Research article 05 Feb 2020
Research article | 05 Feb 2020
A new look at the environmental conditions favorable to secondary ice production
Alexei Korolev et al.
Related authors
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Xuguang Wang, Hugh Morrison, Alexander Ryzhkov, Yachao Hu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, Jason Milbrandt, Alexei V. Korolev, and Ivan Heckman
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1045, https://doi.org/10.5194/acp-2020-1045, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Numerous small ice crystals in the tropical convective storms are difficult to detect and could be potentially hazardous for commercial aircraft. This study evaluated the numerical models against the airborne observations and investigated the potential cloud processes that could lead to the production of these large numbers of small ice crystals. It is found that key microphysical processes are still lacking or misrepresented in current numerical models to realistically simulate the phenomenon.
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, https://doi.org/10.5194/acp-20-11767-2020, 2020
Short summary
Short summary
Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. This work presents a critical review of the laboratory studies related to secondary ice production. It aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism.
Cuong M. Nguyen, Mengistu Wolde, and Alexei Korolev
Atmos. Meas. Tech., 12, 5897–5911, https://doi.org/10.5194/amt-12-5897-2019, https://doi.org/10.5194/amt-12-5897-2019, 2019
Short summary
Short summary
This paper presents a methodology for high ice water content (HIWC) (up to 3.5 g m−3) retrieval from a dual-polarization side-looking X-band airborne radar. Zdr and Kdp are used to mitigate the effects of ice crystal shape and orientation on the variation in IWC – specific differential phase (Kdp) joint distribution. Empirical analysis shows that the proposed method improves the estimation bias by 35 % and increases the correlation by 4 % on average, compared to the method using Kdp alone.
Robert Jackson, Jeffrey R. French, David C. Leon, David M. Plummer, Sonia Lasher-Trapp, Alan M. Blyth, and Alexei Korolev
Atmos. Chem. Phys., 18, 15329–15344, https://doi.org/10.5194/acp-18-15329-2018, https://doi.org/10.5194/acp-18-15329-2018, 2018
Short summary
Short summary
This paper looks at microphysical observations of growing cumulus clouds in the southwest United Kingdom sampled during the COnvective Precipitation Experiment (COPE). Our results suggest that secondary ice production processes are contributing to the observed concentrations and that entrainment of particles from remnant cloud layers may have acted to aid in secondary ice production.
W. Richard Leaitch, Alexei Korolev, Amir A. Aliabadi, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, Heiko Bozem, Peter Hoor, Franziska Köllner, Johannes Schneider, Andreas Herber, Christian Konrad, and Ralf Brauner
Atmos. Chem. Phys., 16, 11107–11124, https://doi.org/10.5194/acp-16-11107-2016, https://doi.org/10.5194/acp-16-11107-2016, 2016
Short summary
Short summary
Thought to be mostly unimportant for summertime Arctic liquid-water clouds, airborne observations show that atmospheric aerosol particles 50 nm in diameter or smaller and most likely from natural sources are often involved in cloud formation in the pristine Arctic summer. The result expands the reference for aerosol forcing of climate. Further, for extremely low droplet concentrations, no evidence is found for a connection between cloud liquid water and aerosol particle concentrations.
Alexei Korolev, Alex Khain, Mark Pinsky, and Jeffrey French
Atmos. Chem. Phys., 16, 9235–9254, https://doi.org/10.5194/acp-16-9235-2016, https://doi.org/10.5194/acp-16-9235-2016, 2016
Short summary
Short summary
Relationships between basic microphysical parameters are studied within the framework of homogeneous and extreme inhomogeneous mixing. Analytical expressions and numerical simulations of relationships between droplet concentration, extinction coefficient, liquid water content, and mean volume droplet size are presented. The obtained relationships between moments are used to identify type of mixing for in situ observations obtained in convective clouds.
Mark Pinsky, Alexander Khain, Alexei Korolev, and Leehi Magaritz-Ronen
Atmos. Chem. Phys., 16, 9255–9272, https://doi.org/10.5194/acp-16-9255-2016, https://doi.org/10.5194/acp-16-9255-2016, 2016
Short summary
Short summary
The evolution of monodisperse and polydisperse droplet size distributions (DSDs) during
homogeneous mixing is analyzed. It is shown that the classic conceptual scheme, according to which homogeneous mixing leads to a decrease in the droplet mass under constant droplet concentration, is valid only in cases of initially very narrow DSDs. In cases of wide DSDs a decrease of both mass and concentration take place such that the characteristic droplet sizes remain nearly constant.
