Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-419-2022
https://doi.org/10.5194/acp-22-419-2022
Research article
 | 
12 Jan 2022
Research article |  | 12 Jan 2022

Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events

Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou

Related authors

Wildfires heat the middle troposphere over the Himalayas and Tibetan Plateau during the peak of fire season
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
Atmos. Chem. Phys., 25, 10443–10456, https://doi.org/10.5194/acp-25-10443-2025,https://doi.org/10.5194/acp-25-10443-2025, 2025
Short summary
Machine learning significantly improves the simulation of hourly-to-yearly scale cloud nuclei concentration and radiative forcing in polluted atmosphere
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483,https://doi.org/10.5194/egusphere-2025-1483, 2025
Short summary
IMPMCT: a dataset of Integrated Multi-source Polar Meso-Cyclone Tracks
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186,https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Spatiotemporal variation characteristics of global fires and their emissions
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023,https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Baldwin, R., Wright, V., Anders, D. D., Brinegar, D., Lott, N., Jones, P., Smith, F., and Boreman, B.: The FCC Integrated Surface Hourly Database, A New Resource of Global Climate Data [data set], Data center of NOAA, available at: http://www1.ncdc.noaa.gov/pub/data/noaa/ (last access: 31 March 2021), 2020. 
Cao, L. Z., Chen, X., Zhang, C., Kurban, A., Yuan, X. L., Pan, T., and Maeyer, P.: The temporal and spatial distributions of the near-surface CO2 concentrations in central Asia and analysis of their controlling factors, Atmosphere, 8, 1–14, https://doi.org/10.3390/atmos8050085, 2017. 
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992. 
Chuang, C. C., Penner, J. E., Prospero, J. M., Grant, K. E., Rau, G. H., and Kawamoto, K.: Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations, J. Geophys. Res.-Atmos., 107, 4564, https://doi.org/10.1029/2000JD000215, 2002. 
Download
Short summary
Using multi-year data, this study reveals the slump of sea land breeze (SLB) at Brisbane during mega fires and investigates the impact of fire-induced aerosols on SLB. Different aerosols have different impacts on sea wind (SW) and land wind (LW). Aerosols cause the decrease of SW, partially offset by the warming effect of black carbon (BC). The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contribute to the slump of LW.
Share
Altmetrics
Final-revised paper
Preprint