Articles | Volume 16, issue 2
Atmos. Chem. Phys., 16, 561–571, 2016
https://doi.org/10.5194/acp-16-561-2016

Special issue: East Asia emissions assessment (EA2)

Atmos. Chem. Phys., 16, 561–571, 2016
https://doi.org/10.5194/acp-16-561-2016

Research article 19 Jan 2016

Research article | 19 Jan 2016

Possible influence of atmospheric circulations on winter haze pollution in the Beijing–Tianjin–Hebei region, northern China

Z. Zhang1,2, X. Zhang1,2, D. Gong3, S.-J. Kim4, R. Mao3, and X. Zhao1 Z. Zhang et al.
  • 1Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Chinese Meteorological Administration, Beijing 100089, China
  • 2Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
  • 3State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
  • 4Korea Polar Research Institute, Incheon 406-840, Korea

Abstract. Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter haze pollution (indicated by the mean visibility and number of hazy days) in the Beijing–Tianjin–Hebei (BTH) region during the period 1981 to 2015 and its relationship with the atmospheric circulations at middle–high latitude were analyzed in this study. The winter haze pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6) were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. In the raw (unfiltered) correlations, the correlation coefficients between the six indices and the winter visibility (number of hazy days) varied from 0.57 (0.47) to 0.76 (0.6) with an average of 0.65 (0.54); in the high-frequency ( < 10 years) correlations, the coefficients varied from 0.62 (0.58) to 0.8 (0.69) with an average of 0.69 (0.64). The six circulation indices together can explain 77.7 % (78.7 %) and 61.7 % (69.1 %) variances of the winter visibility and the number of hazy days in the year-to-year (inter-annual) variability, respectively. The increase in Ic (a comprehensive index derived from the six individual circulation indices) can cause a shallowing of the East Asian trough at the middle troposphere and a weakening of the Siberian high-pressure field at sea level, and is then accompanied by a reduction (increase) of horizontal advection and vertical convection (relative humidity) in the lowest troposphere and a reduced boundary layer height in BTH and its neighboring areas, which are favorable for the formation of haze pollution in BTH winter, and vice versa. The high level of the prediction statistics and the reasonable mechanism suggested that the winter haze pollution in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. Thus it is helpful for government decision-making departments to take action in advance in dealing with probably severe haze pollution in BTH indicated by the atmospheric circulation conditions.

Download
Short summary
The Beijing-Tianjin-Hebei (BTH) region has suffered from severe haze pollution in recent years. It is important to understand the possible reasons and whether it can be predicted on the seasonal timescale. This studies suggested that the winter haze pollution in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. Thus it is valuable and significant for the government to take action in dealing with the probably severe haze pollutions in advance.
Altmetrics
Final-revised paper
Preprint