Articles | Volume 21, issue 12
Atmos. Chem. Phys., 21, 9741–9760, 2021
https://doi.org/10.5194/acp-21-9741-2021
Atmos. Chem. Phys., 21, 9741–9760, 2021
https://doi.org/10.5194/acp-21-9741-2021
Research article
29 Jun 2021
Research article | 29 Jun 2021

Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process

Georgia Sotiropoulou et al.

Related authors

Secondary ice production processes in wintertime alpine mixed-phase clouds
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022,https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021,https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020,https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
The impact of secondary ice production on Arctic stratocumulus
Georgia Sotiropoulou, Sylvia Sullivan, Julien Savre, Gary Lloyd, Thomas Lachlan-Cope, Annica M. L. Ekman, and Athanasios Nenes
Atmos. Chem. Phys., 20, 1301–1316, https://doi.org/10.5194/acp-20-1301-2020,https://doi.org/10.5194/acp-20-1301-2020, 2020
Short summary
The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface
G. Sotiropoulou, J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson
Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014,https://doi.org/10.5194/acp-14-12573-2014, 2014
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022,https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022,https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022,https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary

Cited articles

Andronache, C.: Characterization of Mixed-Phase Clouds: Contributions From the Field Campaigns and Ground Based Networks, in: Mixed-Phase Clouds: Observations and Modeling, edited by: Andronache, C., 97–120, Elsevier, the Netherlands, UK, USA, https://doi.org/10.1016/B978-0-12-810549-8.00005-2, 2017. 
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. 
Bigg, E. K. and Leck, C.: Cloud-active particles over the central Arctic Ocean, J. Geophys. Res., 106, 32155–32166, https://doi.org/10.1029/1999JD901152, 2001. 
Burt, M. A., Randall, D. A., and Branson, M. D.: Dark warming, J. Climate, 29, 705–719, 2015. 
Cao, Y., Liang, S., Chen, X., He, T., Wang, D., and Cheng, X.: Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting, Sci. Rep., 7, 8462, https://doi.org/10.1038/s41598-017-08545-2, 2017. 
Download
Short summary
Mixed-phase clouds are a large source of uncertainty in projections of the Arctic climate. This is partly due to the poor representation of the cloud ice formation processes. Implementing a parameterization for ice multiplication due to mechanical breakup upon collision of two ice particles in a high-resolution model improves cloud ice phase representation; however, cloud liquid remains overestimated.
Altmetrics
Final-revised paper
Preprint