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Abstract. Despite several studies on decadal-scale solar influence on climate, a systematic analysis of the
Sun’s contribution to decadal surface climate predictability is still missing. Here, we disentangle the solar-cycle-
induced climate response from internal variability and from other external forcings such as greenhouse gases. We
utilize two 10-member ensemble simulations with a state-of-the-art chemistry–climate model, to date a unique
dataset in chemistry–climate modeling. Using these model simulations, we quantify the potential predictability
related to the solar cycle and demonstrate that the detectability of the solar influence on surface climate depends
on the magnitude of the solar cycle. Further, we show that a strong solar cycle forcing organizes and synchro-
nizes the decadal-scale component of the North Atlantic Oscillation, the dominant mode of climate variability in
the North Atlantic region.

1 Introduction

Since the middle of the last century long-term changes in
global climate have been dominated by anthropogenic green-
house gas emissions. Nevertheless, natural forcings play an
important but poorly quantified role in past and present cli-
mate, especially on regional scales. Solar forcing variabil-
ity has been suggested to affect regional climate variabil-
ity (Gray et al., 2010) and to synchronize internal variabil-
ity modes such as the North Atlantic Oscillation (NAO)
(Thiéblemont et al., 2015). Consequently, solar variability
may offer a source of decadal predictability for regional cli-
mate due to its periodicity (Dunstone et al., 2016; Kushnir et
al., 2019).

In recent years, comprehensive (decadal or near-term) cli-
mate prediction efforts have been made to provide a skillful
and reliable forecast of the actual evolution of both exter-
nally forced and internally generated components of the cli-

mate system. These prediction systems show forecast skill
for several years (Bellucci et al., 2015; Yeager and Robson,
2017), and at least for large multi-model ensemble systems
a robust benefit from initialization that goes beyond the ex-
ternally forced climate response can be shown for a number
of regions globally (Smith et al., 2019). Yet a comprehen-
sive understanding of the predictability of the coupled cli-
mate system as well as the interaction between different pre-
dictability drivers is missing.

It is challenging to separate the 11-year solar cycle surface
signal from internal climate variability in observations be-
cause the solar signal is small compared to internal variabil-
ity and the number of solar cycles is limited. Investigating its
detectability, a recent study (Chiodo et al., 2019) questioned
the statistical reliability of the previously widely accepted so-
lar cycle influence on North Atlantic climate which projects
onto the NAO (Gray et al., 2013, 2016; Kodera, 2003; Kodera

Published by Copernicus Publications on behalf of the European Geosciences Union.



7894 A. Drews et al.: The Sun’s role in decadal climate predictability in the North Atlantic

et al., 2016; Kodera and Kuroda, 2002; Matthes et al., 2006;
Thiéblemont et al., 2015). The present paper intends to partly
rebut the conclusions of this study and to provide new robust
evidence of solar influence on North Atlantic climate, which
is small but non-negligible compared to internal variability.
We utilize a unique set of two 10-member ensemble simula-
tions of a state-of-the-art coupled chemistry–climate model
to isolate and decipher the 11-year solar cycle’s footprint in
North Atlantic surface climate variability and to quantify the
contribution of the solar cycle to regional decadal potential
predictability relative to other external forcings and internal
variability during Northern Hemisphere winter. A similar ex-
perimental approach has been used by Andrews et al. (2015);
however, our simulations are much longer and include the
spectral solar irradiance as well as auroral-electron forcing
from the most sophisticated solar forcing dataset currently
available for climate models and recommended for CMIP6
and also include a well-resolved shortwave radiation scheme
and a comprehensive module for middle-atmosphere chem-
istry modeling.

