Articles | Volume 20, issue 13
Atmos. Chem. Phys., 20, 7829–7842, 2020
https://doi.org/10.5194/acp-20-7829-2020
Atmos. Chem. Phys., 20, 7829–7842, 2020
https://doi.org/10.5194/acp-20-7829-2020

Research article 06 Jul 2020

Research article | 06 Jul 2020

On the climate sensitivity and historical warming evolution in recent coupled model ensembles

Clare Marie Flynn and Thorsten Mauritsen

Related authors

Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021,https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020,https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021,https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021,https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021,https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Convective self–aggregation in a mean flow
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021,https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary

Cited articles

Andrews, T., Andrews, M. B., Bodas-Salcedo, A., Jones, G. S., Kulhbrodt, T., Manners, J., Menary, M. B., Ridley, J., Ringer, M. A., Sellar, A. A., Senior, C. A., and Tang, Y.: Forcings, feedbacks and climate sensitivity in HadGEM3-GC3.1 and UKESM1, J. Adv. Model. Earth Sy., 11, 4377–4394, https://doi.org/10.1029/2019MS001866, 2109. a
Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012. a
Armour, K. C.: Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks, Nat. Clim. Change, 7, 1758–6798, https://doi.org/10.1038/nclimate3278, 2017. a
Arrhenius, S.: XXXI. On the influence of carbonic acid in the air upon the temperature of the ground, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41, 237–276, https://doi.org/10.1080/14786449608620846, 1896. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2019. a
Download
Short summary
The range of climate sensitivity of models participating in CMIP6 has increased relative to models participating in CMIP5 due to decreases in the total feedback parameter. This is caused by increases in the shortwave all-sky and clear-sky feedbacks, particularly over the Southern Ocean. These shifts between CMIP6 and CMIP5 did not arise by chance. Both CMIP5 and CMIP6 models are found to exhibit aerosol forcing that is too strong, causing too much cooling relative to observations.
Altmetrics
Final-revised paper
Preprint