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Abstract. The Earth’s equilibrium climate sensitivity (ECS)
to a doubling of atmospheric CO2, along with the transient
climate response (TCR) and greenhouse gas emissions path-
ways, determines the amount of future warming. Coupled
climate models have in the past been important tools to es-
timate and understand ECS. ECS estimated from Coupled
Model Intercomparison Project Phase 5 (CMIP5) models lies
between 2.0 and 4.7 K (mean of 3.2 K), whereas in the lat-
est CMIP6 the spread has increased to 1.8–5.5 K (mean of
3.7 K), with 5 out of 25 models exceeding 5 K. It is thus per-
tinent to understand the causes underlying this shift. Here
we compare the CMIP5 and CMIP6 model ensembles and
find a systematic shift between CMIP eras to be unexplained
as a process of random sampling from modeled forcing and
feedback distributions. Instead, shortwave feedbacks shift to-
wards more positive values, in particular over the Southern
Ocean, driving the shift towards larger ECS values in many
of the models. These results suggest that changes in model
treatment of mixed-phase cloud processes and changes to
Antarctic sea ice representation are likely causes of the shift
towards larger ECS. Somewhat surprisingly, CMIP6 mod-
els exhibit less historical warming than CMIP5 models, de-
spite an increase in TCR between CMIP eras (mean TCR
increased from 1.7 to 1.9 K). The evolution of the warming
suggests, however, that several of the CMIP6 models apply
too strong aerosol cooling, resulting in too weak mid-20th
century warming compared to the instrumental record.

1 Introduction

The equilibrium climate sensitivity (ECS) is defined as the
long-term globally averaged amount of surface temperature
increase in response to a doubling of atmospheric carbon
dioxide (CO2) relative to pre-industrial levels. An expres-
sion of ECS can be obtained from the linearized global ra-
diation balance equation N = F +λT , with N being the top-
of-atmosphere (TOA) radiation balance, F an external forc-
ing, λ the total feedback parameter, and T the global surface
temperature change. Assuming a new equilibrium is reached
(N = 0) after applying a sustained doubling of atmospheric
CO2, we obtain the following equation:

ECS=
−F2x

λ
, (1)

where F2x is the radiative forcing from a doubling of CO2,
equal to approximately 3.7 Wm−2. Here λ is the total climate
feedback parameter in units of Wm−2 K−1, defined as the
sum over all feedback processes, including cloud, water va-
por, lapse rate, surface albedo, Planck, and other feedbacks.
ECS endures as a key metric to examine the joint effect of
forcing and feedback on the climate system and for the com-
parison of different climate models to each other (Andrews
et al., 2012) and other lines of evidence besides climate mod-
els (Stevens et al., 2016).

Constraining the Earth’s ECS is a critical problem in cli-
mate science, as an accurate estimate is necessary both for
understanding the Earth’s past climate changes but also in
practice to provide reliable projections of future warming
(Collins et al., 2013). Despite achieving equilibrium with
the deep oceans requiring multiple millennia, Grose et al.
(2018) found that ECS explains more of the inter-model
spread in surface temperature change over the 21st century
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than other metrics of climate sensitivity, such as the com-
monly used transient climate response (TCR), which is the
warming by the time of doubling in a run with 1 % increase
in CO2 per year. Unfortunately, the Intergovernmental Panel
on Climate Change (IPCC) ”likely” range (greater than 66 %
probability) of 1.5–4.5 K for ECS, with a central estimate of
about 3 K, has not significantly changed since it was first pro-
posed 4 decades ago by Charney et al. (1979) through to the
Fifth IPCC Assessment Report (AR5) (Collins et al., 2013).

Early estimates of ECS were primarily based on various
climate model results starting from the pioneering study of
Arrhenius (1896), though the IPCC AR5 report assessment
includes other sources of evidence in addition to raw ECS
estimates from climate models. Recent community efforts to
improve on this stalemate on bounding ECS instead focuses
entirely on basic process understanding, historical warming,
and paleoclimate evidence (Stevens et al., 2016). This may
be viewed as scientists abandoning climate models as evi-
dence for ECS, but this is not true. On the contrary, models
are used as tools in several places within these three lines of
evidence, e.g., to estimate forcing, parts of the feedback, and
how temporary sea surface temperature patterns might affect
historical inference (Armour, 2017).

In light of this, it is certainly valuable to understand how
models obtain their respective ECS, and it is even more inter-
esting that the currently ongoing sixth phase of the Coupled
Model Intercomparison Project (CMIP6) exhibits a marked
increase in both inter-model mean (3.7 K) and range (1.8–
5.5 K) in ECS, relative to the previous CMIP5 phase (3.2 K,
2.0–4.7). More so, the CMIP6 models thus far exhibit an in-
teresting bi-modal distribution (Fig. 1), indicative that sys-
tematic changes to some but not all models are responsible
for the upward shift in model ensemble mean ECS.

Indeed, recent studies of several individual CMIP6 mod-
els, including CNRM-CM6-1 (Voldoire et al., 2019), CESM2
(Gettelman et al., 2019), E3SMv1 (Golaz et al., 2019), and
HadGEM3-GC3.1 (Bodas-Salcedo et al., 2019; Andrews
et al., accepted), each with an ECS of about 5 K or greater,
have pointed to model parameterization changes that in-
creased the positive shortwave cloud feedbacks or added
aerosol–cloud interactions as having driven up their ECS val-
ues.

In this study we set out to investigate whether the collec-
tive shift in modeled ECS between CMIP5 and CMIP6 could
have happened by chance as the result of a random sampling
process in model development and whether the structure of
the forcing and feedback shows signs of systematic behavior
across the ensembles. We round off by inspecting the abil-
ity of models to represent the evolution of the instrumental
record warming with a focus on early and late 20th century
warming. The results allude to excessive aerosol cooling in
early historical warming in a majority of the models.

Figure 1. Histograms displaying number of CMIP5 (a) or
CMIP6 (b) models that fall within 0.5 K ECS bins. ECS mean value
and standard deviation (SD) for CMIP5 and CMIP6 ensemble are
displayed in black and red, respectively, above each histogram.