Mark Pinsky, Alexander Khain, and Alexei Korolev
Atmos. Chem. Phys., 16, 9273–9297, https://doi.org/10.5194/acp-16-9273-2016, https://doi.org/10.5194/acp-16-9273-2016, 2016
Short summary
Short summary
An idealized diffusion--evaporation model of time-dependent mixing between cloud and non-cloud volumes is analyzed. It is shown that the evolution of microphysical variables and the final equilibrium stage are unambiguously determined by two non-dimensional parameters. Delimitation between the types of mixing on the plane of these parameters is carried out. The definitions of homogeneous and inhomogeneous mixings are reconsidered and clarified. Results are compared with the classical concept.
J. W. Taylor, T. W. Choularton, A. M. Blyth, Z. Liu, K. N. Bower, J. Crosier, M. W. Gallagher, P. I. Williams, J. R. Dorsey, M. J. Flynn, L. J. Bennett, Y. Huang, J. French, A. Korolev, and P. R. A. Brown
Atmos. Chem. Phys., 16, 799–826, https://doi.org/10.5194/acp-16-799-2016, https://doi.org/10.5194/acp-16-799-2016, 2016
Short summary
Short summary
We present microphysical observations of cumulus clouds measured over south-west England during COPE in summer 2013. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. The first ice particles observed were frozen drizzle, while columnar ice dominated in the mature stages. We discuss the interactions between the warm rain and secondary ice processes, and their importance for the formation of precipitation.
A. M. Fridlind, A. S. Ackerman, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, A. V. Korolev, and C. R. Williams
Atmos. Chem. Phys., 15, 11713–11728, https://doi.org/10.5194/acp-15-11713-2015, https://doi.org/10.5194/acp-15-11713-2015, 2015
Short summary
Short summary
Airbus measurements at elevations circa 11 km within large storm systems near Darwin and Santiago indicate ice mass distributed over area-equivalent diameters of 100-500 µm. Profiler-observed radar reflectivity and mean Doppler velocity under similar conditions are found to be consistent with measurements and with 1D simulations of steady-state stratiform rain columns initialized with observed ice size distributions. Results motivate investigation of ice formation pathways in Part II.
A. S. Ackerman, A. M. Fridlind, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, and A. V. Korolev
Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, https://doi.org/10.5194/acp-15-11729-2015, 2015
Short summary
Short summary
An updraft parcel model with size-resolved microphysics is used to investigate microphysical pathways leading to ice water content > 2 g m-3 with mass median area-equivalent diameter of 200-300 micron reported at ~11 km in tropical deep convection. Parcel simulations require substantial source of small crystals at temperatures > ~-10 deg C growing by vapor deposition. Warm rain in weaker updrafts surprisingly leads to greater ice mass owing to reduced competition for available water vapor.
A. Korolev and P. R. Field
Atmos. Meas. Tech., 8, 761–777, https://doi.org/10.5194/amt-8-761-2015, https://doi.org/10.5194/amt-8-761-2015, 2015
Youssef Wehbe, Sarah A. Tessendorf, Courtney Weeks, Roelof Bruintjes, Lulin Xue, Roy M. Rasmussen, Paul Lawson, Sarah Woods, and Marouane Temimi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-200, https://doi.org/10.5194/acp-2021-200, 2021
Preprint under review for ACP
Short summary
Short summary
The role of dust aerosols as ice nucleating particles is well established in the literature, whereas their role as cloud condensation nuclei is less understood, particularly in polluted desert environments. We analyze coincident cloud particle imagery and size distributions collected over the UAE using an instrumented aircraft. Despite the presence of large aerosol sizes associated with dust, fine-mode aerosols appear to suppress the formation of large droplets needed for rainfall production.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-82, https://doi.org/10.5194/acp-2021-82, 2021
Preprint under review for ACP
Short summary
Short summary
Cold air outbreaks affect the local energy budget by forming bright boundary layer clouds that, once raining, evolve into dimmer, broken cloud fields that are depleted of condensation nuclei – an evolution consistent with closed-to-open cell transitions. We find that cloud ice accelerates this evolution, primarily via riming prior to rain onset, which (1) reduces liquid water, (2) reduces condensation nuclei, and (3) leads to early precipitation cooling and moistening below cloud.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1315, https://doi.org/10.5194/acp-2020-1315, 2021
Revised manuscript under review for ACP
Carolina Ramírez-Romero, Alejandro Jaramillo, María F. Córdoba, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Jong Sung Kim, Jacqueline Yakobi-Hancock, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 239–253, https://doi.org/10.5194/acp-21-239-2021, https://doi.org/10.5194/acp-21-239-2021, 2021
Short summary
Short summary
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn Peninsula. Aerosol particles were monitored at ground level by different online and off-line sensors. Several particulate matter peaks were observed with a relative increase in their levels of up to 500 % with respect to background conditions. Based on the chemical composition, back trajectories, vertical profiles, reanalysis, and satellite images, it was found that the peaks are linked to African dust.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1218, https://doi.org/10.5194/acp-2020-1218, 2020
Preprint under review for ACP
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Yongjie Huang, Wei Wu, Greg M. McFarquhar, Xuguang Wang, Hugh Morrison, Alexander Ryzhkov, Yachao Hu, Mengistu Wolde, Cuong Nguyen, Alfons Schwarzenboeck, Jason Milbrandt, Alexei V. Korolev, and Ivan Heckman
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1045, https://doi.org/10.5194/acp-2020-1045, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Numerous small ice crystals in the tropical convective storms are difficult to detect and could be potentially hazardous for commercial aircraft. This study evaluated the numerical models against the airborne observations and investigated the potential cloud processes that could lead to the production of these large numbers of small ice crystals. It is found that key microphysical processes are still lacking or misrepresented in current numerical models to realistically simulate the phenomenon.
