Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4849-2021
https://doi.org/10.5194/acp-21-4849-2021
Research article
 | 
29 Mar 2021
Research article |  | 29 Mar 2021

Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations

Yikun Yang, Chuanfeng Zhao, Quan Wang, Zhiyuan Cong, Xingchuan Yang, and Hao Fan

Related authors

Spatiotemporal variation characteristics of global fires and their emissions
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023,https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022,https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Hao Fan
Atmos. Chem. Phys., 21, 3803–3825, https://doi.org/10.5194/acp-21-3803-2021,https://doi.org/10.5194/acp-21-3803-2021, 2021
Short summary
Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021,https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
A CASE STUDY OF POLLUTION PROCESS IN NORTH CHINA REGION USING REANALYSIS METEOROLOGY
X. Shi, C. Zhao, K. Qin, Y. Yang, K. Zhang, and H. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W5, 73–76, https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018,https://doi.org/10.5194/isprs-archives-XLII-3-W5-73-2018, 2018

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Remote-sensing detectability of airborne Arctic dust
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
Atmos. Chem. Phys., 25, 27–44, https://doi.org/10.5194/acp-25-27-2025,https://doi.org/10.5194/acp-25-27-2025, 2025
Short summary
The role of refractive indices in measuring mineral dust with high-spectral-resolution infrared satellite sounders: application to the Gobi Desert
Perla Alalam, Fabrice Ducos, and Hervé Herbin
Atmos. Chem. Phys., 24, 12277–12294, https://doi.org/10.5194/acp-24-12277-2024,https://doi.org/10.5194/acp-24-12277-2024, 2024
Short summary
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024,https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Lidar estimates of birch pollen number, mass and related CCN concentrations
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3032,https://doi.org/10.5194/egusphere-2024-3032, 2024
Short summary
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024,https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary

Cited articles

AboEl-Fetouh, Y., O'Neill, N., Ranjbar, K., Hesaraki, S., Abboud, I., and Sobolewski, P.: Climatological-scale analysis of intensive and semi-intensive aerosol parameters derived from AERONET retrievals over the Arctic, J. Geophys. Res.-Atmos., 125, e2019JD031569, https://doi.org/10.1029/2019jd031569, 2020. 
Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Amiri-Farahani, A., Allen, R. J., Neubauer, D., and Lohmann, U.: Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect, Atmos. Chem. Phys., 17, 6305–6322, https://doi.org/10.5194/acp-17-6305-2017, 2017. 
Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A., and Ghader, S.: Dust storm simulation over Iran using HYSPLIT, J. Environ. Health Sci., 12, 9, https://doi.org/10.1186/2052-336x-12-9, 2014. 
Download
Short summary
The occurrence frequency of different aerosol types and aerosol optical depth over the Arctic, Antarctic and Tibetan Plateau (TP) show distinctive spatiotemporal differences. The aerosol extinction coefficient in the Arctic and TP has a broad vertical distribution, while that of the Antarctic has obvious seasonal differences. Compared with the Antarctic, the Arctic and TP are vulnerable to surrounding pollutants, and the source of air masses has obvious seasonal variations.
Altmetrics
Final-revised paper
Preprint