Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5365-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5365-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval
Archana Devi
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Sreedharan K. Satheesh
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
DST Centre of Excellence in Climate Change, Indian Institute of
Science, Bengaluru, India
Related authors
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020, https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
Cited articles
Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol
optical depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473,
https://doi.org/10.1002/2013JD020188, 2014.
Anderson, T. L., Charlson, R. J., Bellouin, N., Boucher, O., Chin, M.,
Christopher, S. A., Haywood, J., Kaufman, Y. J., Kinne, S., Ogren, J. A.,
Remer, L. A., Takemura, T., Tanré, D., Torres, O., Trepte, C. R.,
Wielicki, B. A., Winker, D. M., and Yu, H.: An “a-train”strategy for
quantifying direct climate forcing by anthropogenic aerosols, B. Am.
Meteorol. Soc., 86, 1795–1809, https://doi.org/10.1175/BAMS-86-12-1795, 2005.
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R.
J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R.,
Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance
Characteristics of a High-Sensitivity, Three-Wavelength, Total
Scatter/Backscatter Nephelometer, J. Atmos. Ocean. Technol., 13, 967–986,
https://doi.org/10.1175/1520-0426(1996)013, 1996.
Babu, S. S., Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal
variation of vertical distribution of aerosol single scattering albedo over
Indian sub-continent: RAWEX aircraft observations, Atmos. Environ., 125,
312–323, https://doi.org/10.1016/j.atmosenv.2015.09.041, 2016.
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.:
Satellite-derived direct radiative effect of aerosols dependent on cloud
cover, Nat. Geosci., 2, 181–184, https://doi.org/10.1038/ngeo437, 2009.
Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A., Ducos, F., Derimian, Y., Herman, M., Tanré, D., Remer, L. A., Lyapustin, A., Sayer, A. M., Levy, R. C., Hsu, N. C., Descloitres, J., Li, L., Torres, B., Karol, Y., Herrera, M., Herreras, M., Aspetsberger, M., Wanzenboeck, M., Bindreiter, L., Marth, D., Hangler, A., and Federspiel, C.: Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, 2020.
Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and
Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over
land, Geophys. Res. Lett., 29, MOD2-1, https://doi.org/10.1029/2001GL013205,
2002
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 9791–9806, https://doi.org/10.1029/2000JD900040, 2000.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M.
D., Tanré, D., and Slutsker, I.: Variability of Absorption and Optical
Properties of Key Aerosol Types Observed in Worldwide Locations, J.
Atmos. Sci. 59, 590–608,
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F., Lopatin, A., Chaikovsky, A., Torres, B., Derimian, Y., and Huang, X.: GRASP: a versatile algorithm
for characterizing the atmosphere, SPIE: Newsroom, https://doi.org/10.1117/2.1201408.005558, 2014.
Dubovik, O., Fuertes, D., Litvinov, P., Lopatin, A., Lapyonok, T., Doubovik,
I., Xu, F., Ducos, F., Chen, C., Torres, B., Derimian, Y., Li, L.,
Herreras-Giralda, M., Herrera, M., Karol, Y., Matar, C., Schuster, G. L.,
Espinosa, R., Puthukkudy, A., Li, Z., Fischer, J., Preusker, R., Cuesta, J.,
Kreuter, A., Cede, A., Aspetsberger, M., Marth, D., Bindreiter, L., Hangler,
A., Lanzinger, V., Holter, C., and Federspiel, C.: A Comprehensive
Description of Multi-Term LSM for Applying Multiple a Priori Constraints in
Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and
Applications, Front. Remote Sens., 0, 23,
https://doi.org/10.3389/FRSEN.2021.706851, 2021.
Eswaran, K., Satheesh, S. K., and Srinivasan, J.: Multi-satellite retrieval of single scattering albedo using the OMI–MODIS algorithm, Atmos. Chem. Phys., 19, 3307–3324, https://doi.org/10.5194/acp-19-3307-2019, 2019.
Fraser, R. S. and Kaufman, Y. J.: “The Relative Importance of Aerosol
Scattering and Absorption in Remote Sensing”, in: IEEE Transactions on
Geoscience and Remote Sensing, Vol. GE-23, no. 5, 625–633, September 1985,
https://doi.org/10.1109/TGRS.1985.289380, 1985.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker,
I., Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An analysis of
AERONET aerosol absorption properties and classifications representative of
aerosol source regions, J. Geophys. Res.-Atmos., 117, 17203,
https://doi.org/10.1029/2012JD018127, 2012.
