Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-15867-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15867-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Tracey Balehowsky
Department of Mathematics and Statistics Subunit, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Jakub Kubečka
Institute for Atmospheric and Earth System Research, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Tinja Olenius
Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
Tapio Helin
LUT School of Engineering Science, Lappeenranta-Lahti University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland
Heikki Haario
LUT School of Engineering Science, Lappeenranta-Lahti University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Marko Laine
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland
Theo Kurtén
Department of Chemistry, P.O. Box 55, University of Helsinki, 00014 Helsinki, Finland
Institute for Atmospheric and Earth System Research, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Hanna Vehkamäki
Institute for Atmospheric and Earth System Research, P.O. Box 64, University of Helsinki, 00014 Helsinki, Finland
Related authors
M. B. Campos, V. Valve, A. Shcherbacheva, R. Echriti, Y. Wang, and E. Puttonen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1715–1722, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023, 2023
A. Shcherbcheva, M. B. Campos, X. Liang, E. Puttonen, and Y. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1787–1794, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023, 2023
C. Spadavecchia, M. B. Campos, M. Piras, E. Puttonen, and A. Shcherbacheva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1795–1802, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023, 2023
Ivo Neefjes, Yosef Knattrup, Haide Wu, Georg Baadsgaard Trolle, Jonas Elm, and Jakub Kubečka
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-30, https://doi.org/10.5194/ar-2025-30, 2025
Preprint under review for AR
Short summary
Short summary
We investigated how water vapor affects the earliest steps of atmospheric aerosol formation, a key process influencing clouds and climate. By benchmarking quantum-chemical methods, we identified reliable approaches for modeling hydrated molecular clusters of common atmospheric acids and bases. We show that humidity moderately stabilizes certain clusters but only modestly alters particle formation rates. These findings sharpen our understanding of clusters and their role in aerosol formation.
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara M. Blichner, Daniel Yazgi, and Moa K. Sporre
Atmos. Chem. Phys., 25, 11483–11504, https://doi.org/10.5194/acp-25-11483-2025, https://doi.org/10.5194/acp-25-11483-2025, 2025
Short summary
Short summary
This study is an investigation of the model representation of how particles are formed and grow in the atmosphere. Using modelled and observed data from two boreal forest stations in 2018, we identify key factors for new particle formation to improve particle climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still greatly underestimates the number of particles during warmer months.
Oskari Rockas, Pia Isolähteenmäki, Marko Laine, Anders V. Lindfors, Karoliina Hämäläinen, and Anton Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2025-1745, https://doi.org/10.5194/egusphere-2025-1745, 2025
Short summary
Short summary
When ice buildup occurs on an energy infrastructure such as a power transmission line or a wind turbine, this can cause disturbances in energy production and transmission efficiency. In our study, we assessed how atmospheric icing conditions will change in the future climate in northern Europe. Towards the end of the century, the climate projections suggest a mostly decreasing trend in ice accumulation. However, the northern parts of Fennoscandia can locally experience increasing amounts of ice.
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025, https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Short summary
Aerosols, a large uncertainty in climate modeling, can be formed when gas vapors and particles begin sticking together. Traditionally, these particles are assumed to behave like hard spheres that only stick together upon head-on collisions. In reality, particles can attract each other over distances, leading to more frequent sticking events. We found that traditional models significantly undercount these events, with real sticking rates being up to 2.4 times higher.
Alfred W. Mayhew, Lauri Franzon, Kelvin H. Bates, Theo Kurtén, Felipe D. Lopez-Hilfiker, Claudia Mohr, Andrew R. Rickard, Joel A. Thornton, and Jessica D. Haskins
EGUsphere, https://doi.org/10.5194/egusphere-2025-1922, https://doi.org/10.5194/egusphere-2025-1922, 2025
Short summary
Short summary
This work outlines an investigation into an understudied atmospheric chemical reaction pathway with the potential to form particulate pollution that has important impacts on air quality and climate. We suggest that this chemical pathway is responsible for a large fraction of the atmospheric particulate matter observed in tropical forested regions, but we also highlight the need for further ambient and lab investigations to inform an accurate representation of this process in atmospheric models.
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025, https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Short summary
This study explores the formation of accretion products from reactions involving highly reactive compounds, Criegee intermediates. We focused on three types of terpenes, common in nature, and their reactions with specific acids. Our findings reveal that these reactions efficiently produce expected compounds. This research enhances our understanding of how these reactions affect air quality and climate by contributing to aerosol formation, crucial for atmospheric chemistry.