Alexei Korolev and Thomas Leisner
Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, https://doi.org/10.5194/acp-20-11767-2020, 2020
Short summary
Short summary
Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. This work presents a critical review of the laboratory studies related to secondary ice production. It aims to identify gaps in our knowledge of SIP as well as to stimulate further laboratory studies focused on obtaining a quantitative description of efficiencies for each SIP mechanism.
Paul A. Makar, Ayodeji Akingunola, Jack Chen, Balbir Pabla, Wanmin Gong, Craig Stroud, Christopher Sioris, Kerry Anderson, Philip Cheung, Junhua Zhang, and Jason Milbrandt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-938, https://doi.org/10.5194/acp-2020-938, 2020
Revised manuscript under review for ACP
Short summary
Short summary
We have examined the effects of airborne particles on absorption and scattering of incoming sunlight by the particles themselves via cloud formation. We used an advanced, combined high-resolution weather forecast and chemical transport computer model, for western North America, and simulations with/without the connections between particles and weather enabled. Feedbacks improved weather and air pollution forecasts, and changed cloud behaviour and forest fire pollutant amount and height.
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020, https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary
Short summary
This study aims to better understand the mechanism of transport of water vapour through the mid-latitude tropopause. The results affirm the strong influence of overshooting convection on lower-stratospheric water vapour and highlight the importance of both dynamics and cloud microphysics in simulating water vapour distribution in the region of the upper troposphere–lower stratosphere.
Cuong M. Nguyen, Mengistu Wolde, and Alexei Korolev
Atmos. Meas. Tech., 12, 5897–5911, https://doi.org/10.5194/amt-12-5897-2019, https://doi.org/10.5194/amt-12-5897-2019, 2019
Short summary
Short summary
This paper presents a methodology for high ice water content (HIWC) (up to 3.5 g m−3) retrieval from a dual-polarization side-looking X-band airborne radar. Zdr and Kdp are used to mitigate the effects of ice crystal shape and orientation on the variation in IWC – specific differential phase (Kdp) joint distribution. Empirical analysis shows that the proposed method improves the estimation bias by 35 % and increases the correlation by 4 % on average, compared to the method using Kdp alone.
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Short summary
Weather radars are offering improved capabilities to investigate storm physics, which remain poorly understood. We investigate enhanced use of such data near Houston, Texas, where pollution sources often provide a convenient contrast between polluted and clean air. We conclude that Houston is a favorable location to conduct a future field campaign during June through September because isolated storms are common and tend to last an hour, allowing frequent observations of a full life cycle.
Luis A. Ladino, Graciela B. Raga, Harry Alvarez-Ospina, Manuel A. Andino-Enríquez, Irma Rosas, Leticia Martínez, Eva Salinas, Javier Miranda, Zyanya Ramírez-Díaz, Bernardo Figueroa, Cedric Chou, Allan K. Bertram, Erika T. Quintana, Luis A. Maldonado, Agustín García-Reynoso, Meng Si, and Victoria E. Irish
Atmos. Chem. Phys., 19, 6147–6165, https://doi.org/10.5194/acp-19-6147-2019, https://doi.org/10.5194/acp-19-6147-2019, 2019
Short summary
Short summary
This study presents results obtained during a field campaign conducted in the tropical village of Sisal located on the coast of the Gulf of Mexico. Air masses arriving in Sisal during the passage of cold fronts have surprisingly higher ice-nucleating particle (INP) concentrations than the campaign average. The high concentrations of INPs at T > −15 C and the supermicron size of the INPs suggest that biological particles may have been a significant contributor to the INP population in Sisal.