2 Model experiments and methodology

The CMIP5 ensemble analyzed in this work includes
27 models, and the CMIP6 ensemble includes the 25 mem-
bers available at the time of writing. The first realization for
each model (r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6) was
used, and all climate model output was downloaded from the
Earth System Federation Grid (ESGF) nodes. All models are
listed in Tables 1 and 2 with their ECS, TCR, and feedback
parameter values.

2.1 Estimation of model climate sensitivities and
feedbacks

The ECS for each model was calculated from the CMIP
abrupt4xCO2 simulation, in which the CO2 concentration is
abruptly quadrupled at the beginning of the 150-year sim-
ulation and then held constant (Eyring et al., 2016). Since
some models exhibit control state drift, accurate estimates
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of ECS and TCR require correcting for this, which we do
here by assuming the underlying drift is approximately lin-
ear in time over the 150 years. The time slice of the pre-
industrial control simulation (piControl), corresponding to
the 150-year abrupt4xCO2 simulation is first chosen, begin-
ning at the simulation year at which abrupt4xCO2 branched
off of piControl. One must be cognizant that this information
is not always reliable, so in a few cases the correction may
not be accurate. A linear regression is then performed on the
global annual mean piControl surface temperature or TOA
radiative flux values to remove annual fluctuations, which is
then used as the new piControl. The regression values are
then subtracted from the global annual mean radiative fluxes
and surface temperatures from abrupt4xCO2 to obtain the
radiative flux and surface temperature anomalies. These re-
sulting anomalies are linearly regressed against each other,
following the Gregory method (Gregory et al., 2004), to ob-
tain the ECS value as one-half of the x-intercept, the total
climate feedback parameter λ as the slope of the regression,
and the forcing as one-half of the y-intercept. This method
does include what is often referred to as fast adjustments,
insofar as they happen in much less than a year. The thus es-
timated forcing is, however, biased slightly low due to curva-
ture of imbalance versus temperature found in several mod-
els. The ECS and feedback parameter do not change signif-
icantly if the global average, time average of the piControl
is subtracted from abrupt4xCO2 instead of a linear regres-
sion; however, it should be noted that differences in method-
ology can contribute some uncertainty to the ECS magnitude
(Boucher et al., submitted). Shortwave (SW) and longwave
(LW) feedback parameters are calculated in a similar manner
but using the TOA SW radiative flux anomalies or LW radia-
tive flux anomalies, respectively, instead of the total flux.

TCR is calculated from the 1pctCO2 CMIP simulation
(Eyring et al., 2016), in which CO2 is gradually increased
at a rate of 1 % per year. The corresponding time slice of pi-
Control is first removed in the same manner as for ECS, to
obtain the global annual mean 1pctCO2 surface temperature
anomalies. TCR is then calculated as the mean surface tem-
perature anomaly in a 20-year period centered on year 70 of
the simulation; the year at which the CO2 concentration is
doubled.

2.2 Estimation of model and observational historical
warming

Historical warming amounts were computed for each model.
The early and late periods are defined as 1900–1969 (pre-
1970s warming) and 1970–2005 (post-1970s warming), re-
spectively, with years corresponding to the Santa María, Mt.
Agung, El Chichón, and Pinatubo volcanic eruptions (1902–
1904, 1963–1964, 1982–1984, and 1990–1993, respectively)
excluded to limit the influence of natural volcanic aerosol
forcing. Pre-1970s warming is strongly influenced by the un-
certain aerosol cooling that offset some of the greenhouse

gas warming (Stevens, 2015), whereas post-1970s warm-
ing is dominated by greenhouse gas warming, while aerosol
cooling only changed slightly and so is expressive of TCR
and ECS (Jiménez-de-la Cuesta and Mauritsen, 2019). The
warming within each period is defined as the difference in
the mean surface temperature between 1994–2005 and 1970–
1989 for the late period and between 1900–1939 and 1940–
1969 for the early period.

Model historical warmings are compared to the same pe-
riods from the Cowtan and Way (2014) version 2.0 surface
temperature reconstruction for years 1850 to present. In this
reconstruction the land surface temperatures and sea sur-
face temperatures (SSTs) are based on the HadCRUT ver-
sion 4.2.0 and UAH version 5.6 global surface temperature
datasets. Missing data are infilled by kriging. Data coverage
uncertainty and ensemble uncertainty, or uncertainty arising
from the choice of parameter values used to create the re-
construction, are included in the data set. Uncertainty from
natural variability within each warming period is computed
based on the 100-member Max Planck Institut MPI-ESM1.1
model Grand Ensemble of historical climate change simu-
lations (Maher et al., 2019), which is larger than the recon-
struction uncertainties. Thus the total warming uncertainty is
taken as the observational uncertainty (the coverage uncer-
tainty and reconstruction parameter uncertainty) plus uncer-
tainty due to natural climate variability estimated from the
MPI Grand Ensemble, summed in quadrature.

3 Comparison of the model ensembles

In this section we will first inspect the global ECS and feed-
back parameters in the two CMIP ensembles, and then we
ask whether the shift could have happened by chance.

3.1 Shifts in climate sensitivity and global feedbacks
between CMIP5 and CMIP6

Figure 1 displays the distributions of ECS for CMIP5 and
CMIP6, with the mean value and standard deviation (SD) for
each ensemble also displayed. The ensemble mean ECS in-
creased from 3.2 K (range of 2.0–4.7 K) for CMIP5 to 3.7 K
(1.8–5.5 K) for CMIP6, an increase of 0.5 K or 17%. More-
over, the CMIP6 distribution is shifted towards higher ECS,
with a secondary peak at approximately 5 K. About 11% of
CMIP5 models have an ECS greater than 4 K, compared to
40% of CMIP6 models. Only one CMIP6 model, INM-CM4-
8, exhibits a smaller ECS (1.81 K) than is found in any model
in CMIP5.

