Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-7893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Sun's role in decadal climate predictability in the North Atlantic
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24118 Kiel, Germany
SINTEF Ocean AS, 7010 Trondheim, Norway
DMI – Danish Meteorological Institute, 2100 Copenhagen, Denmark
Wenjuan Huo
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24118 Kiel, Germany
Katja Matthes
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24118 Kiel, Germany
Kunihiko Kodera
Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan
RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama
351-0198, Japan
Tim Kruschke
SMHI – Swedish Meteorological and Hydrological Institute – Rossby
Centre, 60176 Norrköping, Sweden
now at: Federal Maritime and Hydrographic Agency (BSH), 20359 Hamburg, Germany
Related authors
No articles found.
Sabine Bischof, Pia Undine Rethmeier, Wenjuan Huo, Sebastian Wahl, and Robin Pilch Kedzierski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3990, https://doi.org/10.5194/egusphere-2025-3990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In 2019, a stratospheric warming event over Antarctica contributed to extreme heat and drought in Australia, intensifying that year's fire season. The impact of climate change on the occurrence of such events remains uncertain. Our climate model simulations indicate that in the coming decades, stratospheric warming events over Antarctica are likely to continue influencing extreme heat in regions such as Australia and Southern Africa, compounding the direct effects of global warming.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025, https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Short summary
We developed a simple and effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653, https://doi.org/10.5194/egusphere-2025-2653, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
This study uses a high-resolution global climate model to simulate future climate, focusing on the Arctic and North Atlantic. The model captures observed sea ice loss and Atlantic circulation trends, projecting a nearly ice-free Arctic by 2040. It introduces a new method to quantify deep water formation, revealing how different ocean regions contribute to the weakening of overturning circulation in a warming climate.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Atmos. Chem. Phys., 25, 2589–2612, https://doi.org/10.5194/acp-25-2589-2025, https://doi.org/10.5194/acp-25-2589-2025, 2025
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate that the 11-year solar signals in the shortwave heating rate, temperature, and ozone anomalies are significant and robust. The simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Jake W. Casselman, Joke F. Lübbecke, Tobias Bayr, Wenjuan Huo, Sebastian Wahl, and Daniela I. V. Domeisen
Weather Clim. Dynam., 4, 471–487, https://doi.org/10.5194/wcd-4-471-2023, https://doi.org/10.5194/wcd-4-471-2023, 2023
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) has remote effects on the tropical North Atlantic (TNA), but the connections' nonlinearity (strength of response to an increasing ENSO signal) is not always well represented in models. Using the Community Earth System Model version 1 – Whole Atmosphere Community Climate Mode (CESM-WACCM) and the Flexible Ocean and Climate Infrastructure version 1, we find that the TNA responds linearly to extreme El Niño but nonlinearly to extreme La Niña for CESM-WACCM.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Klaus Wyser, Torben Koenigk, Uwe Fladrich, Ramon Fuentes-Franco, Mehdi Pasha Karami, and Tim Kruschke
Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, https://doi.org/10.5194/gmd-14-4781-2021, 2021
Short summary
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Cited articles
Allan, R. and Ansell, T.: A New Globally Complete Monthly Historical Gridded
Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004, J. Climate, 19,
5816–5842, https://doi.org/10.1175/JCLI3937.1, 2006.
Andrews, M. B., Knight, J. R., and Gray, L. J.: A simulated lagged response
of the North Atlantic Oscillation to the solar cycle over the period 1960–2009, Environ. Res. Lett., 10, 054022,
https://doi.org/10.1088/1748-9326/10/5/054022, 2015.
Bellucci, A., Haarsma, R., Gualdi, S., Athanasiadis, P. J., Caian, M.,
Cassou, C., Fernandez, E., Germe, A., Jungclaus, J., Kröger, J., Matei,
D., Müller, W., Pohlmann, H., Salas y Melia, D., Sanchez, E., Smith, D.,
Terray, L., Wyser, K., and Yang, S.: An assessment of a multi-model ensemble
of decadal climate predictions, Clim. Dynam., 44, 2787–2806,
https://doi.org/10.1007/s00382-014-2164-y, 2015.