Valtteri Tikkanen, Huan Yang, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2025-507, https://doi.org/10.5194/egusphere-2025-507, 2025
Short summary
Short summary
Collisions of neutral molecules and clusters is the prevalent pathway in atmospheric new particle formation. In heavily polluted urban areas, where clusters are formed rapidly and in large number, cluster-cluster collisions also become relevant. We calculate cluster-cluster collision rates from atomistic molecular dynamics simulations and an interacting hard sphere model. Not accounting for long-range attractive interactions underestimates collision and particle formation rates significantly.
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024, https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Short summary
Probabilistic ensemble forecasts of the Canadian Forest Fire Weather Index (FWI) can be used to estimate the possible wildfire risk but require post-processing to provide accurate and reliable predictions. This article presents a calibration method using non-homogeneous Gaussian regression to statistically post-process FWI forecasts up to 15 d. Calibration improves the forecast especially at short lead times and in regions with high fire risk.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
M. B. Campos, V. Valve, A. Shcherbacheva, R. Echriti, Y. Wang, and E. Puttonen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1715–1722, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1715-2023, 2023
A. Shcherbcheva, M. B. Campos, X. Liang, E. Puttonen, and Y. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1787–1794, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1787-2023, 2023
C. Spadavecchia, M. B. Campos, M. Piras, E. Puttonen, and A. Shcherbacheva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1795–1802, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1795-2023, 2023
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023, https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
Lukas Pichelstorfer, Pontus Roldin, Matti Rissanen, Noora Hyttinen, Olga Garmash, Carlton Xavier, Putian Zhou, Petri Clusius, Benjamin Foreback, Thomas Golin Almeida, Chenjuan Deng, Metin Baykara, Theo Kurten, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1415, https://doi.org/10.5194/egusphere-2023-1415, 2023
Preprint archived
Short summary
Short summary
Secondary organic aerosols (SOA) form effectively from gaseous precursors via a process called autoxidation. While key chemical reaction types seem to be known, no general description of autoxidation chemistry exists. In the present work, we present a method to create autoxidation chemistry schemes for any atmospherically relevant hydrocarbon. We exemplarily investigate benzene and its potential to form aerosols. We found that autoxidation, under some conditions, can dominate the SOA formation.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 23, 5993–6009, https://doi.org/10.5194/acp-23-5993-2023, https://doi.org/10.5194/acp-23-5993-2023, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, accounting for long-range interactions. The model is verified against atomistic simulations of typical acid–base clusters participating in atmospheric new particle formation (NPF). Compared to non-interacting models, accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such interactions in NPF modeling.
Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn
Atmos. Chem. Phys., 23, 4373–4390, https://doi.org/10.5194/acp-23-4373-2023, https://doi.org/10.5194/acp-23-4373-2023, 2023
Short summary
Short summary
We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Golnaz Roudsari, Olli H. Pakarinen, Bernhard Reischl, and Hanna Vehkamäki
Atmos. Chem. Phys., 22, 10099–10114, https://doi.org/10.5194/acp-22-10099-2022, https://doi.org/10.5194/acp-22-10099-2022, 2022
Short summary
Short summary
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in slit and wedge geometries at low supercooling which serve as a model of irregularities on real atmospheric aerosol particle surfaces. The revealed microscopic ice nucleation mechanisms in confined geometries strongly support the experimental evidence for the importance of surface features such as cracks or pits functioning as active sites for ice nucleation in the atmosphere.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021, https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
Short summary
In this article, we present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Our practical approach promotes fair authorship practices and, by focusing on clear, transparent, and timely communication, helps avoid late-stage authorship conflict.
Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist, and Johanna Tamminen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-328, https://doi.org/10.5194/amt-2021-328, 2021
Revised manuscript not accepted
Short summary
Short summary
We present a methodology in Bayesian framework for retrieving atmospheric aerosol optical depth and aerosol type from the pre-computed look-up tables (LUTs). Especially, we consider Bayesian model averaging and uncertainty originating from aerosol model selection and imperfect forward modelling. Our aim is to get more realistic uncertainty estimates. We have applied the methodology to TROPOMI/S5P satellite observations and evaluated the results against ground-based data from the AERONET.