The average radiative forcing from CO2, as estimated us-
ing the Gregory method (Gregory et al., 2004), does not
change substantially between the CMIP ensembles, whereas
the range narrows slightly (Fig. 2 and Tables 1 and 2). The
total feedback parameter λ, however, does exhibit an in-
crease in ensemble mean, from −1.13 Wm−2 K−1 (± 0.28)
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Figure 2. ECS versus total net feedback parameter. The black curve
represents the expected ECS value based on a forcing of 3.7 Wm−2

over the range of feedbacks plotted (a) and effective forcing versus
total net feedback parameter. The black lines represent the expected
forcing–feedback relationship based on the ECS value given in the
label of each line (b). Circles represent CMIP5 models, and right-
facing triangles represent CMIP6 models. Mean value and SD for
each parameter for the CMIP5 and CMIP6 ensembles displayed in
black and red, respectively, on the appropriate axis in each plot. Plot
symbols are colored by ECS values as shown in the legend.

to −1.02 Wm−2 K−1 (± 0.32). This shift towards less nega-
tive values is also discernible in Fig. 2, particularly for mod-
els with ECS on the high end. Therefore, the decrease in λ
magnitudes, which alone determines most of the variation in
ECS, is the main driver behind the shift toward higher ECS
between the CMIP ensembles.

3.2 Could we obtain the CMIP6 ensemble mean ECS
by chance?

The results presented in Sect. 3.1 demonstrated a clear shift
in ECS from CMIP5 to CMIP6 but did not establish if
that shift was statistically significant. The recently published
Zelinka et al. (2020) found their increase in ensemble-mean

ECS to be just short of statistical significance (95% confi-
dence level or p < 0.05) using a Welch’s t test for equal
means; this t test does not assume equal variance in the sam-
ples being compared. However, for the subset of CMIP5 and
CMIP6 models examined in this work, also using a Welch’s
t test, we obtain a statistically significant shift. This may
seem to be inconsistent at first glance, but it should be noted
that Zelinka et al. (2020) included some models which we
did not and vice versa, which may influence the results of
t tests.

However, a potential complication exists when applying
such standard methods to compare mean ECS: statistical tests
for independence of means such as t tests usually rely on
an assumption of a Gaussian or approximately Gaussian un-
derlying distribution and may not be appropriate for sam-
ples with skewed distributions, such as ECS (Roe and Baker,
2007).

Instead, one might view such generational ensembles as
small random samples taken from some generic modeling
activities that are subject to noise. In this view, how likely
is it that we obtain the CMIP6 ensemble mean ECS increase
simply by chance? In other words, do the high CMIP6 cli-
mate sensitivities represent a statistically significant shift in
an envisioned underlying probability distribution based on
modeling, or are they encapsulated by the uncertainty of cli-
mate modeling? We address the question of statistical signif-
icance by assuming the underlying ECS distribution is well
described by Eq. (1).

First, one must understand that the mean of the resulting
ECS distribution is generally larger than the median, caused
by the positive skewness of the distribution (Roe and Baker,
2007); it should be noted that using the mean λ and mean
F2x in Eq. (1) therefore represents the median rather than the
mean ECS as the centroid of the underlying distribution. We
assume a Gaussian distribution for λ and F2x , then compute
the ECS distribution with Eq. (1) and determine the median
ECS values that correspond to the CMIP5 and CMIP6 means;
the probability of obtaining either CMIP mean from the re-
sulting distribution can then be assessed. To show how the
mean and median of the underlying ECS distribution differ,
we Monte Carlo sample feedback parameters from Gaussian
distributions with a SD equal to the average of the CMIP5
and CMIP6 ensemble SDs (0.29 Wm−2 K−1; see Tables 1
and 2) and forcing centered on 3.7 Wm−2 with a SD of 10 %.
This is the current best estimate (Etminan et al., 2016), and
choosing a different value has no appreciable effect on our
results, as forcing is in the numerator. A range of median
ECS values, including probable and improbable values from
between 0.1 and approximately 6 K (corresponding to mean
feedback parameters of−37 to−0.63 Wm−2 K−1 when forc-
ing is set to −3.7 Wm−2), were assessed, all with the SD
set to 0.29 Wm−2 K−1. Negative ECS and values exceeding
10 000 K are omitted. For each value of median ECS we can
then evaluate the resulting mean, which is quite close for
lower values of median ECS but diverges for higher sensi-
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Table 1. List of CMIP5 models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

ACCESS1.0 3.76 1.72 2.87 −0.76 0.78 −1.54 0.76 −1.62
BCC-CSM1.1 2.81 1.74 3.36 −1.19 0.49 −1.69 0.77 −1.90
BCC-CSM1.1(m) 2.77 2.00 3.88 −1.40 0.50 −1.90 0.49 −1.97
BNU 3.98 2.58 3.71 −0.93 0.66 −1.60 1.10 −1.75
CCSM4 2.90 1.64 3.43 −1.18 0.68 −1.86 0.94 −1.94
CNRM-CM5 3.21 2.04 3.67 −1.14 0.49 −1.63 0.79 −1.73
CNRM-CM5-2 3.40 1.63 3.68 −1.08 0.58 −1.66 0.90 −1.73
CSIRO-Mk3.6.0 4.05 1.76 2.58 −0.64 1.32 −1.96 0.85 −1.71
CanESM2 3.71 2.37 3.72 −1.00 0.40 −1.40 0.74 −1.86
FGOALS-g2 3.39 1.42 2.79 −0.82 0.76 −1.54 1.01 −1.71
GFDL-CM3 3.85 1.85 2.95 −0.77 1.27 −2.03 0.71 −1.97
GFDL-ESM2G 2.30 0.96 3.00 −1.30 0.55 −1.59 0.64 −1.70
GFDL-ESM2M 2.33 1.23 3.27 −1.40 0.62 −1.68 0.61 −1.69
GISS-E2-H 2.33 1.69 3.72 −1.60 −0.22 −1.37 0.54 −1.65
GISS-E2-R 2.06 1.41 3.66 −1.78 −0.37 −1.44 0.41 −1.96
HADGEM2-ES 3.96 2.38 3.63 −0.92 0.63 −1.54 0.42 −1.68
INM-CM4 2.01 1.22 2.91 −1.45 0.59 −2.04 0.68 −2.01
IPSL-CM5A-LR 3.97 1.94 3.17 −0.80 1.17 −1.97 0.46 −2.01
IPSL-CM5A-MR 4.03 1.96 3.30 −0.82 1.05 −1.87 0.44 −2.01
IPSL-CM5B-LR 2.58 1.44 2.64 −1.02 0.89 −1.91 0.57 −1.89
MIROC-ESM 4.68 2.15 4.23 −0.90 0.99 −1.89 0.82 −1.91
MIROC5 2.70 1.49 4.09 −1.51 0.39 −1.90 0.85 −1.86
MPI-ESM-LR 3.48 1.94 4.05 −1.16 0.51 −1.68 0.73 −1.85
MPI-ESM-MR 3.31 1.93 4.03 −1.22 0.57 −1.78 0.69 −1.91
MPI-ESM-P 3.31 1.96 4.24 −1.28 0.42 −1.71 0.68 −1.86
MRI-CGCM3 2.65 1.58 3.20 −1.21 0.92 −2.13 0.81 −1.93
NORESM1-M 2.75 1.34 3.05 −1.11 0.70 −1.82 0.86 −1.87