Boer, G. J.: Long time-scale potential predictability in an ensemble of
coupled climate models, Clim. Dynam., 23, 29–44,
https://doi.org/10.1007/s00382-004-0419-8, 2004.
Boer, G. J., Kharin, V. V., and Merryfield, W. J.: Decadal predictability and
forecast skill, Clim. Dynam., 41, 1817–1833,
https://doi.org/10.1007/s00382-013-1705-0, 2013.
Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L.,
and Mignot, J.: Improved Decadal Predictions of North Atlantic Subpolar Gyre
SST in CMIP6, Geophys. Res. Lett., 48, e2020GL091307,
https://doi.org/10.1029/2020GL091307, 2021.
CESM (Community Earth System Model): Software Engineering Group (CESG), NCAR: CESM1.0 Public Release [code], http://www.cesm.ucar.edu/models/cesm1.0 (last access: 30 May 2022), 2020.
Chiodo, G., Oehrlein, J., Polvani, L. M., Fyfe, J. C., and Smith, A. K.:
Insignificant influence of the 11-year solar cycle on the North Atlantic
Oscillation, Nat. Geosci., 12, 94–99, https://doi.org/10.1038/s41561-018-0293-3, 2019.
Diaconis, P. and Efron, B.: Computer-intensive methods in statistics, Sci. Am., 248, 116–131, https://doi.org/10.1038/scientificamerican0583-116, 1983.
Dima, M., Lohmann, G., and Dima, I.: Solar-induced and internal climate
variability at decadal time scales, Int. J. Climatol.,
25, 713–733, https://doi.org/10.1002/joc.1156, 2005.
Drews, A., Huo, W., Matthes, K., Kodera, K., and Wahl, S.: acp-2021-241, in ACP (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6619200, 2022.
Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,
Andrews, M., and Knight, J.: Skilful predictions of the winter North Atlantic
Oscillation one year ahead, Nat. Geosci., 9, 809–814,
https://doi.org/10.1038/ngeo2824, 2016.
Ebisuzaki, W.: A Method to Estimate the Statistical Significance of a
Correlation When the Data Are Serially Correlated, J. Climate, 10,
2147–2153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2, 1997.
Exner, F. M.: Über monatliche Witterungsanomalien auf der nördlichen
Erdhälfte im Winter, Hölder, 1913.
Garcia, R. R., López-Puertas, M., Funke, B., Marsh, D. R., Kinnison, D.
E., Smith, A. K., and González-Galindo, F.: On the distribution of CO2
and CO in the mesosphere and lower thermosphere, J. Geophys.
Res.-Atmos., 119, 5700–5718,
https://doi.org/10.1002/2013JD021208, 2014.
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and
Murphy, D. J.: Modification of the Gravity Wave Parameterization in the
Whole Atmosphere Community Climate Model: Motivation and Results, J. Atmos. Sci., 74, 275–291,
https://doi.org/10.1175/JAS-D-16-0104.1, 2017.
Goddard, L., Kumar, A., Solomon, A., Smith, D., Boer, G., Gonzalez, P.,
Kharin, V., Merryfield, W., Deser, C., Mason, S. J., Kirtman, B. P., Msadek,
R., Sutton, R., Hawkins, E., Fricker, T., Hegerl, G., Ferro, C. A. T.,
Stephenson, D. B., Meehl, G. A., Stockdale, T., Burgman, R., Greene, A. M.,
Kushnir, Y., Newman, M., Carton, J., Fukumori, I., and Delworth, T.: A
verification framework for interannual-to-decadal predictions experiments,
Clim. Dynam., 40, 245–272, https://doi.org/10.1007/s00382-012-1481-2, 2013.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White, W.: Solar Influences on
Climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282,
2010.
