



# Supplement of

### Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval

Archana Devi and Sreedharan K. Satheesh

Correspondence to: Archana Devi (archana.shiva13@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1. Regions of interest (ROI). Details of each region are provided in Table S1

| ROI<br>No: | Region                 | General aerosol characteristics                                                                       | Lat limit,<br>°N | Lon limit,<br>°E |
|------------|------------------------|-------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1          | Canadian Boreal Forest | Relatively pristine with seasonal biomass burning                                                     | 48 to 60         | -140 to -58      |
| 2          | Eastern Pacific        | Less polluted oceanic region                                                                          | -15 to 15        | -180 to -97      |
| 3          | North East Atlantic    | Highly polluted by dust transport and continental outflow from biomass burning                        | 10 to 25         | -60 to -10       |
| 4          | Amazon                 | Relatively pristine with seasonal biomass burning                                                     | -20 to 0         | -70 to -48       |
| 5          | Sahara                 | Desert region with seasonal dust storms                                                               | 14 to 30         | -11 to 28        |
| 6          | Southeast Atlantic     | Highly polluted by dust transport and continental outflow from biomass burning                        | -15 to 4         | -11 to 15        |
| 7          | South African Forest   | Relatively pristine with seasonal biomass burning                                                     | -10 to 5         | 3 to 29          |
| 8          | Indo Gangetic Plain    | A highly polluted industrial region with<br>seasonal stubble burning and dust from the<br>Thar desert | 22 to 35         | 72 to 92         |
| 9          | Arabian Sea            | Continental outflow of pollution and dust                                                             | 4 to 26          | 50 to 77         |
| 10         | Bay of Bengal          | Continental outflow of pollution                                                                      | 4 to 24          | 77 to 99         |
| 11         | Russian Boreal Forest  | Relatively pristine with seasonal biomass burning                                                     | 48 to 60         | 95 to 135        |
| 12         | Eastern China          | A highly polluted industrial region                                                                   | 20 to 40         | 102 to 125       |