2 Potential predictability associated with the solar
cycle

The chemistry–climate model in use is
CESM1(WACCM) (Marsh et al., 2013). One ensemble
includes the full CMIP6 solar forcing (FULL), while the
other only considers the low-frequency (timescales longer
than ∼ 30 years) changes in solar irradiance (LOWFREQ)
(Fig. S1 in the Supplement). All simulations have been
integrated over the historical period 1850–2014. We estimate
the potential predictability variance fraction (ppvf) related
to the 11-year solar cycle as well as to all other external
forcings (including the low-frequency component of solar
variability) for decadal (8-year running mean) variations
in winter (DJF) surface air temperatures (see “Methods”
section). Eight-year running means are chosen as these are a
typical target of actual decadal prediction efforts (Goddard
et al., 2013). The ppvf describes how much of the total
decadal variance in our FULL ensemble is explained by the
respective forcing(s). The ratio of variance that cannot be
associated with any external forcing is regarded as internal
variability. The extratropical North Atlantic is a hotspot of
solar cycle influence on climate predictability (Fig. 1a). In
some parts, up to 25 % of the decadal variance of winter
surface air temperatures is explained by the solar cycle in our
model. At the same time, similar parts of the North Atlantic
show comparably low (< 15 %) potential predictability due
to other (low-frequency) external forcings (Fig. 1b) and
large internal variability (> 65 %) (Fig. 1c).

The range of externally and internally generated variance
fractions of our large CESM ensemble is well within the
range of other high-top CMIP5 models (Fig. S2), which,
however, do not distinguish between solar cycle and other

Figure 1. Decadal potential predictability due to the solar cycle,
other external forcings and internal climate variability. Potential
predictability variance fraction (ppvf; explained variance) with re-
spect to the DJF 8-year averaged surface air temperature associ-
ated with (a) the 11-year solar cycle, (b) all other external forcings
(anthropogenic forcings, volcanic aerosols, and solar-induced low-
frequency variability), and (c) remaining variance fraction due to
internal climate variability. Statistically insignificant regions (p >

0.05) in (a) and (b) are hatched. Panel (b) exhibits masked areas
solely over a few grid points in the North Atlantic because “ppvf
low-frequency external” for 2 m temperature is significant almost
globally. See “Methods” section for more details on the ppvf calcu-
lation and statistical significance estimates.

external forcings. Also, our results agree well qualitatively
with previous studies showing (i) low potential predictability
due to external forcings and large internal variability over the
extratropical North Atlantic (Boer et al., 2013) and (ii) sta-
tistically significant surface signals associated with the solar
cycle (Gray et al., 2010, 2013; Kodera, 2003; Thiéblemont
et al., 2015). This is further supported by Fig. S3 when com-
paring the “skill” (correlation with observations) of FULL
and LOWFREQ for the North Atlantic region. Consequently,
decadal climate predictions systems might benefit from in-
cluding realistic solar forcing (e.g., spectral solar irradiance,
SSI, instead of total solar irradiance, TSI) and an adequate
representation of its impact on climate (by use of interac-
tive chemistry or at least an ozone forcing matching the so-
lar variability), exploiting the solar-induced potential pre-
dictability.
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3 The top–down mechanism depends on solar cycle
amplitude

The presence of large internal variability during winter com-
plicates the detection of the small solar-cycle-forced signal in
the short observational record or even in long climate model
simulations. We successfully isolate the 11-year solar cycle
response based on two 10-member ensemble simulations –
to date a unique dataset in chemistry–climate modeling. We
separate it from other external forcings by subtracting the
LOWFREQ ensemble mean from the FULL ensemble and
from internal variability by averaging over the individual en-
semble members (see “Methods” section).