Ensemble mean±SD: 3.20± 0.70 1.75± 0.38 3.44± 0.48 −1.13± 0.28 0.64± 0.37 −1.75± 0.37 0.71± 0.18 −1.84± 0.12

Table 2. List of CMIP6 models and model climate parameters.

Model ECS TCR F2x λ λSW λLW λCS,SW λCS,LW

BCC-ESM1 3.29 1.77 3.02 −0.92 0.65 −1.57 0.69 −1.83
BCCCSM2MR 3.07 1.60 3.06 −1.00 0.79 −1.79 0.71 −1.91
CESM2 5.15 1.99 3.19 −0.62 1.32 −1.94 0.54 −1.80
CESM2-WACCM 4.65 1.92 3.26 −0.70 1.34 −2.04 0.31 −1.86
CNRM-ESM2-1 4.75 1.82 2.96 −0.62 0.72 −1.35 0.75 −1.59
CNRMCM61 4.81 2.23 3.70 −0.77 0.68 −1.45 0.77 −1.76
CanESM5 5.58 2.75 3.68 −0.66 0.70 −1.36 0.78 −1.86
E3SM-1-0 5.27 2.91 3.28 −0.62 1.27 −1.89 0.54 −1.78
EC-EARTH3-VEG 4.17 2.76 3.34 −0.80 0.82 −1.62 0.86 −1.63
GFDL-CM4 3.79 – 3.14 −0.83 0.77 −1.59 0.80 −1.79
GFDL-ESM4 2.56 – 3.84 −1.50 0.13 −1.63 – –
GISSE2-1-G 2.60 1.66 3.84 −1.48 −0.04 −1.44 – –
GISSE2-1-H 2.99 1.81 3.47 −1.16 0.21 −1.37 – –
HADGEM3-GC31-LL 5.46 2.47 3.48 −0.64 1.64 −2.28 0.67 −1.83
INM-CM4-8 1.81 1.30 2.64 −1.46 0.53 −1.99 0.79 −1.88
IPSL-CM6A-LR 4.50 2.39 3.39 −0.75 1.10 −1.66 0.62 −1.51
MIROC-ES2L 2.66 1.51 4.03 −1.51 0.38 −1.89 0.76 −1.87
MIROC6 2.60 1.58 3.61 −1.39 0.61 −2.05 0.83 −1.98
MPI-ESM1-2-HR 2.84 1.57 3.60 −1.27 0.22 −1.49 0.63 −1.90
MRI-ESM2 3.11 1.67 3.37 −1.08 0.84 −1.93 0.84 −1.95
NESM3 4.50 – 3.78 −0.84 0.61 −1.45 0.81 −1.69
NORCPM1 2.78 1.55 3.58 −1.29 0.62 −1.89 0.82 −1.90
NORESM2-LM 2.49 1.48 3.44 −1.38 1.46 −1.89 0.57 −1.75
SAM0UNICON 3.67 2.08 3.85 −1.05 1.46 −2.56 0.82 −2.01
UKESM1-0-LL 5.31 2.79 3.56 −0.67 1.59 −2.26 0.72 −1.91

Ensemble mean±SD: 3.78± 1.12 1.98± 0.48 3.44± 0.32 −1.00± 0.32 0.82± 0.46 −1.78± 0.46 0.71± 0.13 −1.82± 0.12
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Figure 3. Random sampling of ECS from Gaussian distributions of
λ and F2x . Panel (a) shows the relationship between the median and
mean of ECS, arising from the inverse relationship between ECS
and λ. Panel (b) shows distributions of mean ECS from random 25-
member ensembles centered at the means of CMIP5 and CMIP6.

tivities (Fig. 3a). For the CMIP5 mean of 3.2 K, the corre-
sponding median is 3.0 K, and for the CMIP6 mean of 3.7 K
the median is 3.4 K.

Using these medians we next address the question of
whether CMIP6 could be obtained simply by chance. To do
so, we first assume the underlying median ECS is 3.0 K and
make 100 000 random ensembles, each with 25 models (the
size of the CMIP6 ensemble studied here). The resulting dis-
tribution of mean ECS values of the random ensembles is
shown in Fig. 3. It turns out that less than 2 % of the samples
exceed 3.7 K, which is the mean of CMIP6. Likewise, if we
assume the underlying median is 3.4 K, centered at CMIP6,
then less than 2 % of the samples have a mean less than 3.2 K,
which is the mean of CMIP5. Thus, the shift in ensemble
mean ECS between CMIP5 and CMIP6 is extremely unlikely
to have been caused simply by chance.

4 Decomposition into longwave and shortwave
feedbacks

Having established that there is a systematic shift in feed-
back underlying the increase in ensemble mean ECS from
CMIP5 to CMIP6, we next divide the feedback into long-
wave, shortwave, all-sky, and clear-sky components and in-
spect the zonal mean distribution in order to seek the possible
underlying causes.