Table S1. Details of the regions shown in Fig. S1

|                     | CERES-MODIS SSA 550 nm |                  |                 |                 |  |  |  |  |  |
|---------------------|------------------------|------------------|-----------------|-----------------|--|--|--|--|--|
| Region              | (OM                    | I SSA 500 nm) [F | OLDER SSA 565   | nm]             |  |  |  |  |  |
|                     | DJF                    | MAM              | JJA             | SON             |  |  |  |  |  |
|                     |                        | 0.96 ± 0.02      | 0.91 ± 0.02     | 0.94 ± 0.02     |  |  |  |  |  |
| Canadian Boreal     | (0.95 ± 0.02)          | (0.94 ± 0.01)    | (0.94 ± 0.01)   | (0.93 ± 0.01)   |  |  |  |  |  |
| rolest              | [0.96 ± 0.04]          | [0.84 ± 0.05]    | [0.89 ± 0.04]   | [0.90 ± 0.05]   |  |  |  |  |  |
|                     |                        | 0.96 ± 0.02      | 0.90 ± 0.01     | 0.96 ± 0.01     |  |  |  |  |  |
| Russian Boreal      | (0.95 ± 0.02)          | (0.94 ± 0.01)    | (0.94 ± 0.01)   | (0.93 ± 0.01)   |  |  |  |  |  |
| Totest              | [0.81 ± 0.08]          | [0.89 ± 0.03]    | [0.91 ± 0.03]   | [0.89 ± 0.05]   |  |  |  |  |  |
| 0 1 40              | 0.91 ± 0.02            | 0.92 ± 0.01      | 0.83 ± 0.01     | $0.90 \pm 0.01$ |  |  |  |  |  |
| South African       | (0.93 ± 0.01)          | (0.94 ± 0.01)    | (0.93 ± 0.02)   | (0.94 ± 0.01)   |  |  |  |  |  |
| Totest              | [0.84 ± 0.03]          | [0.90 ± 0.03]    | [0.88 ± 0.03]   | [0.85 ± 0.05]   |  |  |  |  |  |
|                     | 0.96 ± 0.02            | 0.98 ± 0.01      | 0.97 ± 0.02     | 0.89 ± 0.02     |  |  |  |  |  |
| Amazon Forest       | (0.95 ± 0.01)          | (0.95 ± 0.01)    | (0.93 ± 0.01)   | (0.94 ± 0.01)   |  |  |  |  |  |
|                     | [0.84 ± 0.07]          | [0.91 ± 0.05]    | [0.92 ± 0.02]   | [0.87 ± 0.04]   |  |  |  |  |  |
|                     | 0.96 ± 0.02            | 0.94 ± 0.02      | 0.92 ± 0.02     | 0.93 ± 0.03     |  |  |  |  |  |
| North East Atlantic | (0.90 ± 0.01)          | (0.92 ± 0.01)    | (0.95 ± 0.01)   | (0.94 ± 0.01)   |  |  |  |  |  |
|                     | [0.94 ± 0.03]          | [0.93 ± 0.01]    | [0.93 ± 0.02]   | [0.94 ± 0.01]   |  |  |  |  |  |
|                     | 0.92 ± 0.02            | 0.94 ± 0.02      | 0.89 ± 0.01     | 0.92 ± 0.02     |  |  |  |  |  |
| South East Atlantic | (0.92 ± 0.01)          | (0.92 ± 0.01)    | (0.91 ± 0.01)   | (0.94 ± 0.01)   |  |  |  |  |  |
|                     | [0.88 ± 0.04]          | [0.94 ± 0.01]    | [0.88 ± 0.03]   | [0.89 ± 0.03]   |  |  |  |  |  |
|                     | 0.97 ± 0.01            | 0.97 ± 0.01      | 0.96 ± 0.01     | 0.97 ± 0.01     |  |  |  |  |  |
| Eastern Pacific     | (0.94 ± 0.02)          | (0.95 ± 0.02)    | (0.95 ± 0.02)   | (0.95 ± 0.02)   |  |  |  |  |  |
|                     | [0.97 ± 0.01]          | [0.95 ± 0.02]    | [0.95 ± 0.02]   | [0.93 ± 0.03]   |  |  |  |  |  |
|                     | 0.93 ± 0.01            | 0.93 ± 0.01      | 0.91 ± 0.02     | 0.92 ± 0.02     |  |  |  |  |  |
| Sahara              | (0.92 ± 0.01)          | (0.93 ± 0.01)    | (0.94 ± 0.01)   | (0.93 ± 0.01)   |  |  |  |  |  |
|                     | [0.90 ± 0.03]          | [0.88 ± 0.03]    | [0.87 ± 0.04]   | [0.90 ± 0.03]   |  |  |  |  |  |
|                     | $0.88 \pm 0.01$        | 0.87 ± 0.01      | 0.85 ± 0.02     | 0.83 ± 0.01     |  |  |  |  |  |
| Indo Gangetic Plain | (0.92 ± 0.01)          | (0.92 ± 0.01)    | (0.95 ± 0.01)   | (0.92 ± 0.01)   |  |  |  |  |  |
|                     | [0.89 ± 0.01]          | [0.83 ± 0.02]    | [0.77 ± 0.03]   | [0.89 ± 0.01]   |  |  |  |  |  |
|                     | 0.92 ± 0.01            | $0.90 \pm 0.01$  | 0.87 ± 0.01     | 0.88 ± 0.02     |  |  |  |  |  |
| Eastern China       | (0.92 ± 0.01)          | (0.94 ± 0.01)    | (0.95 ± 0.01)   | (0.93 ± 0.01)   |  |  |  |  |  |
|                     | $[0.91 \pm 0.01]$      | [0.87 ± 0.02]    | [0.84 ± 0.04]   | [0.91 ± 0.03]   |  |  |  |  |  |
|                     | 0.92 ± 0.01            | $0.89 \pm 0.01$  | $0.91 \pm 0.01$ | 0.89 ± 0.01     |  |  |  |  |  |
| Arabian Sea         | (0.91 ± 0.02)          | (0.93 ± 0.01)    | (0.96 ± 0.01)   | (0.93 ± 0.02)   |  |  |  |  |  |
|                     | [0.94 ± 0.02]          | [0.92 ± 0.02]    | [0.94 ± 0.02]   | [0.93 ± 0.02]   |  |  |  |  |  |
|                     | 0.91 ± 0.01            | $0.90 \pm 0.01$  | 0.91 ± 0.02     | 0.91 ± 0.02     |  |  |  |  |  |
| Bay of Bengal       | (0.92 ± 0.01)          | (0.94 ± 0.01)    | (0.95 ± 0.01)   | (0.94 ± 0.02)   |  |  |  |  |  |
|                     | [0.93 ± 0.02]          | [0.91 ± 0.02]    | [0.95 ± 0.02]   | [0.93 ± 0.03]   |  |  |  |  |  |

