Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5211-2020
https://doi.org/10.5194/acp-20-5211-2020
Research article
 | 
05 May 2020
Research article |  | 05 May 2020

An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei

Siyuan Zhou, Jing Yang, Wei-Chyung Wang, Chuanfeng Zhao, Daoyi Gong, and Peijun Shi

Related authors

Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Spatiotemporal variation characteristics of global fires and their emissions
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023,https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Observed slump of sea land breeze in Brisbane under the effect of aerosols from remote transport during 2019 Australian mega fire events
Lixing Shen, Chuanfeng Zhao, Xingchuan Yang, Yikun Yang, and Ping Zhou
Atmos. Chem. Phys., 22, 419–439, https://doi.org/10.5194/acp-22-419-2022,https://doi.org/10.5194/acp-22-419-2022, 2022
Short summary
Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China
Yue Sun and Chuanfeng Zhao
Atmos. Chem. Phys., 21, 16555–16574, https://doi.org/10.5194/acp-21-16555-2021,https://doi.org/10.5194/acp-21-16555-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024,https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024,https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and Central Africa
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1327,https://doi.org/10.5194/egusphere-2024-1327, 2024
Short summary
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024,https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024,https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary

Cited articles

Ackerman, A. S.: Reduction of Tropical Cloudiness by Soot, Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2000. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Altaratz, O., Bar-Or, R. Z., Wollner, U., and Koren, I.: Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds, Environ. Res. Lett., 8, 034025, https://doi.org/10.1088/1748-9326/8/3/034025, 2013. 
Anonymous: Atmospheric Sciences Thesaurus, China Meteorological Press: Beijing, China, 1994 (in Chinese). 
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009. 
Download
Short summary
Aerosol–cloud–precipitation interaction is a challenging problem in regional climate. Our study contrasted the observed diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei between clean and polluted days during the 2002–2012 summers. We found the heavy rainfall under pollution has earlier start time, earlier peak time and longer duration, and further found the absorbing aerosols and scattering aerosols play different roles in the heavy rainfall diurnal variation.
Altmetrics
Final-revised paper
Preprint