4.1 Global-mean all-sky and clear-sky feedbacks

Decomposition of the total feedback parameter into the all-
sky shortwave (SW; λSW) and longwave (LW; λLW) com-
ponents and examination of the clear-sky (CS) SW and
LW feedbacks (λCS,SW; λCS,LW), elucidates which classes of
feedbacks drive the increase in ECS. As shown in Fig. 4a,
a systematic shift toward more positive λSW has occurred
on average for the CMIP6 ensemble relative to CMIP5: the
mean λSW increased from 0.64 to 0.73 Wm−2 K−1, whereas
the mean λLW remained almost unchanged (mean of −1.74
and−1.78 Wm−2 K−1, respectively). However, much spread
in the SW and LW feedbacks exists within both ensembles as
indicated by the large SDs.

The shortwave feedback parameters are strongly associ-
ated with the total feedback parameter for both model ensem-
bles, with a correlation coefficient of 0.83 (p value less than
0.001) for CMIP5 and 0.56 (p value of 0.004) for CMIP6,
whereas the longwave feedbacks exhibited small, statistically
nonsignificant correlations with the total feedback parame-
ter (−0.21 and 0.11 for CMIP5 and CMIP6, respectively).
The longwave thus exhibits no consistent or systematic shift
with ECS, whereas these results suggest that λSW is the main
cause of both the variations and the shift in λ and thus of
ECS. These feedbacks suggest that much of the spread is
caused by cloud parameterizations and that cloud feedbacks
play an important role in the shift to higher ECS in CMIP6.

In contrast, no systematic shifts are evident in the clear-
sky feedback parameters (λCS,SW or λCS,LW) between the
CMIP eras (Fig. 4), and again much spread among mod-
els is evident in both ensembles. However, the spread in
CMIP6 λCS,SW is smaller than that for CMIP5, with a SD
of 0.13 compared to 0.18 Wm−2 K−1, indicating a greater
convergence of the CMIP6 λCS,SW values, while the SDs
for the clear-sky longwave feedbacks are of similar mag-
nitude (0.12 Wm−2 K−1). This is in contrast to the all-sky
feedbacks, where the SDs were larger for both SW and LW
for CMIP6. Lastly, the clear-sky feedbacks in Fig. 4b do
not exhibit a statistically significant slope for both ensem-
bles despite the spread among models, whereas the all-sky
feedbacks (Fig. 4a) exhibited statistically significant, nega-
tive slopes (−0.37 and −0.47 for CMIP5 and CMIP6, re-
spectively); the dominant direction of the spread has changed
between all-sky and clear-sky. Thus, another feedback be-
sides cloud feedback may be causing the spread, such as the
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Figure 4. All-sky λLW versus λSW for the CMIP5 and CMIP6 en-
semble (a) and clear-sky λCS,LW versus λCS,SW for CMIP5 and
CMIP6 (b). CMIP5 is shown as circles, and CMIP6 is shown as
right-facing triangles. Mean CMIP5 feedbacks and SDs are shown
as black circle and lines, and mean CMIP6 and SDs are shown as
dark gray triangle and lines in each plot. Lines of constant ECS
based on forcing of 3.7 Wm−2 are given in light gray. Plot symbols
colored by ECS values are as shown in the legend.

surface albedo feedback; it is also notable that the spread in
λCS,SW decreased between CMIP5 and CMIP6, suggesting
a shift in the underlying albedo feedback between ensembles.

4.2 Zonal-mean feedbacks

The all-sky and clear-sky feedback parameters are decom-
posed into zonal-mean feedback parameters, to further in-
vestigate the causes of the shifts in the shortwave feedbacks
and which regions may be the main drivers. The zonal mean
feedbacks are calculated similarly to the global annual mean
feedbacks, with the exception that the global annual mean
surface temperature anomalies are regressed instead against
zonal annual mean TOA imbalances. The radiation fluxes are
first divided into 10◦ latitude bins based on each model’s
grid, centered between 85◦ S and 85◦ N, and then the Gre-

Figure 5. All-sky zonal average λLW (a) and λSW (b) for the
CMIP5 ensemble average (blue) and CMIP6 ensemble (red).
Dashed blue and red lines indicate regions where the difference in
mean feedback is statistically significant (p < 0.05). Light blue and
red shading represent SD of each ensemble. Panel (c) displays the
difference between the CMIP6 and CMIP5 ensemble average SW,
LW, and net feedbacks as a function of latitude.

gory method is applied to compute the zonal-mean all-sky
and clear-sky feedbacks. These feedbacks are displayed in
Fig. 5 as a function of latitude for all-sky and Fig. 6 for clear-
sky.

Large differences in all-sky feedbacks between CMIP eras
tend to occur in the tropics and towards the poles. In par-
ticular, a broad swath of change is seen for the Southern
Hemisphere midlatitude and polar regions; the largest short-
wave feedback differences are found in these regions, where
the CMIP6 zonal shortwave feedbacks have substantially in-
creased (Fig. 5). Statistically significant (p < 0.05) differ-
ences in ensemble-mean zonal shortwave feedback, however,
occur solely within the Southern Hemisphere, within the
deep southern tropics (0–10◦ S), the extratropics (30–60◦ S),
and in the polar region between 70–80◦ S. Though smaller in
magnitude, clear-sky zonal shortwave feedback also shows
substantial increases between CMIP5 and CMIP6 poleward
of 60◦ S in the Southern Ocean (Fig. 6). The broad increases
from CMIP5 to CMIP6 in all-sky λSW across much of the
Southern Hemisphere extratropics, coupled with changes in
clear-sky feedback only within the southern polar regions,
further indicate that cloud feedbacks have changed between
CMIP eras. It is also notable that the variability among mod-
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Figure 6. Clear-sky zonal average λCS,LW (a) and λCS,SW (b) for
the CMIP5 ensemble average (blue) and CMIP6 ensemble (red).
Dashed blue and red lines in (a) and (b) indicate regions where
difference in mean feedback is statistically significant (p < 0.05).
Light blue and red shading represent SD of each ensemble. Panel (c)
displays the difference between the CMIP6 and CMIP5 ensemble
average SW, LW, and net feedbacks.

els within the CMIP6 ensemble has decreased relative to
CMIP5 in the shortwave for both all-sky and clear-sky, as
indicated by the smaller SD bounds on the ensemble aver-
ages in Figs. 5 and 6; the CMIP6 models display greater
agreement on the magnitude and sign of the zonal shortwave
feedbacks, though whether CMIP6 has become more realis-
tic cannot be determined here.