The top–down mechanism of solar influence on surface
climate is depicted in Fig. 2, and we refer to the plethora
of literature (e.g., Gray et al., 2010; Haigh, 1994; Kodera
and Kuroda, 2002; Matthes et al., 2006). Our ensemble sup-
ports this general and widely accepted concept. The tropical
stratopause temperature anomaly (here we show DJF) varies
in phase with the 11-year solar cycle (Fig. 3a). As the solar
cycle amplitude shifts from a “weak epoch” into a “strong
epoch” (see “Methods” section for distinction between weak
and strong epoch), the variance of the solar-induced tempera-
ture changes compared to the magnitude of internal variabil-
ity increases from 31 % to 69 % and the correlation with the
F10.7 (solar radio flux at 10.7 cm) index from rTweak = 0.55
to rTstrong = 0.72. The ensemble mean zonal wind (here: De-
cember) gets more organized and in phase with the solar forc-
ing during the strong epoch (Fig. 3b): the correlation between
the solar index and the solar-induced ensemble mean wind
changes is close to zero (rUweak =−0.12) during the weak
epoch but rises to rUstrong = 0.36 in the strong epoch. How-
ever, its amplitude does not differ much between the weak
and the strong epoch (its variance is 22 % (weak epoch) and
23 % (strong epoch) compared to internal variability; see Ta-
ble S2 in the Supplement for correlation coefficients and vari-
ance fractions for DJF vs. December and weak vs. strong
epoch). These numbers demonstrate that the polar vortex is
highly dynamical and the solar forcing is only one compo-
nent influencing it. During the weak epoch, the weak direct
solar signal in tropical stratopause temperatures (Fig. S4) is
not strong enough to maintain the stratopause circulation any
longer in a radiatively controlled state; the anomalous west-
erly winds shift poleward already in the middle of Novem-
ber and are then controlled by “non-forced” polar dynamical
processes (Figs. S5, S7) (Kodera et al., 2016; Kodera and
Kuroda, 2002). This fast transition from a radiatively con-
trolled to a dynamically controlled state warms up the en-
tire polar stratosphere through a modulation of the Brewer–
Dobson circulation (Fig. S7). In contrast, in the strong epoch,
the radiatively controlled state switches to a dynamically
controlled state as late as in February: we find the “typical”
downward propagation of zonal wind anomalies in later win-
ter (Fig. S5) and a synchronization of the decadal NAO phase
of the ensemble members (Fig. 5). This shows that the re-

sponse to the solar cycle is non-linear and not necessarily
proportional to the forcing. Therefore, the following analy-
ses concentrate on the strong epoch only where a synchro-
nization takes place.

4 Solar-induced surface signals and
synchronization of the NAO with the solar cycle

Consistent with the zonal mean zonal wind anomalies
(Fig. S5) a clear and statistically significant surface response
appears in sea level pressure (SLP) in February featuring
higher-pressure anomalies in the midlatitudes and lower-
pressure anomalies over the North Pole with a minimum
over Scandinavia and the Norwegian Sea representing a neg-
ative Northern Annular Mode pattern during the strong epoch
(Fig. 4a). Consistent with the annular SLP and wind signals a
statistically significant response in sea surface temperatures
(SSTs) in the North Atlantic appears (Fig. 4b). The model re-
sponse is strongest at the time when the strongest zonal mean
zonal wind signal extends down to the surface, propagating
poleward and downward from the stratosphere (Fig. S5).

The solar signal in SLP resembles the tripolar NAO pattern
(Visbeck et al., 2003), but it is shifted towards Europe with
centers over Scandinavia and the Mediterranean Sea (and a
secondary maximum towards North America) as compared
to the NAO, which has action centers close to Iceland and
the Azores (Fig. 4a). To further investigate the role of the so-
lar cycle for decadal climate variability in the North Atlantic
region, we focus on the NAO-like solar signal in the follow-
ing.

The NAO-like mode (green markers in Fig. 4a; see “Meth-
ods” section) exhibits typical quasi-decadal internally gener-
ated oscillations during NH winter (see blue line in Fig. S8).
The solar cycle synchronizes the phase of the NAO-like in-
dex in February during the strong epoch (Fig. 5a), while the
internally generated decadal-scale NAO has no clear phase
relationship with the solar cycle (Fig. 5b). The relationship
between the solar cycle and the model ensemble mean NAO
index is stable only during the strong epoch when the so-
lar cycle forcing is strong. Their running correlation for all
overlapping 45-year windows fluctuates in the earlier years
but begins to rise in the 1920s both for the model (at 0 lag)
and observations (first with a lag of 2 years, later 0 years)
(Fig. 5c; cf. Fig. 7a in Kuroda et al., 2022, who also see a
shift of the lag from +2 to 0 in observations around 1975 as
shown here). In the second half of the 20th century, the cor-
relations reach statistical significances of 90 % for the model
NAO at 0 lag, while in observations significant correlations
appear when the NAO lags behind the solar cycle by 2 years
(Gray et al., 2013; Thiéblemont et al., 2015) and since the
1980s when there is no lag (see “Discussion”). A comparison
of the solar signal in the NAO with internal NAO variability
reveals that the solar signal in SLP over Europe is approxi-
mately 19 % the magnitude of internal variability during the
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Figure 2. Top–down mechanism. Enhanced solar UV radiation during solar maxima enhances heating of the middle atmosphere and ozone
production, which in turn enhances heating in the tropical stratopause (Gray et al., 2010; Haigh, 1994). As a result of this anomalous heating
in the tropical upper stratosphere, an increased meridional temperature gradient (Fig. S4) initiates a westerly wind anomaly in the upper
midlatitude stratopause region (Fig. S5), which through wave-mean flow interaction changes the propagation properties for planetary waves
and transports the early winter signal to the lower stratosphere, troposphere, and the surface in late winter (Fig. S5). Inspired by Gray et
al. (2010).

