Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-15867-2020
https://doi.org/10.5194/acp-20-15867-2020
Research article
 | 
21 Dec 2020
Research article |  | 21 Dec 2020

Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method

Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki

Related authors

DETECTION OF SILVER BIRCH GROWTH DYNAMICS AND TIMING WITH DENSE SPATIO-TEMPORAL LIDAR TIME-SERIES
M. B. Campos, V. Valve, A. Shcherbacheva, R. Echriti, Y. Wang, and E. Puttonen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1715–1722, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023, 2023
UNSUPERVISED STATISTICAL APPROACH FOR TREE-LEVEL SEPARATION OF FOLIAGE AND NON-LEAF COMPONENTS FROM POINT CLOUDS
A. Shcherbcheva, M. B. Campos, X. Liang, E. Puttonen, and Y. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1787–1794, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023, 2023
WOOD-LEAF UNSUPERVISED CLASSIFICATION OF SILVER BIRCH TREES FOR BIOMASS ASSESSMENT USING OBLIQUE POINT CLOUDS
C. Spadavecchia, M. B. Campos, M. Piras, E. Puttonen, and A. Shcherbacheva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1795–1802, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023, 2023

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Valley floor inclination affecting valley winds and transport of passive tracers in idealised simulations
Johannes Mikkola, Alexander Gohm, Victoria A. Sinclair, and Federico Bianchi
Atmos. Chem. Phys., 25, 511–533, https://doi.org/10.5194/acp-25-511-2025,https://doi.org/10.5194/acp-25-511-2025, 2025
Short summary
To what extent is the description of streets important in estimating local air quality: a case study over Paris
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
Atmos. Chem. Phys., 25, 93–117, https://doi.org/10.5194/acp-25-93-2025,https://doi.org/10.5194/acp-25-93-2025, 2025
Short summary
Variability and trends in the potential vorticity (PV)-gradient dynamical tropopause
Katharina Turhal, Felix Plöger, Jan Clemens, Thomas Birner, Franziska Weyland, Paul Konopka, and Peter Hoor
Atmos. Chem. Phys., 24, 13653–13679, https://doi.org/10.5194/acp-24-13653-2024,https://doi.org/10.5194/acp-24-13653-2024, 2024
Short summary
Country and species-dependent parameters for the Heating Degree Day method to distribute NOx and PM emissions from residential heating in the EU-27: application to air quality modelling and multi-year emission projections
Antoine Guion, Florian Couvidat, Marc Guevara, and Augustin Colette
EGUsphere, https://doi.org/10.5194/egusphere-2024-2911,https://doi.org/10.5194/egusphere-2024-2911, 2024
Short summary
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024,https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary

Cited articles

Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a, b, c, d
Ball, J. M., Carr, J., and Penrose, O.: The Becker-Doring cluster equations: basic properties and asymptotic behaviour of solutions, Commun. Math. Phys., 104, 657–692, https://doi.org/10.1007/BF01211070, 1986. a
Besel, V., Kubecka, J., Kurten, T., and Vehkamäki, H.: Impact of Quantum Chemistry Parameter Choices and Cluster Distribution Model Settings on Modeled Atmospheric Particle Formation Rates, J. Phys. Chem. A, 124, 5931–5943, 2020. a, b
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle formation in the free troposphere: A question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016. a
Braak, C. J. F. T.: A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces, Statistics and Computing, 16, 239–249, https://doi.org/10.1007/s11222-006-8769-1, 2006. a
Download
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Altmetrics
Final-revised paper
Preprint