The largest and only statistically significant clear-sky
shortwave feedback changes occur over the Southern Ocean
latitudes (Fig. 6b and c), where a shift towards more positive
clear-sky shortwave feedback is found. This is suggestive of
increases in the sea-ice-induced surface albedo feedback in
CMIP6, likely due to increased abundance of sea ice near the
Antarctic in the underlying piControl climatology in CMIP6
relative to CMIP5 (Fig. 7). In fact, the only statistically sig-
nificant change in piControl sea ice coverage is found in the
Southern Ocean. Perhaps as a result of this larger base-state
abundance, the decrease in sea ice coverage in the Antarc-
tic in the abrupt4xCO2 simulation is also greater for CMIP6
than CMIP5 (Fig. 7). This reduction in sea ice abundance in
abrupt4xCO2 shown in Fig. 7, defined as the difference be-
tween the mean of the last 30 years of abrupt4xCO2 and the
mean over the piControl climatology, is statistically signifi-

Figure 7. Zonal average sea ice coverage from piControl for the
CMIP5 ensemble (blue) and CMIP6 ensemble (red) shown as solid
red and blue lines; dashed lines in these curves indicate regions
where difference in mean sea ice coverage is statistically significant
(p < 0.05). Light blue and red shading around the solid lines repre-
sent SD of each ensemble. Dashed-dotted lines represent the aver-
age difference in sea ice coverage between the zonal average piCon-
trol simulation (over the 150 years corresponding to abrupt4xCO2)
and the mean of the last 30 years of the abrupt4xCO2 simulation.

cantly (p < 0.05) correlated with ECS for the 70–80◦ S and
60–70◦ S latitude bands for the CMIP6 ensemble (correlation
coefficient of −0.8 and −0.69, respectively); no statistically
significant correlations were found between sea ice reduc-
tions in abrupt4xCO2 and ECS for CMIP5 within the South-
ern Hemisphere. Greater decreases in Antarctic sea ice in
abrupt4xCO2 are thus strongly associated with larger ECS,
likely through strengthening of the sea ice albedo as indi-
cated by the shift towards more positive clear-sky shortwave
feedbacks in this region. Further, regional maps of the dif-
ference in clear-sky shortwave feedbacks (Fig. 8) and sea ice
between CMIP5 and CMIP6 (Fig. 9) demonstrate that the in-
creased base-state sea ice abundance in piControl, greater re-
ductions in sea ice in abrupt4xCO2, and more positive clear-
sky shortwave feedbacks track each other over much of the
Southern Ocean; for example, larger clear-sky feedbacks in
the region of the Bellingshausen and Amundsen seas are as-
sociated with larger base-state sea ice and larger sea ice re-
ductions with warming. These features are found in most re-
gions of the Southern Hemisphere, with the exception of a re-
gion off eastern Antarctica displaying smaller clear-sky zonal
feedbacks in CMIP6 than CMIP5, suggesting that changes
across most of the Southern Ocean are responsible for the
increased shortwave feedbacks.

Larger decreases in sea ice coverage for abrupt4xCO2
are also seen in the Arctic but are accompanied by a much
smaller (and statistically insignificant) change in shortwave
feedback relative to the Antarctic; the underlying piCon-
trol sea ice coverage did not significantly increase between
CMIP5 and CMIP6 in the Arctic, leading to a lesser impact
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Figure 8. Map of the difference in clear-sky zonal feedbacks for the
Antarctic region between CMIP6 and CMIP5. Red colors indicate
that the CMIP6 feedback is larger than CMIP5, and blue indicates
that CMIP6 is smaller than CMIP5. Averaged on a 5◦ by 5◦ grid.

on the sea ice albedo feedback. Furthermore, in contrast to
the Antarctic, the difference in net feedback in the Arctic is
smaller than for the Antarctic, and the change in the clear-sky
shortwave feedback in Northern Hemisphere midlatitudes is
negative (albeit statistically insignificant; Fig. 6). Perhaps as
a result there is less intense Arctic amplification exhibited by
CMIP6 relative to CMIP5 (Fig. 10). Surface temperature in-
creases in the Arctic still exceed warming elsewhere in the
CMIP6 ensemble, but of a somewhat smaller magnitude than
CMIP5, likely due to a relatively lessened impact of sea ice
albedo on the feedback parameter.

We speculate that much of this behavior can be explained
by an increased focus on the representation of mixed-phase
clouds by the models’ microphysics parameterizations. Re-
cent studies have shown that the strength of the negative
cloud optical depth feedback is strongly dependent on the
relative partitioning of ice- and liquid-phase cloud conden-
sate in the control state (Tan et al., 2016). By increasing the
amount of liquid in supercooled clouds the negative optical
depth feedback is weakened and hence ECS increases. In ad-
dition, since liquid clouds are generally more reflective than
ice clouds, the long-standing Southern Ocean warm bias may
have been reduced through these efforts, thereby resulting in
more abundant sea ice. These effects could, together, explain
the nontrivial increase in ECS in the CMIP6 ensemble over
CMIP5.

Our feedback analysis results are broadly in agreement
with those of Zelinka et al. (2020). The global and zonal
all-sky shortwave feedbacks examined here clearly point to
clouds as the main driver behind the shift towards more pos-
itive total feedback, which in turn drove the shift towards
higher ECS. Zelinka et al. (2020) also found the increase

