Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1797-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1797-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite retrieval of aerosol combined with assimilated forecast
Mayumi Yoshida
CORRESPONDING AUTHOR
Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan
present
address: Remote Sensing Technology Center of Japan, Tsukuba, 305-8505,
Japan
Keiya Yumimoto
Research Institute for Applied Mechanics, Kyushu University, Fukuoka,
816-8580, Japan
Takashi M. Nagao
Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba,
277-8568, Japan
Taichu Y. Tanaka
Meteorological Research Institute, Tsukuba, 305-0052, Japan
Maki Kikuchi
Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan
Hiroshi Murakami
Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan
Related authors
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Kazuhisa Tanada, Hiroshi Murakami, Tadahiro Hayasaka, and Mayumi Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2022-21, https://doi.org/10.5194/egusphere-2022-21, 2022
Preprint withdrawn
Short summary
Short summary
This study analyzed the optical properties of aerosols emitted from wildfires in the world’s six regions, using the GCOM-C satellite data. We found that their characteristics and the aging behavior differ due to regional differences of relative humidity and vegetation type. The estimated radiative forcing by aerosol direct effect indicated a cooling effect for all regions. Especially over the ocean, due to its low surface reflectance, the large negative values were obtained.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025, https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Short summary
In satellite remote sensing, estimating cloud-base height (CBH) is more challenging than estimating cloud-top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI on JAXA’s GCOM-C satellite to estimate CBHs together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi M. Nagao, and Haruma Ishida
Atmos. Meas. Tech., 17, 6751–6767, https://doi.org/10.5194/amt-17-6751-2024, https://doi.org/10.5194/amt-17-6751-2024, 2024
Short summary
Short summary
A Japanese team developed the Level 2 atmospheric radiation flux and heating rate product for EarthCARE, which offers vertical profiles of longwave and shortwave radiative fluxes and heating rates. This study outlines the algorithm for the radiative product and its comparative validation against satellite and ground-based observations. It also analyzes errors in radiative fluxes at various scales and their dependence on cloud type, with ice-containing clouds identified as a primary error source.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Publication in AMT not foreseen
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Tobias Wehr, Takuji Kubota, Georgios Tzeremes, Kotska Wallace, Hirotaka Nakatsuka, Yuichi Ohno, Rob Koopman, Stephanie Rusli, Maki Kikuchi, Michael Eisinger, Toshiyuki Tanaka, Masatoshi Taga, Patrick Deghaye, Eichi Tomita, and Dirk Bernaerts
Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, https://doi.org/10.5194/amt-16-3581-2023, 2023
Short summary
Short summary
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to measure global vertical profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The mission's scientific requirements, the satellite and the ground segment are described. In particular, the four scientific instruments and their performance are described at the level of detail required by mission data users.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu, Keiya Yumimoto, Itsushi Uno, and Chul Han Song
Geosci. Model Dev., 15, 2773–2790, https://doi.org/10.5194/gmd-15-2773-2022, https://doi.org/10.5194/gmd-15-2773-2022, 2022
Short summary
Short summary
An EnKF was applied to CMAQ for assimilating ground PM2.5 observations from China and South Korea. The EnKF performed better than that without assimilation and even superior to 3D-Var. The reduced MBs in 24 h predictions were 48 % and 27 % by improving ICs and BCs, respectively.
Kazuhisa Tanada, Hiroshi Murakami, Tadahiro Hayasaka, and Mayumi Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2022-21, https://doi.org/10.5194/egusphere-2022-21, 2022
Preprint withdrawn
Short summary
Short summary
This study analyzed the optical properties of aerosols emitted from wildfires in the world’s six regions, using the GCOM-C satellite data. We found that their characteristics and the aging behavior differ due to regional differences of relative humidity and vegetation type. The estimated radiative forcing by aerosol direct effect indicated a cooling effect for all regions. Especially over the ocean, due to its low surface reflectance, the large negative values were obtained.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Cited articles
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold A., Razinger, M. , Simmons, A. J., and Suttie, M.: Aerosol analysis and
forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205,
https://doi.org/10.1029/2008JD011115, 2009.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9
– Japan's new-generation geostationary meteorological satellites, J. Meteor. Soc. Japan, 94,
151–183, 2016.
Dai, T., Schutgens, N. A. J., Goto, D., Shi, G., and Nakajima, T.:
Improvement of aerosol optical properties modeling over Eastern Asia with
MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol
transport model, Environ. Pollut., 195, 319–329, https://doi.org/10.1016/j.envpol.2014.06.021, 2014.
Dai, T., Cheng, Y., Suzuki, K, Goto, D., Kikuchi, M., Schutgens, N.,
Yoshida, M., Zhang, P., Husi, L., Guangyu, S., and Nakajima, T.: Hourly
aerosol assimilation of Himawari-8 AOT using the four-dimensional local
ensemble transform Kalman filter, J. Adv. Model. Earth Syst., 11, 680–711, https://doi.org/10.1029/2018MS001475, 2019.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105,
20673–20696, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck,
T. F., and Slutsker, I.: Accuracy assessment of aerosol optical properties
retrieval from AERONET sun and sky radiance measurements, J. Geophys. Res., 105, 9791–9806,
2000.
Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King,
M. D., Tanré, D., and Slutsker, I.: Variability of absorption and
optical properties of key aerosol types observed in worldwide locations, J.
Atmos. Sci., 59, 590–608, 2002a.
Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I.,
Yang, P., and Slutsker, I.: Non-spherical aerosol retrieval method employing
light scattering by spheroids, Geophys. Res. Lett., 10, 54-1–54-4, https://doi.org/10.1029/2001GL014506, 2002b.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang,
P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., van der Zander,
Sorokin, M., and Slutsker, I.: Application of light scattering by spheroids
for accounting for particle non-sphericity in remote sensing of desert dust,
J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Fukuda, S., Nakajima, T., Takenaka, H., Higurashi, A., Kikuchi, N.,
Nakajima, T. Y., and Ishida, H.: New approaches to removing cloud shadows
and evaluating the 380 nm surface reflectance for improved aerosol optical
thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager, J. Geophys. Res.-Atmos., 118,
13520–13531, 2013.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H.,
Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S.,
Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara,
T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Clim. Change, 109, 163–190,
https://doi.org/10.1007/s10584-011-0154-1, 2011.
Higurashi, A. and Nakajima T.: Development of a two-channel aerosol
retrieval algorithm on a global scale using NOAA AVHRR, J. Atmos. Sci., 56, 924–941,
1999.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman J. R.: Aerosol properties
over bright-reflecting source regions, IEEE T. Geosci. Remote, 42, 557–569, 2004.
IPCC, Climate Change: Synthesis Report. Contribution of Working Groups I, II
and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A.,
Geneva, Switzerland, 151 pp., 2014.
JAXA Himawari Monitor: P-Tree System, available at: https://www.eorc.jaxa.jp/ptree/index.html (last access: 20 January 2021), 2020.
Jeong, U., Kim, J., Ahn, C., Torres, O., Liu, X., Bhartia, P. K., Spurr, R. J. D., Haffner, D., Chance, K., and Holben, B. N.: An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations, Atmos. Chem. Phys., 16, 177–193, https://doi.org/10.5194/acp-16-177-2016, 2016.
Jin, J., Segers, A., Heemink, A., Yoshida, M., Han, W., and Lin, H.-X: Dust
emission inversion using Himawari-8 AODs over East Asia: An extreme dust
event in May 2017, J. Adv. Model. Earth Syst., 11, 446–467, https://doi.org/10.1029/2018MS001491, 2019.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and
Holben, B. N.: Operational remote sensing of tropospheric aerosol over land
from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102, 17051–17067,
1997.
Kikuchi M., Murakami, H., Suzuki, K., Nagao, T. M., and Higurashi, A.:
Improved Hourly Estimates of Aerosol Optical Thickness using Spatiotemporal
Variability Derived from Himawari-8 Geostationary Satellite, IEEE T. Geosci. Remote, 2018, 3442–3455, https://doi.org/10.1109/TGRS.2018.2800060, 2018.
Lee, S., Song, C. H., Park, R. S., Park, M. E., Han, K. M., Kim, J., Choi, M., Ghim, Y. S., and Woo, J.-H.: GIST-PM-Asia v1: development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia, Geosci. Model Dev., 9, 17–39, https://doi.org/10.5194/gmd-9-17-2016, 2016.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties
over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance, J. Geophys. Res., 112, D13211, https://doi.org/10.1029/2006JD007811, 2007.
Nakajima, T. and Tanaka, M.: Matrix formulation for the transfer of
solar radiation in a plane-parallel scattering atmosphere, J. Quant. Spectrosc. Ra., 35, 13–21, 1986.
Nakajima, T. and Tanaka, M.: Algorithms for radiative intensity
calculations in moderately thick atmospheres using a truncation
approximation, J. Quant. Spectrosc. Ra., 40, 51–69, 1988.
Nakajima, T., Tanaka, M., Yamano, M., Shiobara, M., Arao, K., and Nakanishi, Y.: Aerosol optical characteristics in the yellow sand events observed in
May, 1982 in Nagasaki – part II model, J. Meteorol. Soc. Jpn., 67, 279–291,
1989.
Omar, A. H., Won, J.-G., Winker, D. M., Yoon, S.-C., Dubovik, O., and
McCormick, M. P.: Development of global aerosol models using cluster analysis
of Aerosol Robotic Network (AERONET) measurements, J. Geophys. Res., 110, D10S14,
https://doi.org/10.1029/2004JD004874, 2005.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman,
S.: Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res.,
108, 4559–4573, https://doi.org/10.1029/2002JD002975, 2003.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., R.-R. Li, Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products,
and validation, J. Atmos. Sci., 62, 947–973, 2005.
Rodgers, C. D.: Inverse Method for Atmospheric
Sounding: Theory and Practice, World Scientific,
Singapore, 238 pp., 2000.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Collins, N., Hoar, T. J., Hogan, T., Lynch, P., McLay, J., Reynolds, C. A., Sessions, W. R., Westphal, D. L., and Zhang, J.: Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting, Atmos. Chem. Phys., 16, 3927–3951, https://doi.org/10.5194/acp-16-3927-2016, 2016.