**Table S2**. Seasonal mean SSA over regions of interest from combined CERES-MODIS, OMI (given in round brackets) and POLDER (given in square brackets). Details of these regions are given in Table S1 and Fig. S1



**Figure S2.** Map showing location of AERONET sites used in this study. The type of aerosols (dust, mixed, urban and biomass) were as defined in Giles et al., 2012

| No. | Name          | No. | Name        | No. | Name        |
|-----|---------------|-----|-------------|-----|-------------|
| 1   | GSFC          | 6   | Capo Verde  | 11  | Sede Boker  |
| 2   | Mexico City   | 7   | Dakar       | 12  | Kanpur      |
| 3   | Alta Floresta | 8   | Illorin     | 13  | XiangHe     |
| 4   | Ispra         | 9   | Banizoumbou | 14  | Shirahama   |
| 5   | Moldova       | 10  | Mongu       | 15  | Lake Argyle |

Table S3: Name of AERONET site as shown in Fig. S2



Figure S3. Seasonal mean shortwave-integrated surface albedo from CERES

| Region                 | Surface Albedo  |                 |                 |                 |  |  |  |  |  |  |
|------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| in gion                | DJF             | MAM             | JJA             | SON             |  |  |  |  |  |  |
| Canadian Boreal Forest | $0.36\pm0.13$   | 0.30 ± 0.12     | $0.12 \pm 0.03$ | $0.16\pm0.05$   |  |  |  |  |  |  |
| Russian Boreal Forest  | $0.37 \pm 0.10$ | $0.27\pm0.08$   | $0.13 \pm 0.02$ | $0.20 \pm 0.05$ |  |  |  |  |  |  |
| South African Forest   | $0.12 \pm 0.01$ | $0.13 \pm 0.01$ | $0.12 \pm 0.02$ | 0.13 ± 0.01     |  |  |  |  |  |  |
| Amazon Forest          | $0.14 \pm 0.01$ | $0.14 \pm 0.01$ | $0.13 \pm 0.02$ | $0.14\pm0.02$   |  |  |  |  |  |  |
| North East Atlantic    | $0.06 \pm 0.01$ | $0.05\pm0.01$   | $0.05 \pm 0.01$ | $0.05\pm0.01$   |  |  |  |  |  |  |
| South East Atlantic    | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ |  |  |  |  |  |  |
| Eastern Pacific        | $0.05 \pm 0.01$ | $0.05\pm0.00$   | $0.05 \pm 0.01$ | $0.05 \pm 0.00$ |  |  |  |  |  |  |
| Sahara                 | $0.35\pm0.06$   | $0.34\pm0.06$   | $0.34\pm0.06$   | $0.34\pm0.06$   |  |  |  |  |  |  |
| Indo Gangetic Plain    | $0.13 \pm 0.02$ | $0.13\pm0.02$   | $0.14\pm0.02$   | $0.13\pm0.01$   |  |  |  |  |  |  |
| Eastern China          | $0.13 \pm 0.04$ | $0.13\pm0.03$   | $0.13\pm0.03$   | $0.13\pm0.03$   |  |  |  |  |  |  |
| Arabian Sea            | $0.06 \pm 0.01$ | $0.05\pm0.01$   | $0.05\pm0.02$   | $0.05 \pm 0.01$ |  |  |  |  |  |  |
| Bay of Bengal          | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ | $0.05 \pm 0.01$ |  |  |  |  |  |  |

**Table S4**. Shortwave integrated seasonal mean surface albedo from CERES over regions of interest. Details of these regions are given in Table S1 and Fig. S1

## Details of aerosol models used

The aerosol models used are from OPAC (Optical Properties of Aerosols and Clouds), developed by Hess et al., (1998). The existing mixture of aerosol types in OPAC is used – clean ocean, polluted ocean, arid, clean land, polluted land, and highly polluted land.

A LUT is indexed by surface albedo, water vapour, and SSA. The LUT of the aerosol type selected for the pixel is used to compute SSA from  $\tau_c$ .

![](_page_5_Figure_3.jpeg)

Fig S4. An inverse look-up is performed to computer SSA from  $\tau_c$ . Details of the "Identify Aerosol Model" block are shown in Fig S5.