strong epoch. This comparison is done by calculating the
variances of the smoothed ensemble mean index and those of
the smoothed individual members. The solar cycle signal is
small in magnitude but manifests itself as an organization of
the NAO as shown by the cross-correlations (Fig. 5a) and the
increasing running correlations (Fig. 5c), which is in agree-
ment with earlier studies (Otterå et al., 2010; Scaife et al.,
2013; Thiéblemont et al., 2015). We show here that in our
model this “organization” depends on the solar cycle am-
plitude, and it is large enough for a potential predictability
variance fraction (ppvf) of up to 25 % in the North Atlantic
region (Fig. 1a).

Note that the observations only provide one realization,
which includes all external forcings as well as internal vari-
ability. We show that a significant solar signal in the North
Atlantic region is generated by the 11-year solar cycle in our
10-member ensemble simulations during the strong epoch.
The alignment of the surface pressure pattern with the solar
cycle after the 1920s can also be seen nicely in the NAO-like
time series (Fig. S8), which agrees with a number of earlier
studies (Dima et al., 2005; Gray et al., 2016; Ma et al., 2018).
A weak imprint can even be seen in the EOF-based NAO in-
dex (Fig. S8).

The dependence of the correlation strength on the solar
cycle amplitude can be seen in Fig. 5d: while for low solar
cycle amplitudes, correlations are scattered around zero, they
are larger and positive for enhanced solar cycle amplitudes.
Note that we do not expect larger correlations since the NAO
index represents near-surface signals and as discussed above

the solar surface signal is small. Even though correlations
for observations as in Fig. 5c are similar to what has been
shown in a recent study (see Fig. 1b in Chiodo et al., 2019),
our conclusions are very different in the light of our model
results.

5 Discussion

Recent analyses of the solar influence on the North At-
lantic revealed insignificant responses (Chiodo et al., 2019),
whereas numerous previous studies have found statistically
significant solar cycle signals in surface climate in obser-
vations and climate models (Gray et al., 2010, 2013, 2016;
Kodera, 2003; Kodera et al., 2016; Matthes et al., 2006) and
even proposed a synchronization of the NAO by the 11-year
solar cycle through the “top–down” stratospheric mechanism
(Thiéblemont et al., 2015). However, as we show here, the so-
lar signal is likely not present in all winter months. Therefore,
in some studies there remains a signal in DJF means, while
it could be averaged out in others, including ours (see be-
low). This finding is also supported by the very recent study
of Kuroda et al. (2022).

Here, we systematically detected solar-induced atmo-
spheric and surface signals and separated them from internal
variability as well as other external forcings based on two 10-
member ensembles. With this unique dataset, it was possible
to overcome the problems in observations where a separation
of solar-forced variability and a comparison to other external
forcings and internal variability are impossible.

Atmos. Chem. Phys., 22, 7893–7904, 2022 https://doi.org/10.5194/acp-22-7893-2022
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Figure 3. Direct solar cycle signal in the upper stratosphere. (a) Time series of the tropical stratopause temperature (1 hPa, 15◦ S–15◦ N)
averaged over the winter season (DJF) for the individual ensemble members (thin gray lines), ensemble mean (thick black line), and the
solar cycle index F10.7 (red line). (b) Same as (a) but for December zonal mean zonal wind averaged over 55–65◦ N, 1 hPa, smoothed with
a 3-year running mean. To isolate 11-year solar cycle effects, differences between the FULL and the LOWFREQ ensemble simulations have
been calculated. The gray lines include internal variability and the 11-year solar signal, their spread represents the internal variability, and
the ensemble mean (thick black line) represents the 11-year solar cycle signal. The 11-year solar cycle has been isolated in a similar way
from the original solar forcing time series by subtracting the low-frequency part of the solar forcing (Fig. S1).

