Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-1977-2020
https://doi.org/10.5194/acp-20-1977-2020
Research article
 | 
21 Feb 2020
Research article |  | 21 Feb 2020

Urban canopy meteorological forcing and its impact on ozone and PM2.5: role of vertical turbulent transport

Peter Huszar, Jan Karlický, Jana Ďoubalová, Kateřina Šindelářová, Tereza Nováková, Michal Belda, Tomáš Halenka, Michal Žák, and Petr Pišoft

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Peter Huszar on behalf of the Authors (22 Jan 2020)
ED: Publish subject to technical corrections (24 Jan 2020) by Rob MacKenzie
AR by Peter Huszar on behalf of the Authors (27 Jan 2020)  Manuscript 
Download
Short summary
Urban surfaces alter meteorological conditions which consequently alter air pollution due to modified transport and chemical reactions. Here, we focus on a major component of this influence, enhanced vertical eddy diffusion. Using a regional climate model coupled to a chemistry transport model, we investigate how different representations of turbulent transport translate to urban canopy impact on ozone and PM2.5 concentrations and whether turbulence remains the most important component.
Altmetrics
Final-revised paper
Preprint