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S.,
Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged
response to the 11 year solar cycle in observed winter Atlantic/European
weather patterns, J. Geophys. Res.-Atmos., 118, 2013JD020062,
https://doi.org/10.1002/2013JD020062, 2013.
Gray, L. J., Woollings, T. J., Andrews, M., and Knight, J.: Eleven-year solar
cycle signal in the NAO and Atlantic/European blocking, Q. J. Roy. Meteor.
Soc., 142, 1890–1903, https://doi.org/10.1002/qj.2782, 2016.
Guttu, S., Orsolini, Y., Stordal, F., Otterå, O. H., Omrani, N.-E.,
Tartaglione, N., Verronen, P. T., Rodger, C. J., and Clilverd, M. A.: Impacts of
UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic
Oscillation during the 11-Year Solar Cycle, Atmosphere, 12, 1029,
https://doi.org/10.3390/atmos12081029, 2021.
Haigh, J. D.: The role of stratospheric ozone in modulating the solar
radiative forcing of climate, Nature, 370, 544–546,
https://doi.org/10.1038/370544a0, 1994.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Hurrell, J. W. and Deser, C.: Northern Hemisphere climate variability during
winter: Looking back on the work of Felix Exner, Meteorol.
Z., 24, 113–118, https://doi.org/10.1127/metz/2015/0578, 2015.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc.,
94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res.-Atmos., 112, D20302,
https://doi.org/10.1029/2006JD007879, 2007.
Kodera, K.: Solar influence on the spatial structure of the NAO during the
winter 1900–1999, Geophys. Res. Lett., 30, 1175,
https://doi.org/10.1029/2002GL016584, 2003.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J.
Geophys. Res.-Atmos., 107, ACL 5-1–ACL 5-12,
https://doi.org/10.1029/2002JD002224, 2002.
Kodera, K., Thiéblemont, R., Yukimoto, S., and Matthes, K.: How can we understand the global distribution of the solar cycle signal on the Earth's surface?, Atmos. Chem. Phys., 16, 12925–12944, https://doi.org/10.5194/acp-16-12925-2016, 2016.
Kruschke, T., Matthes, K., and Wahl, S.: CESM1.0.6 full solar variability ensemble, DOKU at DKRZ [data set] , http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_519_ds00036 (last access: 7 June 2022), 2020a.
Kruschke, T., Matthes, K., and Wahl, S.: CESM1.0.6 low frequency solar variability ensemble, DOKU at DKRZ [data set], http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_519_ds00035 (last access: 7 June 2022), 2020b.
Kuroda, Y., Kodera, K., Yoshida, K., Yukimoto, S., and Gray, L.: Influence of
the solar cycle on the North Atlantic Oscillation, J. Geophys.
Res.-Atmos., 127, e2021JD035519,
https://doi.org/10.1029/2021JD035519, 2022.
Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes,
F., Hawkins, E., Kimoto, M., Kolli, R. K., Kumar, A., Matei, D., Matthes,
K., Müller, W. A., O'Kane, T., Perlwitz, J., Power, S., Raphael, M.,
Shimpo, A., Smith, D., Tuma, M., and Wu, B.: Towards operational predictions
of the near-term climate, Nat. Clim. Change, 9, 94–101,
https://doi.org/10.1038/s41558-018-0359-7, 2019.
Ma, H., Chen, H., Gray, L., Zhou, L., Li, X., Wang, R., and Zhu, S.: Changing
response of the North Atlantic/European winter climate to the 11 year solar
cycle, Environ. Res. Lett., 13, 034007,
https://doi.org/10.1088/1748-9326/aa9e94, 2018.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and
Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1 (WACCM),
J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1,
2013.
Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: Transfer of the solar
signal from the stratosphere to the troposphere: Northern winter, J.
Geophys. Res.-Atmos., 111, D06108,
https://doi.org/10.1029/2005JD006283, 2006.
Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., and
Walters, S.: Role of the QBO in modulating the influence of the 11 year
solar cycle on the atmosphere using constant forcings, J.
Geophys. Res.-Atmos., 115, D18110,
https://doi.org/10.1029/2009JD013020, 2010.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., and Lawrimore,
J. H.: The Global Historical Climatology Network Monthly Temperature
Dataset, Version 4, J. Climate, 31, 9835–9854,
https://doi.org/10.1175/JCLI-D-18-0094.1, 2018.
Misios, S. and Schmidt, H.: Mechanisms Involved in the Amplification of the
11-yr Solar Cycle Signal in the Tropical Pacific Ocean, J. Climate, 25,
5102–5118, https://doi.org/10.1175/JCLI-D-11-00261.1, 2012.
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch,
P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere Model
(CAM4) in Forced SST and Fully Coupled Experiments, J. Climate,
26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Otterå, O. H., Bentsen, M., Drange, H., and Suo, L.: External forcing as
a metronome for Atlantic multidecadal variability, Nat. Geosci., 3,
688–694, https://doi.org/10.1038/ngeo955, 2010.
Scaife, A. A., Ineson, S., Knight, J. R., Gray, L., Kodera, K., and Smith, D.
M.: A mechanism for lagged North Atlantic climate response to solar
variability, Geophys. Res. Lett., 40, 434–439,
https://doi.org/10.1002/grl.50099, 2013.
Smith, A. K., López-Puertas, M., Funke, B., García-Comas, M.,
Mlynczak, M. G., and Holt, L. A.: Nighttime ozone variability in the high
latitude winter mesosphere, J. Geophys. Res.-Atmos.,
119, 13547–13564, https://doi.org/10.1002/2014JD021987, 2014.
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G.,
DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J.,
Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T.,
Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of
decadal climate predictions, npj Climate and Atmospheric Science, 2,
1–10, https://doi.org/10.1038/s41612-019-0071-y, 2019.
Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K., and Hansen, F.:
Solar forcing synchronizes decadal North Atlantic climate variability,
Nat. Commun., 6, 8268, https://doi.org/10.1038/ncomms9268, 2015.
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R.
R., and Krahmann, G.: The Ocean's Response to North Atlantic Oscillation
Variability, in: The North Atlantic Oscillation: Climatic Significance and
Environmental Impact, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and
Visbeck, M., 113–145, American Geophysical Union, https://doi.org/10.1029/134GM06, 2003.
Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding and
Predicting Atlantic Decadal Climate Variability, Curr. Clim. Change Rep., 3,
112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017.
Executive editor
This paper by Drews et al. reports model simulations of the effect of the 11-year solar cycle on the atmospheric circulation and hence on year-to-year variations in weather patterns, . The physics of the effect of the solar cycle is complex, but one important mechanism is believed to be via the variation in short-wave radiation, which perturbs the ozone distribution in the upper stratosphere. The key development in this study is a good model representation of chemistry, radiation and dynamics and their interactions to enable the dynamical feedback processes, which potentially communicate the direct physical effects of the solar cycle to the lower part of the atmosphere, to be adequately simulated. An important aspect of the paper is that the authors exploit an ensemble of simulations that make it possible to distinguish a signal due to solar-cycle effects from natural weather variability. The results convincingly show a solar cycle effect, over the North Atlantic in particular, where variations in the circulation have important implications for the weather experienced in Europe. This is particularly the case in the current period (since 1950 or so) when the 11-year solar variation is strong relative to the entire historical record (starting in about 1850). The results of this paper suggest that including solar cycle effects in models used for decadal climate predictions can provide worthwhile improvements in the skill of such predictions.
This paper by Drews et al. reports model simulations of the effect of the 11-year solar cycle on...
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Solar irradiance varies with a period of approximately 11 years. Using a unique large...
Altmetrics
Final-revised paper
Preprint