The aerosol type is selected based on geographical location (Ocean/land, surface albedo) and aerosol loading (AOD).

![](_page_5_Figure_6.jpeg)

**Fig S5.** (a) Decision tree for selecting the aerosol model. (b) Shows a sample map of the aerosol model used for a particular day 03 Jun 2017, following the color code used in the decision tree

| Aerosol Type                                                             | Aerosol Type Components |                                                                                                    | Number<br>mixing ratio | Volume<br>mixing ratio | Mass mixing ratio |  |  |  |
|--------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------------|--|--|--|
|                                                                          | waso                    | 1.50E+03                                                                                           | 9.87E-01               | 6.44E-02               | 7.05E-02          |  |  |  |
| clean ocean                                                              | ssam                    | 2.00E+01                                                                                           | 1.32E-02               | 9.15E-01               | 9.09E-01          |  |  |  |
|                                                                          | sscm                    | 3.20E-03                                                                                           | 2.11E-06               | 2.03E-02               | 2.01E-02          |  |  |  |
|                                                                          | waso                    | 3.80E+03                                                                                           | 4.22E-01               | 1.47E-01               | 1.60E-01          |  |  |  |
| Dolluted occor                                                           | soot                    | 5.18E+03                                                                                           | 5.76E-01               | 8.53E-03               | 6.53E-03          |  |  |  |
| Fonuted ocean                                                            | ssam                    | 2.00E+01                                                                                           | 2.22E-03               | 8.26E-01               | 8.15E-01          |  |  |  |
|                                                                          | sscm                    | 3.20E-03                                                                                           | 3.56E-07               | 1.83E-02               | 1.80E-02          |  |  |  |
|                                                                          | waso                    | 2.00E+03                                                                                           | 8.70E-01               | 3.19E-02               | 1.77E-02          |  |  |  |
| م.<br>م. ا                                                               | minm                    | 2.70E+02                                                                                           | 1.17E-01               | 3.26E-02               | 3.31E-02          |  |  |  |
| And                                                                      | miam                    | 3.05E+01                                                                                           | 1.33E-02               | 7.35E-01               | 7.46E-01          |  |  |  |
|                                                                          | micm                    | 1.42E-01                                                                                           | 6.17E-05               | 2.00E-01               | 2.03E-01          |  |  |  |
| Clean land                                                               | inso                    | 1.50E-01                                                                                           | 5.77E-05               | 3.27E-01               | 4.07E-01          |  |  |  |
| Clean rand                                                               | waso                    | 2.60E+03                                                                                           | 1.00E+00               | 6.73E-01               | 5.93E-01          |  |  |  |
|                                                                          | inso                    | 4.00E-01                                                                                           | 2.61E-05               | 3.15E-01               | 3.96E-01          |  |  |  |
| Polluted land                                                            | waso                    | 7.00E+03                                                                                           | 4.58E-01               | 6.53E-01               | 5.83E-01          |  |  |  |
|                                                                          | soot                    | 8.30E+03                                                                                           | 5.43E-01               | 3.29E-02               | 2.07E-02          |  |  |  |
|                                                                          | inso                    | 6.00E-01                                                                                           | 1.20E-05               | 2.28E-01               | 2.99E-01          |  |  |  |
| Highly polluted land                                                     | waso                    | 1.57E+04                                                                                           | 3.14E-01               | 7.07E-01               | 6.58E-01          |  |  |  |
|                                                                          | soot                    | 3.43E+04                                                                                           | 6.86E-01               | 6.56E-02               | 4.31E-02          |  |  |  |
| **<br>inso – insoluble<br>waso – water soluble<br>ssam – sea salt (accum | ulation mode)           | minm – mineral (nuclei mode)<br>miam – mineral (accumulation mode)<br>micm – mineral (coarse mode) |                        |                        |                   |  |  |  |