We demonstrate that in our model the strength of the so-
lar surface signal depends on the amplitude of the solar cy-
cle. A stronger signal is detected during the “strong solar cy-
cle epoch” and explains the limited detectability of observed
surface signals before the 1930s as well as discrepancies in
earlier studies. We show that a stronger solar cycle signal in-
duces a surface response that resembles the NAO, and the
NAO-like index is organized by the solar cycle. This means
the solar cycle enhances the probability of a specific decadal
NAO phase if the solar forcing is strong enough. During so-
lar maximum, there is a tendency for a positive decadal-scale
NAO and vice versa. Our study confirms previous studies
(Misios and Schmidt, 2012; Thiéblemont et al., 2015) which
used the strong epoch for their solar forcing.

We find statistically significant ensemble mean solar-
cycle-induced surface signals in February during the strong
epoch which are consistent with the top–down propagation
from stratospheric signals. This limitation of the solar sig-
nal to February is also confirmed by Kuroda et al. (2022)
using long observational datasets as well as a historical sim-

ulation with a different chemistry–climate model. A contro-
versial study (Chiodo et al., 2019) making use of a combined
DJF surface pressure pattern could not detect significant sur-
face signals in their SOL simulation (a simulation which in-
cludes the idealized 11-year solar cycle). Our results (see also
Figs. S4–S5) suggest that it might be necessary to analyze
monthly fields to capture the top–down propagation of the
solar-induced wind anomalies and surface signals. Analyzing
our model using DJF means, we only find a very weak signal
in SLP and no significant zonal mean zonal wind signal in the
lower troposphere during the strong epoch either (Figs. S11–
S12). Also, although the base model is quite similar, there
are a couple of important differences. Whereas we use two
10-member ensemble simulations of the historical period
(2×10×165 years= 2×1650 years; for the strong epoch this
means: 2× 10× 83= 2× 830 years) with the CMIP6 solar
forcing (radiative and particle forcing) and the anthropogenic
signal included, the other study uses two 500-year integra-
tions with perpetual anthropogenic conditions representative
of the year 2000 and an idealized solar forcing which repeats
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Figure 4. Solar surface signal in NH winter at lag 0 during the strong epoch. Composite differences between the solar maximum and
minimum for (a) SLP (contours) and wind at 850 hPa (vectors) in February. Only those vectors where the zonal mean wind component
is significant at the 90 % level are shown. The two green circles indicate the stations used for the NAO index calculation (see “Methods”
section for more details). (b) Same as (a) but for SST (contours) averaged over the winter season (DJF). White dots indicate 90 % statistically
significant regions based on a 1000-fold bootstrapping test.

the last four solar cycles (cycle 20–23) and does not include
the low-frequency component over the historical period. For
the analysis of sea level pressure or zonal mean winds, rela-
tively short 100- or 30-year periods are considered, whereas
we have 10 members of 83 years each for the strong pe-
riod. We isolate the 11-year solar cycle signal by subtracting
the LOWFREQ ensemble mean from the FULL ensemble,
whereas the other study compares the simulation which in-
cludes the idealized 11-year solar cycle (SOL) with a simula-
tion that does not include any solar forcing (NOSOL). While
we are careful to remove the influence of low-frequency so-
lar variation by subtracting the LOWFREQ ensemble mean,
we cannot be sure that a non-linear influence was properly
excluded and hence can be compared to idealized solar forc-
ing. It should also be noted that the model version used by
Chiodo et al. (2019) simulates the top–down mechanism and
a surface signal, even for DJF means, when using higher so-
lar forcing (see their Supplement).

