A. R., Oman, L. D., and Waugh, D. W.: Impact of
future nitrous oxide and carbon dioxide emissions on the stratospheric ozone
layer, Environ. Res. Lett., 10, 034011, https://doi.org/10.1088/1748-9326/10/3/034011, 2015. a, b
Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W., and McFarland,
M.: The importance of the Montreal Protocol in protecting climate, P.
Natl. Acad. Sci. USA, 104, 4814–4819, https://doi.org/10.1073/pnas.0610328104, 2007. a
Verronen, P. T. and Lehmann, R.: Enhancement of odd nitrogen modifies
mesospheric ozone chemistry during polar winter, Geophys. Res. Lett., 42,
10445–10452, https://doi.org/10.1002/2015GL066703, 2015. a, b, c
Verronen, P. T., Rodger, C. J., Clilverd, M. A., and Wang, S.: First evidence
of mesospheric hydroxyl response to electron precipitation from the radiation
belts, J. Geophys. Res.-Atmos., 116, D07307, https://doi.org/10.1029/2010JD014965, 2011. a
Webster, C. R., May, R. D., Toohey, D. W., Avallone, L. M., Anderson, J. G.,
Newman, P., Lait, L., Schoeberl, M. R., Elkins, J. W., and Chan, K. R.:
Chlorine Chemistry on Polar Stratospheric Cloud Particles in the Arctic
Winter, Science, 261, 1130–1134, https://doi.org/10.1126/science.261.5125.1130, 1993. a, b, c, d
Wilks, D. S.: “The stippling shows statistically significant grid points”:
how research results are routinely overstated and overinterpreted, and what
to do about it, B. Am. Meteorol. Soc., 97, 2263–2273,
https://doi.org/10.1175/BAMS-D-15-00267.1, 2016. a, b, c
WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project – Report No. 58, 588 pp., Geneva, Switzerland,
https://wedocs.unep.org/20.500.11822/32140 (last access: 22 June 2022), 2018. a
Zawedde, A. E., Nesse Tyssøy, H., Stadsnes, J., and Sandanger, M. I.: Are EEP
Events Important for the Tertiary Ozone Maximum?, J. Geophys. Res.-Space,
124, 5976–5994, https://doi.org/10.1029/2018JA026201, 2019. a
Short summary
We simulate the effect of energetic particle precipitation (EPP) on Antarctic stratospheric ozone chemistry over the whole 20th century. We find a significant increase of reactive nitrogen due to EP, which can deplete ozone via a catalytic reaction. Furthermore, significant modulation of active chlorine is obtained related to EPP, which impacts ozone depletion by both active chlorine and EPP. Our results show that EPP has been a significant modulator of ozone chemistry during the CFC era.
We simulate the effect of energetic particle precipitation (EPP) on Antarctic stratospheric...
Altmetrics
Final-revised paper
Preprint