Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-1977-2020
https://doi.org/10.5194/acp-20-1977-2020
Research article
 | 
21 Feb 2020
Research article |  | 21 Feb 2020

Urban canopy meteorological forcing and its impact on ozone and PM2.5: role of vertical turbulent transport

Peter Huszar, Jan Karlický, Jana Ďoubalová, Kateřina Šindelářová, Tereza Nováková, Michal Belda, Tomáš Halenka, Michal Žák, and Petr Pišoft

Related authors

The long-term impact of BVOC emissions on urban ozone patterns over central Europe: contributions from urban and rural vegetation
Marina Liaskoni, Peter Huszár, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Kateřina Šindelářová
EGUsphere, https://doi.org/10.5194/egusphere-2024-2027,https://doi.org/10.5194/egusphere-2024-2027, 2024
Short summary
FUME 2.0 – Flexible Universal processor for Modeling Emissions
Michal Belda, Nina Benešová, Jaroslav Resler, Peter Huszár, Ondřej Vlček, Pavel Krč, Jan Karlický, Pavel Juruš, and Kryštof Eben
Geosci. Model Dev., 17, 3867–3878, https://doi.org/10.5194/gmd-17-3867-2024,https://doi.org/10.5194/gmd-17-3867-2024, 2024
Short summary
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024,https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Impact of urbanization on fine particulate matter concentrations over central Europe
Peter Huszar, Alvaro Patricio Prieto Perez​​​​​​​, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024,https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Modelling the European wind-blown dust emissions and their impact on particulate matter (PM) concentrations
Marina Liaskoni, Peter Huszar, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Ondřej Vlček
Atmos. Chem. Phys., 23, 3629–3654, https://doi.org/10.5194/acp-23-3629-2023,https://doi.org/10.5194/acp-23-3629-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024,https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Estimation of Canada's methane emissions: inverse modelling analysis using the Environment and Climate Change Canada (ECCC) measurement network
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024,https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024,https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Potential of 14C-based vs. ΔCO-based ΔffCO2 observations to estimate urban fossil fuel CO2 (ffCO2) emissions
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024,https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
On the uncertainty of anthropogenic aromatic volatile organic compound emissions: model evaluation and sensitivity analysis
Kevin Oliveira, Marc Guevara, Oriol Jorba, Hervé Petetin, Dene Bowdalo, Carles Tena, Gilbert Montané Pinto, Franco López, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7137–7177, https://doi.org/10.5194/acp-24-7137-2024,https://doi.org/10.5194/acp-24-7137-2024, 2024
Short summary

Cited articles

Aleksankina, K., Reis, S., Vieno, M., and Heal, M. R.: Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model, Atmos. Chem. Phys., 19, 2881–2898, https://doi.org/10.5194/acp-19-2881-2019, 2019. a
Arnfield, A. J.: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003. a
Baklanov, A., Molina, L. T., and Gauss, M.: Megacities, air quality and climate, Atmos. Environ., 126, 235–249, https://doi.org/10.1016/j.atmosenv.2015.11.059, 2016. a
Barnes, M. J., Brade, T. K., MacKenzie, A. R., Whyatt, J. D., Carruthers, D. J., Stocker, J., Cai, X., and Hewitt, C. N.: Spatially-varying surface roughness and ground-level air quality in an operational dispersion model, Environ. Pollut., 185, 44–51, https://doi.org/10.1016/j.envpol.2013.09.039, 2014. a
Belcher, S. E.: Mixing and transport in urban areas, Philos. T. Roy. Soc. A., 363, 2947–2968, 2005. a
Download
Short summary
Urban surfaces alter meteorological conditions which consequently alter air pollution due to modified transport and chemical reactions. Here, we focus on a major component of this influence, enhanced vertical eddy diffusion. Using a regional climate model coupled to a chemistry transport model, we investigate how different representations of turbulent transport translate to urban canopy impact on ozone and PM2.5 concentrations and whether turbulence remains the most important component.
Altmetrics
Final-revised paper
Preprint