in ECS to be due to less negative total feedback, driven by
stronger positive low cloud shortwave feedbacks. Using ra-
diative kernels and the approximate partial radiative pertur-
bation technique to further analyze the cloud feedbacks, they
determined that the shortwave low cloud amount and opti-
cal depth (essentially what is referred to in Zelinka et al.,
2020, as the scattering feedback) feedbacks shifted towards
more positive values in CMIP6, particularly in the extratrop-
ics; this shift ultimately drove the total feedback parameter
towards less negative values. As in this work, the analysis of
Zelinka et al. (2020) pointed towards changes in model rep-
resentation of cloud processes in CMIP6 relative to CMIP5.
Further, statistically significant increases in ensemble zonal
mean low cloud amount feedback were found in the South-
ern Hemisphere extratropics, consistent with our statistically
significant southern extratropical differences in all-sky zonal
feedbacks (though these include more than just cloud feed-
backs). Notably, Zelinka et al. (2020) found a decrease in
the spread of the albedo feedback for CMIP6, consistent
with the reduction in variability we found for the clear-sky
shortwave feedback, and Fig. S7 in their supplemental ma-
terial indicates that strengthened extratropical albedo feed-
back may be an important secondary driver of the increase in
ECS for many CMIP6 models. This is again consistent with
our results for the zonal shortwave clear-sky feedback, which
also demonstrate a decreased spread in clear-sky shortwave
feedbacks for CMIP6. Our zonal feedback analysis suggests
that the increased albedo feedback is found primarily in the
Southern Ocean and is linked to increased sea ice coverage
in this region in the CMIP6 piControl climatology. Increased
base-state sea ice coverage likely caused greater reductions
in sea ice in the abrupt4xCO2 simulations, which are associ-
ated with strengthened zonal clear-sky shortwave feedbacks
(as sea ice albedo feedback) in the Southern Ocean and larger
ECS. Model changes in representation of clouds and sea ice
are thus the likely culprits causing the change in sea ice cli-
matology, though the details of such changes and their effects
may vary among models and warrant further investigation.

5 Transient climate response, historical warming, and
aerosol cooling

The instrumental record warming is the prima facie test of
climate models: if models are not able to reproduce the his-
tory of warming then they do not represent a credible hypoth-
esis of how the climate system works. However, the warming
in a model is a result of both climate change feedbacks, ra-
diative forcing, deep-ocean heat uptake, and pattern effects,
and therefore modellers can trade off these factors to obtain
an overall warming in line with observations (Kiehl, 2007).
Some modeling centers use this explicitly to tune their mod-
els (Hourdin et al., 2017; Mauritsen et al., 2019), whereas
others state they do not do this (Schmidt et al., 2017). In ei-
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Figure 9. (a) Map of the difference in mean piControl sea ice abundance climatology between CMIP6 and CMIP5 in the Antarctic and
(b) of the difference between CMIP6 and CMIP5 in the reduction of sea ice abundance in abrupt4xCO2. Reduction in sea ice for each
CMIP ensemble calculated as difference in sea ice coverage between the average piControl simulation (over the 150 years corresponding to
abrupt4xCO2) and the mean of the last 30 years of the abrupt4xCO2 simulation. Averaged on a 5◦ by 5◦ grid.

Figure 10. Zonal average surface temperature anomaly from
abrupt4xCO2 relative to piControl for the CMIP5 ensemble aver-
age (blue) and CMIP6 ensemble (red). Light blue and red shading
represent the SD of each ensemble. Dashed blue and red lines indi-
cate regions where the difference in mean feedback is statistically
significant (p < 0.05).

ther case, representing historical warming is a necessary but
insufficient validation of a climate model.

A central metric that incorporates several of the factors
relevant for historical warming is the transient climate re-
sponse (TCR). TCR is computed from an idealized simula-
tion with a gradual 1% per year CO2 increase as the warming
around the time of doubling. Just as for ECS, TCR also has
increased in CMIP6 to a mean of 1.98 K (range 1.30–2.91 K)
compared to the CMIP5 mean of 1.75 K (0.96–2.58 K), as
seen in Fig. 11. One can obtain an approximate estimate of
TCR in terms of physical bulk properties of the climate sys-

tem (Jiménez-de-la Cuesta and Mauritsen, 2019):

TCR≈
−F2x

λ− εγ
, (2)

where the product εγ is equal to 0.93 Wm−2 K−1, with an
uncertainty range of 0.54–1.32 Wm−2 K−1 in CMIP5 (Geof-
froy et al., 2013); ε is the deep-ocean heat uptake efficacy
representative of forced temporary pattern effects; and γ

is the deep-ocean heat uptake coefficient. The product εγ
controls the relationship between TCR and ECS. Models in
CMIP6 follow the predicted behavior of Eq. (2) using CMIP5
parameters surprisingly well (Fig. 11). However, the mean of
εγ increased to 0.98 Wm−2 K−1, while the uncertainty range
decreased (0.73–1.23 Wm−2 K−1) based on the CMIP6 en-
semble examined here relative to CMIP5. Though not a sta-
tistically significant difference between the two means, sev-
eral CMIP6 models with high TCR and ECS now fall out-
side the upper uncertainty bound for expected TCR when
using εγ based on CMIP6 (Fig. 11). These four high-TCR
CMIP6 models are associated with much smaller values for
εγ (0.54–0.69 Wm−2 K−1) and the total feedback parameter
(between −0.80 and −0.62 Wm−2 K−1), though it is left to
future work to disentangle the shifts in specific phenomena,
such as pattern effects, that contribute to this.

Given that TCR is on average higher in CMIP6 one might
naively expect stronger historical warming; however, this is
not the case (Fig. 12). Whereas CMIP5 on average tracked
the instrumental record quite well, warming slightly too
much in the latter half of the 20th century, the CMIP6 models
are systematically on average colder than observed starting
around 1940 but nearly catch up with global warming in the
beginning of the 21st century. Looking at individual model
simulations (Fig. 13) reveals that the spread in overall cen-
tennial warming also increased in CMIP6 and furthermore
that there is not a strong relationship with TCR.
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Figure 11. TCR versus ECS for the CMIP5 ensemble (black
circles) and CMIP6 ensemble (right-facing red triangles). Ex-
pected values based on forcing of 3.7 Wm−2 and a value of εγ =
0.93 Wm−2 K−1 are shown by the black curve, and uncertainty of
the εγ value is shown as gray bounding lines. Dashed black and
gray curves represent the same expected values but are based on
a value of εγ = 0.98Wm−2 K−1 computed from the CMIP6 en-
semble. ECS and TCR mean values and SDs for the CMIP5 and
CMIP6 ensembles are displayed in black and red, respectively.

Figure 12. Ensemble mean historical surface warming in CMIP5
and CMIP6 compared with observations. Shading on the models is
the ensemble SD. The baseline is 1850–1900.