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, 2013.
Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y. and Carmichael, G.
R.: Assimilation of next generation geostationary aerosol optical depth
retrievals to improve air quality simulations, Geophys. Res. Lett., 41, 9188–9196,
https://doi.org/10.1002/2014GL062089, 2014.
Sayer, A. M., Smirnov, A., Hsu, N. C., and Holben, B. N.: A pure marine
aerosol model, for use in remote sensing applications, J. Geophys. Res., 117, D05213,
https://doi.org/10.1029/2011JD016689, 2012.
Sinyuk, A., Dubovik, O., Holben, B., Eck, T. F., Breon, F.-M., Martonchik,
J., Kahn, R., Diner, D. J., Vermote, E. F., Roger, J.-C., Lapyonok, T., and
Slutsker, I.: Simultaneous retrieval of aerosol and surface properties from
a combination of AERONET and satellite, Rem. Sens. of Env., 107, 90–108,
https://doi.org/10.1016/j.rse.2006.07.022, 2007.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509, 1988.
Tanaka, T. Y. and Chiba, M.: Global simulation of dust aerosol with a
chemical transport model, MASINGAR, J. Meteorol. Soc. Jpn., 83A, 255–278,
https://doi.org/10.2151/jmsj.83A.255, 2005.
Tanaka, T. Y., Orito, K., Sekiyama, T. T., Shibata, K., Chiba, M., and
Tanaka, H.: MASINGAR, a global tropospheric aerosol chemical transport model
coupled with MRI/JMA98 GCM: Model description, Pap. Meteorol. Geophys., 53, 119–138,
https://doi.org/10.2467/mripapers.53.119, 2003.
Xian, P., Reid, J. S., Hyer, E. J., Sampson, C. R., Rubin, J. I., Ades, M.,
Asencio, N., Basart, S., Benedetti, A., Bhattacharjee, P., Brooks, M. E.,
Colarco, P. R., Da Silva, A., Eck, T. F., Guth, J., Jorba, O., Kouznetsov,
R., Kipling, Z., Sofiev, M., Carcia-Pando, C. P., Pradhan, Y., Tanaka, T.,
Wang, J., Westphal, D. L., Yumimoto, K., and Zhang, J.: Current State of the
global operational aerosol multi-model ensemble: an update from the
International Cooperative for Aerosol Prediction (ICAP), Q. J. Roy. Meteor. Soc., 145, qj.3497,
https://doi.org/10.1002/qj.3497, 2019.
Yoshida, M., Kikuchi, M., Nagao, T. M., Murakami, H., Nomaki, T., and
Higurashi, A.: Common retrieval of atmospheric aerosol properties for
imaging satellite sensors, J. Meteorol. Soc. Jpn., 96B, 193–209, https://doi.org/10.2151/jmsj.2018-039, 2018.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu,
S., Obata, A., Nakano, H., Koshiro, T., Ose, T., and Kitoh, A.: A new global
climate model of the Meteorological Research Institute: MRI-CGCM3 – model
description and basic performance, J. Meteorol. Soc. Jpn., 90A, 23–64, https://doi.org/10.2151/jmsj.2012-A02,
2012.
Yumimoto, K., Murakami, H., Yanaka, T. Y., Sekiyama, T. T., Ogi, A., and
Maki, T.: Forecasting of Asian dust storm that occurred on May 10–13, 2011,
using an ensemble-based data assimilation system, Particuology, 28, 121–130,
https://doi.org/10.1016/j.partic.2015.09.001, 2015.
Yumimoto, K., Nagao, T. M., Kikuchi, M., Sekiyama, T. T., Murakami, H.,
Tanaka, T. Y., and Maki, T.: Aerosol data assimilation using data from
Himawari-8, a next-generation geostationary meteorological satellite,
Geophys. Res. Lett., 43, 5886–5894, https://doi.org/10.1002/2016GL069298,
2016.
Yumimoto, K., Tanaka, T. Y., Oshima, N., and Maki, T.: JRAero: the Japanese Reanalysis for Aerosol v1.0, Geosci. Model Dev., 10, 3225–3253, https://doi.org/10.5194/gmd-10-3225-2017, 2017.
Yumimoto, K., Tanaka, T., Yoshida, M, Kikuchi, M., Nagao, T. M., Murakami, H.,
and Maki, T.: Assimilation and Forecasting Experiment for Heavy Siberian
Wildfire Smoke in May 2016 with Himawari-8 Aerosol Optical Thickness,
J. Meteorol. Soc. Jpn., 96B, 133–149, https://doi.org/10.2151/jmsj.2018-035, 2018.
Short summary
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. This is the first study that utilizes the assimilated model forecast of aerosol as an a priori estimate of the retrieval. Aerosol retrievals were improved by effectively incorporating both model and satellite information. By using the assimilated forecast as an a priori estimate, information from previous observations can be propagated to future retrievals, thus leading to better retrieval accuracy.
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast....
Altmetrics
Final-revised paper
Preprint