Hammer, M. S., Martin, R. V., Li, C., Torres, O., Manning, M., and Boys, B. L.: Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index, Atmos. Chem. Phys., 18, 8097–8112, https://doi.org/10.5194/acp-18-8097-2018, 2018.
Hess, M., Koepke, P., Schult, I., Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hsu, N. C., Herman, J. R., and Weaver, C.: Determination of radiative forcing
of Saharan dust using combined TOMS and ERBE data, J. Geophys. Res.-Atmos.,
105, 20649–20661, https://doi.org/10.1029/2000jd900150, 2000.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol properties
over bright-reflecting source regions, IEEE Trans. Geosci. Remote Sens.,
42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Deep Blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Trans. Geosci. Remote Sens., 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540, 2006.
Hu, R.-M., Martin, R. V., and Fairlie, T. D.: Global retrieval of columnar
aerosol single scattering albedo from space-based observations, J. Geophys.
Res.-Atmos., 112, D2, https://doi.org/10.1029/2005JD006832, 2007.
Hu, R. M., Sokhi, R. S., and Fisher, B. E. A.: New algorithms and their
application for satellite remote sensing of surface PM2.5 and aerosol
absorption, J. Aerosol Sci., 40, 394–402,
https://doi.org/10.1016/j.jaerosci.2009.01.005, 2009.
IPCC – Intergovernmental Panel on Climate Change: The physical science
basis: Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, in: Climate Change (2013), edited
by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University, Press, Cambridge, UK and New York, NY, USA, 1535 pp.,
https://doi.org/10.1017/CBO9781107415324, 2013.
Jeong, M. J. and Hsu, N. C.: Retrievals of aerosol single-scattering albedo
and effective aerosol layer height for biomass-burning smoke: Synergy
derived from “A-Train”sensors, Geophys. Res. Lett., 35, L24801,
https://doi.org/10.1029/2008GL036279, 2008.
Jeong, M. J., Li, Z., Chu, D. A., and Tsay, S. C.: Quality and compatibility
analyses of global aerosol products derived from the advanced very high
resolution radiometer and Moderate Resolution Imaging Spectroradiometer, J.
Geophys. Res.-Atmos., 110, 1–16, https://doi.org/10.1029/2004JD004648,
2005.
Jethva, H. and Torres, O.: A comparative evaluation of Aura-OMI and SKYNET near-UV single-scattering albedo products, Atmos. Meas. Tech., 12, 6489–6503, https://doi.org/10.5194/amt-12-6489-2019, 2019.
Jethva, H., Torres, O., and Ahn, C.: Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion, J. Geophys. Res. Atmos., 119, 9020–9040, https://doi.org/10.1002/2014JD021672, 2014.
Jethva, H., Torres, O., and Ahn, C.: A 12-year long global record of optical depth of absorbing aerosols above the clouds derived from the OMI/OMACA algorithm, Atmos. Meas. Tech., 11, 5837–5864, https://doi.org/10.5194/amt-11-5837-2018, 2018.
Kaufman, Y. J.: Satellite sensing of aerosol absorption, J. Geophys. Res.,
92, 4307–4317, https://doi.org/10.1029/JD092iD04p04307, 1987.
Kaufman, Y. J. and Joseph, J. H.: Determination of surface albedos and
aerosol extinction characteristics from satellite imagery, J. Geophys.
Res., 87, 1287–1299, https://doi.org/10.1029/JC087iC02p01287, 1982.
Kaufman, Y. J., Fraser, R. S., and Ferrare, R. A.: Satellite measurements of
large-scale air pollution: methods, J. Geophys. Res., 95, 9895–9909,
https://doi.org/10.1029/JD095iD07p09895, 1990.
Kaufman, Y. J., Tanré, D., Dubovik, O., Karnieli, A., and Remer, L. A.:
Absorption of sunlight by dust as inferred from satellite and ground-based
remote sensing, Geophys. Res. Lett., 28, 1479–1482,
https://doi.org/10.1029/2000GL012647, 2001.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols
in the climate system, Nature, 419, 215–223,
https://doi.org/10.1038/nature01091, 2002.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties
over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance, J. Geophys. Res.-Atmos., 112, D13,
https://doi.org/10.1029/2006JD007811, 2007a.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical
properties and application to Moderate Resolution Imaging Spectroradiometer
aerosol retrieval over land, J. Geophys. Res.-Atmos., 112, 13210,
https://doi.org/10.1029/2006JD007815, 2007b.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., and Coe, H.: Vertical profiles of submicron aerosol single scattering albedo over the Indian region immediately before monsoon onset and during its development: research from the SWAAMI field campaign, Atmos. Chem. Phys., 20, 4031–4046, https://doi.org/10.5194/acp-20-4031-2020, 2020.