We would like to note that there are still some discrepan-
cies between our simulations and observations, such as the
different timing and location of maximum responses. We do
not find a lagged NAO response in our simulations (cf., e.g.,
Gray et al., 2013), and the synchronization can only be found
in February when the solar-induced zonal mean wind reaches
the surface (cf. Kuroda et al., 2022), while the largest re-
sponse in observations appears at a lag of 2 years since the
1940s and throughout the 1970s, and thereafter the lag van-
ishes (Kuroda et al., 2022) (see also Fig. S10 for the SLP sig-
nal in the strong epoch). Possible reasons for these discrepan-
cies are (i) that the observational record is only one ensemble
member that includes all internal variability and responses to
all external forcings (which may even cause what appears as

a lagged response, the lag itself being by chance), (ii) that the
model feedback from the ocean is insufficient, and (iii) that
the influence of the solar cycle is highly non-linear, which is
very difficult to grasp.

The importance of the periodic solar cycle is particularly
interesting for decadal climate predictions. Our results indi-
cate that the solar cycle has a significant contribution to the
potential predictability of up to 20 %–25 % in the North At-
lantic during winter, where the climate response to external
forcings such as greenhouse gases is comparably low. This
offers the opportunity to increase decadal prediction skills
in particular over Europe. This is in line with a very recent
study which found exactly this region to be particularly sen-
sitive to natural external forcings such as volcanic aerosols
and solar activity when comparing decadal prediction sys-
tems from CMIP5 and CMIP6 (Borchert et al., 2021). Be-
sides a sufficiently large ensemble (see Fig. S9), the key for
climate models to exploit this potential originating in solar
forcing is the incorporation of necessary prerequisites to sim-
ulate the effects of the solar cycle: a realistic, spectrally re-
solved solar forcing dataset, either interactive chemistry or at
least an ozone forcing including an estimate of the solar cy-
cle impact, and a well-resolved shortwave radiation scheme
to account for the solar UV changes.

6 Methods

6.1 Model description

We use the fourth version of the Whole Atmosphere Commu-
nity Climate Model (WACCM4) (Marsh et al., 2013), which
is part of the Community Earth System Model suite (CESM)

Atmos. Chem. Phys., 22, 7893–7904, 2022 https://doi.org/10.5194/acp-22-7893-2022
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Figure 5. Synchronization of internal variability modes in the Atlantic with the solar cycle. Cross-correlation between the wintertime
(DJF) solar index (F10.7 solar flux) and the February NAO-like station-based indices for (a) 11-year+ internal components (FULL minus
ensemble mean of LOWFREQ) and (b) internal component (FULL minus ensemble mean of FULL) during the strong epoch (gray thin lines:
individual members; blue line: ensemble mean). The 90 % significance level is shown as a shaded envelope (light blue). (c) The 45-year
running correlation of NAO indices in February from the model (black lines; differences of the ensemble mean NAO indices as explained in
the “Methods” section) and observation (red solid (lag 2 years) and red dashed (lag 0 years) lines) with the F10.7 index. The year on the x axis
denotes the central year of the window (in the case of the lagged time series it is with respect to the NAO index). All indices are station-based
and smoothed with a 3-year running mean prior to calculating the correlation. The 90 % significance level is shown as shaded envelopes,
for model (gray) and observations (light red) separately. (d) Scatterplot of February NAO–Sun running correlations (FULL–LOWFREQ,
smoothed with 3-year running mean, 45-year windows; similar to Fig. 5c) against solar cycle amplitude (standard deviation of smoothed
F10.7 time series, same 45-year windows). Red crosses are the ensemble mean of correlations of single ensemble members with the solar
index. Dots are the correlation of the ensemble mean NAO with the solar index; purple dots are correlations that exceed the 90 % significance
level calculated with a random-phase test.
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version 1.0.6 (Hurrell et al., 2013). CESM1(WACCM) is an
extension of the Community Atmospheric Model (CAM4)
(Kinnison et al., 2007; Neale et al., 2013). It covers the
atmosphere from the surface to the lower thermosphere
(4.5× 10−6 hPa; approx. 145 km) and is considered a high-
top model. CESM1(WACCM) has a horizontal resolution
of 1.9◦× 2.5◦ and 66 vertical levels. It includes a middle-
atmosphere chemistry module, which is based on the Model
for Ozone and Related Chemical Tracers (MOZART3) (Gar-
cia et al., 2014), comprising a total number of 59 species
and 217 gas-phase chemical reactions (including all mem-
bers of the Ox , NOx , and HOx chemical groups). For the
presented simulations, we implemented a set of model im-
provements (Garcia et al., 2014, 2017; Smith et al., 2014).
These include an increased turbulent Prandtl number yield-
ing an increased diffusion coefficient as well as modifications
related to gravity waves: (i) the orographic gravity wave drag
does not depend on the land fraction of the grid box anymore,
and (ii) the ratio of energy from dissipating gravity waves
that is transformed into heat has been reduced to 30 %. Since
this model version is not able to internally generate a quasi-
biennial oscillation (QBO), we relax stratospheric equatorial
winds towards an idealized QBO with a fixed 28-month pe-
riod (Matthes et al., 2010). The POP ocean module has a
tripolar horizontal grid of 1◦× 1◦ and 60 depth levels.