Grégory Cesana, Anthony D. Del Genio, Andrew S. Ackerman, Maxwell Kelley, Gregory Elsaesser, Ann M. Fridlind, Ye Cheng, and Mao-Sung Yao
Atmos. Chem. Phys., 19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019, https://doi.org/10.5194/acp-19-2813-2019, 2019
Short summary
Short summary
The response of low clouds to climate change (i.e., cloud feedbacks) is still pointed out as being the largest source of uncertainty in climate models. Here we use CALIPSO observations to discriminate climate models that reproduce observed interannual change of cloud fraction with SST forcings, referred to as a present-day cloud feedback. Modeling moist processes in the planetary boundary layer is crucial to produce large stratocumulus decks and realistic present-day cloud feedbacks.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roghayeh Ghahremaninezhad, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Mengistu Wolde, Alessandro Battaglia, Cuong Nguyen, Andrew L. Pazmany, and Anthony Illingworth
Atmos. Meas. Tech., 12, 253–269, https://doi.org/10.5194/amt-12-253-2019, https://doi.org/10.5194/amt-12-253-2019, 2019
Short summary
Short summary
This paper presents an implementation of polarization diversity pulse-pair processing (PDPP) on the National Research Council of Canada airborne W-band radar (NAW) system. A description of the NAW PDPP pulsing schemes and an analysis of comprehensive airborne data collected in diverse weather conditions in Canada is presented. The analysis shows a successful airborne measurement of Doppler velocity exceeding 100 m s−1 using PDPP approach, the first such measurement from a moving platform.
Meng Si, Victoria E. Irish, Ryan H. Mason, Jesús Vergara-Temprado, Sarah J. Hanna, Luis A. Ladino, Jacqueline D. Yakobi-Hancock, Corinne L. Schiller, Jeremy J. B. Wentzell, Jonathan P. D. Abbatt, Ken S. Carslaw, Benjamin J. Murray, and Allan K. Bertram
Atmos. Chem. Phys., 18, 15669–15685, https://doi.org/10.5194/acp-18-15669-2018, https://doi.org/10.5194/acp-18-15669-2018, 2018
Short summary
Short summary
Using the concentrations of ice-nucleating particles (INPs) and total aerosol particles measured at three coastal marine sites, the ice-nucleating ability of aerosol particles on a per number basis and a per surface-area basis were determined as a function of size. The ice-nucleating ability was strongly dependent on size, with larger particles being more efficient. This type of information can help determine the sources of INPs and constrain the future modelling of INPs and mixed-phase clouds.
Robert Jackson, Jeffrey R. French, David C. Leon, David M. Plummer, Sonia Lasher-Trapp, Alan M. Blyth, and Alexei Korolev
Atmos. Chem. Phys., 18, 15329–15344, https://doi.org/10.5194/acp-18-15329-2018, https://doi.org/10.5194/acp-18-15329-2018, 2018
Short summary
Short summary
This paper looks at microphysical observations of growing cumulus clouds in the southwest United Kingdom sampled during the COnvective Precipitation Experiment (COPE). Our results suggest that secondary ice production processes are contributing to the observed concentrations and that entrainment of particles from remnant cloud layers may have acted to aid in secondary ice production.
Katia Lamer, Ann M. Fridlind, Andrew S. Ackerman, Pavlos Kollias, Eugene E. Clothiaux, and Maxwell Kelley
Geosci. Model Dev., 11, 4195–4214, https://doi.org/10.5194/gmd-11-4195-2018, https://doi.org/10.5194/gmd-11-4195-2018, 2018
Short summary
Short summary
Weather and climate predictions of cloud, rain, and snow occurrence remain uncertain, in part because guidance from observation is incomplete. We present a tool that transforms predictions into observations from ground-based remote sensors. Liquid water and ice occurrence errors associated with the transformation are below 8 %, with ~ 3 % uncertainty. This (GO)2-SIM forward-simulator tool enables better evaluation of cloud, rain, and snow occurrence predictions using available observations.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Sabour Baray, Andrea Darlington, Mark Gordon, Katherine L. Hayden, Amy Leithead, Shao-Meng Li, Peter S. K. Liu, Richard L. Mittermeier, Samar G. Moussa, Jason O'Brien, Ralph Staebler, Mengistu Wolde, Doug Worthy, and Robert McLaren
Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, https://doi.org/10.5194/acp-18-7361-2018, 2018
Short summary
Short summary
Methane emissions from major oil sands facilities in the Athabasca Oil Sands Region (AOSR) of Alberta were measured in the summer of 2013 using two related aircraft mass-balance approaches. Tailings ponds and fugitive emissions of methane from open pit mines were found to be the major sources of methane in the region. Total methane emissions in the AOSR were measured to be ~ 20 tonnes of CH4 per hour, which is 48 % higher than the Canadian Greenhouse Gas Reporting Program Emissions Inventory.