Moorthy, K. K., Satheesh, S. K., and Kotamarthi, V. R.: Evolution of aerosol
research in India and the RAWEX–GVAX: an overview, Curr. Sci., 111, 53–75,
https://doi.org/10.2307/24910009, 2016.
Nair, V. S., Krishna Moorthy, K., Suresh Babu, S., and Satheesh, S. K.:
Optical and Physical Properties of Atmospheric Aerosols over the Bay of
Bengal during ICARB, J. Atmos. Sci., 66, 2640–2658,
https://doi.org/10.1175/2009JAS3032.1, 2009.
Narasimhan, D. and Satheesh, S. K.: Estimates of aerosol absorption over India using multi-satellite retrieval, Ann. Geophys., 31, 1773–1778, https://doi.org/10.5194/angeo-31-1773-2013, 2013.
Remer, L. A., Tanré, D., Kaufman, Y. J., Ichoku, C., Mattoo, S., Levy,
R., Chu, D. A., Holben, B., Dubovik, O., Smirnov, A., Martins, J. V., Li, R.
R., and Ahmad, Z.: Validation of MODIS aerosol retrieval over ocean,
Geophys. Res. Lett., 29, MOD3-1, https://doi.org/10.1029/2001GL013204, 2002.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B.
N.: Global aerosol climatology from the MODIS satellite sensors, J. Geophys.
Res.-Atmos., 113, 14–21, https://doi.org/10.1029/2007JD009661, 2008.
Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D., Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T.,
Caldwell, T. E., and Loeb, N. G.: CERES Synoptic Product: Methodology and
Validation of Surface Radiant Flux, J. Atmos. Ocean. Technol., 32,
1121–1143, https://doi.org/10.1175/JTECH-D-14-00165.1, 2015.
Satheesh, S. K. and Srinivasan, J.: A method to infer short wave absorption
due to aerosols using satellite remote sensing, Geophys. Res. Lett., 32,
1–4, https://doi.org/10.1029/2005GL023064, 2005.
Satheesh, S. K., Torres, O., Remer, L. A., Babu, S. S., Vinoj, V., Eck, T.
F., Kleidman, R. G., and Holben, B. N.: Improved assessment of aerosol
absorption using OMI-MODIS joint retrieval, J. Geophys. Res.-Atmos., 114,
D05209, https://doi.org/10.1029/2008JD011024, 2009.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M. J.: Validation and
uncertainty estimates for MODIS Collection 6 “deep Blue”aerosol data, J.
Geophys. Res.-Atmos., 118, 7864–7872, https://doi.org/10.1002/jgrd.50600, 2013.
Seidel, F. C. and Popp, C.: Critical surface albedo and its implications to aerosol remote sensing, Atmos. Meas. Tech., 5, 1653–1665, https://doi.org/10.5194/amt-5-1653-2012, 2012.
Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and
Holben, B.: A long-term record of aerosol optical depth from TOMS
observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398–413, https://doi.org/10.1175/1520-0469(2002)059<0398:altroa>2.0.co;2, 2002.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from
Ozone Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos., 112, D24,
https://doi.org/10.1029/2007JD008809, 2007.
Torres, O., Ahn, C., and Chen, Z.: Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, 2013.
Vaishya, A., Babu, S. N. S., Jayachandran, V., Gogoi, M. M., Lakshmi, N. B., Moorthy, K. K., and Satheesh, S. K.: Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign, Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, 2018.
Wells, K. C., Martins, J. V., Remer, L. A., Kreidenweis, S. M., and
Stephens, G. L.: Critical reflectance derived from MODIS: Application for
the retrieval of aerosol absorption over desert regions, J. Geophys. Res.-Atmos., 117, 3202, https://doi.org/10.1029/2011JD016891, 2012.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Smith, G. L.,
and Cooper, J. E.: Clouds and the Earth's Radiant Energy System (CERES): An
Earth Observing System Experiment, B. Am. Meteorol. Soc., 77,
853–868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2, 1996.
Zhu, L., Martins, J. V., and Remer, L. A.: Biomass burning aerosol absorption
measurements with MODIS using the critical reflectance method, J. Geophys.
Res.-Atmos., 116, D07202, https://doi.org/10.1029/2010JD015187, 2011.
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm....
Altmetrics
Final-revised paper
Preprint