6.2 Experimental design

The two 10-member ensemble simulations, FULL and
LOWFREQ, cover 165 years each from 1850 through 2014,
follow the CMIP5 historical recommendations for all exter-
nal forcings from 1850–2004, and continue with the RCP4.5
scenario afterwards. Only for the solar forcing has the im-
proved CMIP6 dataset been used (Matthes et al., 2017). The
FULL ensemble experiences the complete solar variability
from the CMIP6 dataset with total and spectrally resolved
solar irradiances as well as auroral electron effects. Higher-
energy electrons are not considered in this study; however,
a recent study suggests that these are not of substantial rel-
evance for the solar signal in the NAO (Guttu et al., 2021).
The LOWFREQ ensemble only includes the low-frequency
part of solar variability by low-pass filtering the solar forcing
with a 33-year running mean (Fig. S1). The individual en-
semble members of FULL and LOWFREQ have been each
initialized from different climate states of a multi-centennial
pre-industrial control simulation.

6.3 Observations

The NOAA Global Surface Temperature (NOAAGlobal-
Temp V4.0.1) including The Extended Reconstructed Sea
Surface Temperature (ERSST) dataset (version 5) (Huang
et al., 2017) and land surface air temperature data from
the Global Historical Climatology Network Monthly dataset
(Menne et al., 2018) is used to calculate correlations

with the model simulations. HadSLP2r data (Allan and
Ansell, 2006) are used to calculate the observed NAO in-
dex as well as composites. All these data are provided
by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA,
from their websites at https://psl.noaa.gov/data/gridded/data.
noaaglobaltemp.html and https://psl.noaa.gov/gcos_wgsp/
Gridded/data.hadslp2.html (last access: 19 September 2019).

6.4 Disentangling internal and external variability

The single members in one ensemble (FULL or LOWFREQ)
share the same externally forced signals but have different in-
ternal variability. To isolate the internal variability from ex-
ternal forcings, the ensemble average of the respective en-
semble (FULL or LOWFREQ) has to be subtracted from the
individual members. The ensemble mean (average over all
individual members) represents the combined effects of all
external forcings. External forcings in the LOWFREQ en-
semble comprise low-frequency solar variability as well as
changes in greenhouse gases, while in the FULL ensemble
additionally the effect of the 11-year solar cycle is included.
In order to isolate the solar cycle from other external forc-
ings, the ensemble mean of the LOWFREQ ensemble has to
be subtracted from the ensemble mean of the FULL ensem-
ble.

6.5 Definition of weak epoch and strong epoch

Two periods (weak and strong epoch) with different solar
cycle amplitudes were analyzed separately. Considering the
continuous integration to capture the climate evolution with
changing solar and anthropogenic forcing similar to obser-
vations, we defined the weak epoch from 1850 to 1931 and
the strong epoch from 1932 to 2014. It is important to note
that each epoch includes seven entire solar cycles but with
different solar cycle amplitudes. The solar cycle amplitudes
in the weak and strong epochs defined by the difference be-
tween the smoothed F10.7 maximum and minimum (red and
blue dots in Fig. S1) of each cycle are shown in Table S1,
as well as the standard deviation of the smoothed F10.7 in
each cycle. A different sorting of the weak and strong solar
cycle amplitudes was tested since cycle 15 is stronger than
others in the weak epoch and cycle 20 is weaker than others
in the strong epoch, but it was rejected since only one solar
cycle (cycle 15) in the weak epoch showed slightly enhanced
amplitude and it was checked that this does not affect our
results.