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 2881–2894, https://doi.org/10.5194/acp-21-2881-2021, https://doi.org/10.5194/acp-21-2881-2021, 2021
Short summary
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Cited articles
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F.,
Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A.,
Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R.,
Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen,
H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin,
A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V.,
Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela,
A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L.,
Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R.,
Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé,
A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen,
A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C.,
Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J.,
Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular
understanding of sulphuric acid-amine particle nucleation in the atmosphere,
Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a, b, c, d
Ball, J. M., Carr, J., and Penrose, O.: The Becker-Doring cluster equations:
basic properties and asymptotic behaviour of solutions, Commun. Math. Phys., 104, 657–692, https://doi.org/10.1007/BF01211070, 1986. a
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R.,
Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy,
J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A.,
Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo, L.,
Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M.,
Dommen, J., and Baltensperger, U.: New particle formation in the free
troposphere: A question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456,
2016. a
Braak, C. J. F. T.: A Markov Chain Monte Carlo version of the genetic algorithm
Differential Evolution: easy Bayesian computing for real parameter spaces,
Statistics and Computing, 16, 239–249,
https://doi.org/10.1007/s11222-006-8769-1, 2006. a
Brown, P. N., Byrne, G. D., and Hindmarsh, A. C.: VODE: A Variable-Coefficient
ODE Solver, SIAM J. Sci. Stat. Comp., 10, 1038–1051, 1989. a
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I.,
Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres,
S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma,
J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S.,
Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T.,
Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and
Mentel, T. F.: A large source of low-volatility secondary organic aerosol,
Nature, 506, 476–479, https://doi.org/10.1038/nature13032, 2014. a
Eisele, F. L. and Hanson, D. R.: First Measurement of Prenucleation Molecular
Clusters, J. Phys. Chem. A, 104, 830–836, https://doi.org/10.1021/jp9930651, 2000. a
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian
Data Analysis, 2nd edn., Chapman and Hall/CRC, 293–311, 2004. a
Haario, H., Saksman, E., and Tamminen, J.: Adaptive proposal distribution for
random walk Metropolis algorithm, Computation. Stat., 14, 375–395,
https://doi.org/10.1007/s001800050022, 1999. a
Halonen, R., Zapadinsky, E., Kurtén, T., Vehkamäki, H., and Reischl, B.: Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces, Atmos. Chem. Phys., 19, 13355–13366, https://doi.org/10.5194/acp-19-13355-2019, 2019 a
Hingant, E. and Yvinec, R.: Deterministic and Stochastic Becker-Döring
Equations: Past and Recent Mathematical Developments, in: Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology Springer International Publishing, 175–204, 2017. a
Hyttinen, N., Otkjær, R. V., Iyer, S., Kjaergaard, H. G., Rissanen, M. P.,
Wennberg, P. O., and Kurtén, T.: Computational Comparison of Different
Reagent Ions in the Chemical Ionization of Oxidized Multifunctional
Compounds, J. Phys. Chem. A, 122, 269–279, https://doi.org/10.1021/acs.jpca.7b10015, 2018. a
Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010. a
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger, A.,
Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D.,
Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard,
A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W.,
Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima,
J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P.,
Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petäjä, T., Schnitzhofer,
R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A.,
Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R.,
Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and
galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429,
https://doi.org/10.1038/nature10343, 2011. a, b, c
Kupiainen-Määttä, O., Olenius, T., Kurtén, T., and Vehkamäki, H.: CIMS
Sulfuric Acid Detection Efficiency Enhanced by Amines Due to Higher Dipole
Moments: A Computational Study, J. Phys. Chem. A, 117, 14109–14119,
https://doi.org/10.1021/jp4049764, 2013. a
Kürten, A., Münch, S., Rondo, L., Bianchi, F., Duplissy, J., Jokinen, T., Junninen, H., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Almeida, J., Amorim, A., Dommen, J., Donahue, N. M., Dunne, E. M., Flagan, R. C., Franchin, A., Kirkby, J., Kupc, A., Makhmutov, V., Petäjä, T., Praplan, A. P., Riccobono, F., Steiner, G., Tomé, A., Tsagkogeorgas, G., Wagner, P. E., Wimmer, D., Baltensperger, U., Kulmala, M., Worsnop, D. R., and Curtius, J.: Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4−H2O) and ternary ( ) system, Atmos. Chem. Phys., 15, 10701–10721, https://doi.org/10.5194/acp-15-10701-2015, 2015. a, b, c, d
Kurtén, T., Torpo, L., Ding, C.-G., Vehkamäki, H., Sundberg, M. R., Laasonen,
K., and Kulmala, M.: A density functional study on water-sulfuric
acid-ammonia clusters and implications for atmospheric cluster formation, J.
Geophys. Res., 112, D04210, https://doi.org/10.1029/2006jd007391, 2007. a
Lee, S.-H., Reeves, J. M., Wilson, J. C., Hunton, D. E., Viggiano, A. A.,
Miller, T. M., Ballenthin, J. O., and Lait, L. R.: Particle Formation by Ion
Nucleation in the Upper Troposphere and Lower Stratosphere, Science, 301,
1886–1889, https://doi.org/10.1126/science.1087236, 2003. a
Matsugi, A.: Collision Frequency for Energy Transfer in Unimolecular Reactions,
J. Phys. Chem. A, 122, 1972–1985, https://doi.org/10.1021/acs.jpca.8b00444, 2018. a
McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M., and Vehkamäki, H.: Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos. Chem. Phys., 12, 2345–2355, https://doi.org/10.5194/acp-12-2345-2012, 2012. a, b
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J.
Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a
Nadykto, A. B., Herb, J., Yu, F., and Xu, Y.: Enhancement in the production of nucleating clusters due to dimethylamine and large uncertainties in the thermochemistry of amine-enhanced nucleation, Chem. Phys. Lett., 609, 42–49, https://doi.org/10.1016/j.cplett.2014.03.036, 2014. a
Olenius, T., Kupiainen-Määttä, O., Ortega, I. K., Kurtén, T., and
Vehkamäki, H.: Free energy barrier in the growth of sulfuric acid-ammonia
and sulfuric acid-dimethylamine clusters, J. Chem. Phys., 139, 084312,
https://doi.org/10.1063/1.4819024, 2013a. a, b
Olenius, T., Schobesberger, S., Kupiainen-Määttä, O., Franchin, A.,
Junninen, H., Ortega, I. K., Kurtén, T., Loukonen, V., Worsnop, D. R.,
Kulmala, M., and Vehkamäki, H.: Comparing simulated and experimental
molecular cluster distributions, Faraday Discuss., 165, 75–89,
https://doi.org/10.1039/C3FD00031A, 2013b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah
Ortega, I. K., Kupiainen, O., Kurtén, T., Olenius, T., Wilkman, O., McGrath, M. J., Loukonen, V., and Vehkamäki, H.: From quantum chemical formation free energies to evaporation rates, Atmos. Chem. Phys., 12, 225–235, https://doi.org/10.5194/acp-12-225-2012, 2012. a, b
Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., Ortega, I. K., Metzger, A., Schnitzhofer, R., Almeida, J., Amorim, A., Dommen, J., Dunne, E. M., Ehn, M., Gagné, S., Ickes, L., Junninen, H., Hansel, A., Kerminen, V.-M., Kirkby, J., Kupc, A., Laaksonen, A., Lehtipalo, K., Mathot, S., Onnela, A., Petäjä, T., Riccobono, F., Santos, F. D., Sipilä, M., Tomé, A., Tsagkogeorgas, G., Viisanen, Y., Wagner, P. E., Wimmer, D., Curtius, J., Donahue, N. M., Baltensperger, U., Kulmala, M., and Worsnop, D. R.: On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation, Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015, 2015. a
Shcherbacheva, A.: AnnaShcher/Shcherbacheva_ACDP: Release 1, Version v1.0, Zenodo, https://doi.org/10.5281/zenodo.3766925, 2020. a
Vahteristo, K., Laari, A., Haario, H., and Solonen, A.: Estimation of kinetic
parameters in neopentyl glycol esterification with propionic acid, Chem.
Eng. Sci., 63, 587–598, https://doi.org/10.1016/j.ces.2007.09.023,
2008. a
Yan, C., Dada, L., Rose, C., Jokinen, T., Nie, W., Schobesberger, S., Junninen, H., Lehtipalo, K., Sarnela, N., Makkonen, U., Garmash, O., Wang, Y., Zha, Q., Paasonen, P., Bianchi, F., Sipilä, M., Ehn, M., Petäjä, T., Kerminen, V.-M., Worsnop, D. R., and Kulmala, M.: The role of H2SO4−NH3 anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest, Atmos. Chem. Phys., 18, 13231–13243, https://doi.org/10.5194/acp-18-13231-2018, 2018.
a
Yang, H., Goudeli, E., and Hogan, C. J. J.: Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations, J. Chem. Phys., 148, 164304, https://doi.org/10.1063/1.5026689, 2018. a
Yu, F. and Turco, R.: Ultrafine aerosol formation via ion-mediated nucleation,
Geophys. Res. Lett., 27, 883–886, https://doi.org/10.1029/1999GL011151, 2000. a
Yu, F., Nadykto, A. B., Herb, J., Luo, G., Nazarenko, K. M., and Uvarova, L. A.: ternary ion-mediated nucleation (TIMN): kinetic-based model and comparison with CLOUD measurements, Atmos. Chem. Phys., 18, 17451–17474, https://doi.org/10.5194/acp-18-17451-2018, 2018. a, b
Zhao, J., Eisele, F. L., Titcombe, M., Kuang, C., and McMurry, P. H.: Chemical
ionization mass spectrometric measurements of atmospheric neutral clusters
using the cluster-CIMS, J. Geophys. Res., 115, D08205, https://doi.org/10.1029/2009jd012606, 2010. a
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Atmospheric new particle formation and cluster growth to aerosol particles is an important field...
Altmetrics
Final-revised paper
Preprint