Table S5. Components of the mixed aerosol types used

\* More details such as refractive index and size distributions can be referred to in Hess et al 1998

|                      | Wavelength (microns) |      |      |      |      |      |      |      |      |      |      |      |  |
|----------------------|----------------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Aerosor Type         | 0.25                 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.90 | 1.25 | 2.00 | 3.00 | 3.39 | 4.00 |  |
| Clean ocean          | 1.13                 | 1.06 | 1.03 | 1.00 | 0.98 | 0.96 | 0.93 | 0.84 | 0.60 | 0.57 | 0.45 | 0.31 |  |
| Polluted ocean       | 1.41                 | 1.22 | 1.09 | 1.00 | 0.94 | 0.89 | 0.82 | 0.70 | 0.48 | 0.47 | 0.36 | 0.24 |  |
| Arid                 | 1.12                 | 1.07 | 1.03 | 1.00 | 0.98 | 0.96 | 0.95 | 0.92 | 0.82 | 0.66 | 0.59 | 0.50 |  |
| Clean land           | 2.27                 | 1.70 | 1.29 | 1.00 | 0.79 | 0.64 | 0.48 | 0.29 | 0.13 | 0.17 | 0.08 | 0.07 |  |
| Polluted land        | 2.29                 | 1.71 | 1.30 | 1.00 | 0.79 | 0.64 | 0.48 | 0.29 | 0.13 | 0.17 | 0.09 | 0.07 |  |
| Highly polluted land | 2.33                 | 1.74 | 1.30 | 1.00 | 0.79 | 0.64 | 0.49 | 0.30 | 0.14 | 0.16 | 0.09 | 0.07 |  |

Table S6. Normalized extinction coefficient for each aerosol type

sscm - sea salt (coarse mode)

| -                    |                      |      |      |      |      |      |      |      |      |      |      |      |  |
|----------------------|----------------------|------|------|------|------|------|------|------|------|------|------|------|--|
|                      | Wavelength (microns) |      |      |      |      |      |      |      |      |      |      |      |  |
| Aerosol Type         | 0.25                 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.90 | 1.25 | 2.00 | 3.00 | 3.39 | 4.00 |  |
| Clean ocean          | 0.96                 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.45 | 0.88 | 0.97 |  |
| Polluted ocean       | 0.90                 | 0.95 | 0.96 | 0.96 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.42 | 0.87 | 0.95 |  |
| Arid                 | 0.68                 | 0.75 | 0.83 | 0.88 | 0.91 | 0.92 | 0.93 | 0.93 | 0.93 | 0.77 | 0.86 | 0.94 |  |
| Clean land           | 0.88                 | 0.97 | 0.97 | 0.96 | 0.95 | 0.94 | 0.92 | 0.87 | 0.88 | 0.33 | 0.78 | 0.85 |  |
| Polluted land        | 0.83                 | 0.90 | 0.90 | 0.89 | 0.88 | 0.87 | 0.84 | 0.79 | 0.77 | 0.31 | 0.69 | 0.74 |  |
| Highly polluted land | 0.72                 | 0.77 | 0.77 | 0.75 | 0.74 | 0.72 | 0.69 | 0.62 | 0.55 | 0.24 | 0.50 | 0.53 |  |

### Table S7. Spectral SSA

### Table S8. Asymmetry Parameter

| A aracal Turna  | Wavelength (microns) |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|----------------------|------|------|------|------|------|------|------|------|------|------|------|
| Aerosor Type    | 0.25                 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.90 | 1.25 | 2.00 | 3.00 | 3.39 | 4.00 |
| Clean ocean     | 0.77                 | 0.76 | 0.75 | 0.76 | 0.76 | 0.76 | 0.77 | 0.78 | 0.78 | 0.75 | 0.71 | 0.71 |
| Polluted ocean  | 0.75                 | 0.74 | 0.73 | 0.74 | 0.74 | 0.74 | 0.75 | 0.76 | 0.78 | 0.74 | 0.71 | 0.71 |
| Arid            | 0.82                 | 0.79 | 0.75 | 0.73 | 0.71 | 0.70 | 0.70 | 0.69 | 0.69 | 0.71 | 0.70 | 0.68 |
| Clean land      | 0.73                 | 0.71 | 0.69 | 0.68 | 0.67 | 0.66 | 0.64 | 0.62 | 0.71 | 0.76 | 0.76 | 0.78 |
| Polluted land   | 0.72                 | 0.70 | 0.69 | 0.67 | 0.66 | 0.65 | 0.64 | 0.62 | 0.70 | 0.76 | 0.76 | 0.78 |
| Highly polluted |                      |      |      |      |      |      |      |      |      |      |      |      |
| land            | 0.70                 | 0.68 | 0.66 | 0.65 | 0.64 | 0.63 | 0.62 | 0.61 | 0.69 | 0.75 | 0.75 | 0.78 |