6.6 Decadal potential predictability

The potential predictability variance fraction (ppvf) (Boer,
2004) is used to quantify the fraction of the decadal vari-
ability (8-year running mean) (i) forced by the 11-year so-
lar cycle, (ii) forced by all other external forcings (includ-
ing the low-frequency component of solar variability), and
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(iii) due to internal variability. First, we calculate the variance
of each of these components (disentangling solar cycle and
external and internal components as described above) and
then divide it by the total variance to obtain the ppvf of each
component. An 8-year running mean was applied to surface
temperatures before calculating the variance in order to iso-
late decadal variability. Other window lengths between 7 and
10 years were tested to exclude sensitivity of the results to the
averaging period; the results were very similar for all win-
dow lengths. Statistically insignificant regions (p > 0.05) in
Fig. 1a and b are estimated by analyzing the ppvf attributed
to the solar cycle and the low-frequency external components
in comparison to the internal variance fractions by means of
a Fisher’s f test in line with earlier studies (Boer, 2004). Cal-
culations in Fig. 1a take into account the reduction of effec-
tive sample size due to the application of a low-pass filter.

6.7 Composites, correlations, and statistical
significances

Solar cycle-based composites are used to identify solar sig-
nals. The monthly time series of the F10.7 radio flux in so-
lar flux units (1 sfu= 10−22 W m−2 Hz−1) is smoothed with
a 3-year running mean (orange line) to determine local so-
lar maxima and minima in January as representative of bo-
real winter (Fig. S1). Three years around each maximum and
minimum are selected (dots in Fig. S1). Solar composites are
then calculated as differences between averages of all solar
maximum years and all solar minimum years. A 1000-fold
bootstrapping test with replacement (Diaconis and Efron,
1983) is used to estimate the 90 % statistical significances
of the ensemble mean composites compared to the individ-
ual ensemble members. Cross-correlations and running cor-
relations are calculated with a 45-year window to investigate
the relationship between the 11-year solar cycle forced signal
and natural internal decadal variability. The significance test
for correlations was calculated based on 10 000 random time
series with random phases (Ebisuzaki, 1997).

6.8 NAO index definition

The model NAO-like index was created by selecting loca-
tions close to the centers of the minimum and maximum
of the solar-induced SLP composites in February (Fig. 4a,
green markers, 65.37◦ N, 22.5◦ E and 38.84◦ N, 17.5◦ E).
Note that this NAO definition is comparable to a landmark
study (Exner, 1913) which described the spatial structure
of the NAO first (Hurrell and Deser, 2015). For observa-
tions, the HadSLP2r dataset was used with stations in Reyk-
javík, Iceland, and Lisbon, Portugal. First the February SLP
at each location was normalized (all-time mean subtracted
and then divided by the standard deviation over the time se-
ries) and then the difference between the northern and the
southern stations was calculated. For the model data, this was
done for every member in the FULL and LOWFREQ ensem-

ble, before calculating the two ensemble means. Finally, the
LOWFREQ ensemble mean was subtracted from the FULL
ensemble mean, to investigate the effects of the solar cycle
only. The running correlations in Fig. 5c were calculated by
(i) applying a 3-year running mean to the NAO-like time se-
ries and the F10.7 time series of DJF averages and (ii) choos-
ing the same 45-year windows for both time series (or shifted
by 2 years for the lagged correlations) and correlating them,
moving forward 1 year at a time. The year on the x axis de-
notes the central year of the 45-year NAO-like time series
window.

Code availability. The source code of the Community Earth
System Model version 1.0 (CESM 1.0.6) used in this study
is publicly distributed and can be obtained after registration at
http://www.cesm.ucar.edu/models/cesm1.0/ (CESM, 2020). Codes
to reproduce the analysis and figures are archived at Zenodo
(https://doi.org/10.5281/zenodo.6619200, Drews et al., 2022) and
are available from the corresponding author upon reasonable re-
quest.

Data availability. All raw model output is available
from the CERA long-term archive at DKRZ (solar full:
http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=
DKRZ_LTA_519_ds00036, Kruschke et al. (2020a); solar lowfreq:
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processed datasets (observational and model) are available from
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