Figure 13. As in Fig. 12 but for individual model runs.
Panel (a) shows CMIP5 models, and panel (b) shows CMIP6 mod-
els. Color coding is according to the respective models’ TCR.

To demonstrate at this point that the most likely explana-
tion for why CMIP6 on average warms less is because of
stronger aerosol cooling we divide warming into the pre-
1970s and post-1970s (Fig. 14). The rationale behind this
division is that aerosol cooling, which has offset some of
the greenhouse gas warming, increased rapidly with indus-
trialization up until around 1970, when air quality regula-
tions being implemented resulted in stabilized global aerosol
cooling. Since the amount of anthropogenic aerosol cooling,
in contrast to greenhouse gas warming, is highly uncertain
(Bellouin et al., 2019) and varies among models, total forc-
ing uncertainty in the pre-1970s period dominates the global
temperature response (Stevens, 2015). In the post-1970s pe-
riod, the greenhouse gas forcing change instead dominates
and is less uncertain, such that the variations in TCR are more
important (Jiménez-de-la Cuesta and Mauritsen, 2019).

Interestingly, the majority of models from both ensembles
underpredict the pre-1970s warming (Fig. 14), with a few
CMIP6 models exhibiting close to no warming and several
exhibiting less than 0.1 K of warming. This is a strong in-
dication that many models apply too strong aerosol cooling
and that this is more outspoken in CMIP6. About half the
models, however, make up for this lack of warming by in-
stead warming more than observed in the post-1970s period.
As expected, there is no apparent relationship between pre-
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Figure 14. Post-1970s warming (surface temperature change be-
tween the 1970–1990 and 1994–2005 periods) versus pre-1970s
warming (surface temperature change between the 1900–1939 and
1940–1969 periods), with plot symbols colored by TCR bins shown
in the legend. Circles represent CMIP5 models, and right-facing tri-
angles represent CMIP6 models. Observational pre- and post-1970s
warming is plotted as a black circle with uncertainty as black lines.
Solid gray lines represent the outer bounds of pre- and post-1970s
warming, summing to total observed warming.

1970s warming and TCR, but a correlation exists with post-
1970s warming, with higher TCR models exhibiting larger
post-1970s warming. This is most apparent for models with
TCR of 1.5–2.0 K (statistically significant correlation coef-
ficient of 0.72 for CMIP6; CMIP5 correlation is not signifi-
cant) and smaller or nonsignificant correlation for other TCR
ranges. None of the models with TCR greater than 2.5 K pro-
vide a realistic post-1970s warming. Unfortunately, Radia-
tive Forcing Model Intercomparison Project (RFMIP)-style
simulations are available for CMIP6 but not for CMIP5, as
these types of experiments are best suited for deciphering the
causes of the exaggerated aerosol cooling.

6 Conclusions

We have compared the CMIP5 and CMIP6 model ensem-
bles in terms of their climate sensitivities, feedback param-
eters, and historical warming evolution. The ECS and to-
tal feedback parameter values were computed with the Gre-
gory method, and we found that both the ensemble mean
ECS and the spread in ECS values has increased between
CMIP5 (mean 3.2 K, spread 2.0–4.7 K) and CMIP6 (mean
3.7 K, spread 1.8–5.5 K).

We examined whether this shift in ECS between ensem-
bles could have arisen simply by chance or whether it is
a statistically significant change. This is a critical question

because it speaks to whether such a shift in ECS is truly unex-
pected or not. We modeled distributions of forcing and feed-
backs as random samples from Gaussian distributions cen-
tered at CMIP5 and determined that the probability of obtain-
ing the CMIP6 ensemble mean ECS value was less than 2 %.
Previous model ensemble mean ECS values are similar to
those obtained for the CMIP5 ensemble, together suggesting
that the CMIP6 ensemble mean ECS is indeed highly un-
usual.

This shift towards higher ECS for the CMIP6 ensemble
is primarily driven by increases in the shortwave feedback
parameter for some models within the ensemble. The mean
total feedback parameter increased from −1.13 Wm−2 K−1

for CMIP5 to −1.02 Wm−2 K−1 for CMIP6, and the mean
all-sky shortwave feedback parameter increased from 0.64 to
0.81 Wm−2 K−1. While the all-sky shortwave feedback pa-
rameters exhibited statistically significant correlations with
the total feedbacks for each CMIP ensemble, no statistically
significant correlation or systematic change was seen for the
longwave feedback parameters. This constitutes a systematic
shift in feedbacks underlying the increase in ensemble mean
ECS and are suggestive of the role of cloud feedback pro-
cesses. The global and zonal clear-sky shortwave feedback
parameters also suggested a significant role for the albedo
feedback in the increase in ECS, likely driven by increases
in Southern Ocean sea ice coverage in CMIP6 relative to
CMIP5. We speculate that these results are due to changes
in model treatment of mixed-phase cloud processes reducing
the negative optical depth cloud feedback and affecting the
low cloud amount feedback and resulting changes to Antarc-
tic sea ice representation and are the likely cause of the sys-
tematic shift towards larger ECS.

Lastly, we examined the historical warming in the model
ensembles, which surprisingly despite an increase in ECS
and TCR is weaker in CMIP6 than in CMIP5. Whereas
CMIP5 models on average track the instrumental record
warming fairly well, CMIP6 models are colder than ob-
served from around 1940 and onwards and only catch up
with global warming in the early 21st century. Detailed ex-
amination of pre- and post-1970s warming suggests that the
majority of climate models from both ensembles exaggerate
anthropogenic aerosol cooling but that this is more so the
case for some CMIP6 models. Models that best agree with
observations of post-1970s warming tend to have midrange
TCR, whereas no model with a TCR above 2.5 K matches
observations.

Data availability. CMIP5 and CMIP6 model output are freely
available from the Lawrence Livermore National Laboratory (https:
//esgf-node.llnl.gov/search/cmip5/, World Climate Research Pro-
gramme (WCRP), 2011; https://esgf-node.llnl.gov/search/cmip6/,
WCRP, 2019). The Cowtan and Way surface temperature re-
construction dataset version 2.0 is freely available from the
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