Xiaoli Zhou, Andrew S. Ackerman, Ann M. Fridlind, Robert Wood, and Pavlos Kollias
Atmos. Chem. Phys., 17, 12725–12742, https://doi.org/10.5194/acp-17-12725-2017, https://doi.org/10.5194/acp-17-12725-2017, 2017
Short summary
Short summary
Shallow maritime clouds make a well-known transition from stratocumulus to trade cumulus with flow from the subtropics equatorward. Three-day large-eddy simulations that investigate the potential influence of overlying African biomass burning plumes during that transition indicate that cloud-related impacts are likely substantially cooling to negligible at the top of the atmosphere, with magnitude sensitive to background and perturbation aerosol and cloud properties.
Victoria E. Irish, Pablo Elizondo, Jessie Chen, Cédric Chou, Joannie Charette, Martine Lizotte, Luis A. Ladino, Theodore W. Wilson, Michel Gosselin, Benjamin J. Murray, Elena Polishchuk, Jonathan P. D. Abbatt, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, https://doi.org/10.5194/acp-17-10583-2017, 2017
Short summary
Short summary
The ocean is a possible source of atmospheric ice-nucleating particles (INPs). In this study we found that INPs were ubiquitous in the sea-surface microlayer and bulk seawater in the Canadian Arctic. A strong negative correlation was observed between salinity and freezing temperatures (after correcting for freezing point depression). Heat and filtration treatments of the samples showed that the INPs were likely biological material with sizes between 0.02 μm and 0.2 μm in diameter.
John Liggio, Samar G. Moussa, Jeremy Wentzell, Andrea Darlington, Peter Liu, Amy Leithead, Katherine Hayden, Jason O'Brien, Richard L. Mittermeier, Ralf Staebler, Mengistu Wolde, and Shao-Meng Li
Atmos. Chem. Phys., 17, 8411–8427, https://doi.org/10.5194/acp-17-8411-2017, https://doi.org/10.5194/acp-17-8411-2017, 2017
Short summary
Short summary
The emission and formation of gaseous organic acids from the oil sands industry in Canada is explored through aircraft measurements directly over and downwind wind of industrial facilities. Results demonstrated that the formation of organic acids through atmospheric chemical reactions dominated over the direct emissions from mining activities but could not be explicitly modeled. The results highlight the need for improved understanding of photochemical mechanisms leading to these species.
Ann M. Fridlind, Xiaowen Li, Di Wu, Marcus van Lier-Walqui, Andrew S. Ackerman, Wei-Kuo Tao, Greg M. McFarquhar, Wei Wu, Xiquan Dong, Jingyu Wang, Alexander Ryzhkov, Pengfei Zhang, Michael R. Poellot, Andrea Neumann, and Jason M. Tomlinson
Atmos. Chem. Phys., 17, 5947–5972, https://doi.org/10.5194/acp-17-5947-2017, https://doi.org/10.5194/acp-17-5947-2017, 2017
Short summary
Short summary
Understanding observed storm microphysics via computer simulation requires measurements of aerosol on which most hydrometeors form. We prepare aerosol input data for six storms observed over Oklahoma. We demonstrate their use in simulations of a case with widespread ice outflow well sampled by aircraft. Simulations predict too few ice crystals that are too large. We speculate that microphysics found in tropical storms occurred here, likely associated with poorly understood ice multiplication.
W. Richard Leaitch, Alexei Korolev, Amir A. Aliabadi, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, Heiko Bozem, Peter Hoor, Franziska Köllner, Johannes Schneider, Andreas Herber, Christian Konrad, and Ralf Brauner
Atmos. Chem. Phys., 16, 11107–11124, https://doi.org/10.5194/acp-16-11107-2016, https://doi.org/10.5194/acp-16-11107-2016, 2016
Short summary
Short summary
Thought to be mostly unimportant for summertime Arctic liquid-water clouds, airborne observations show that atmospheric aerosol particles 50 nm in diameter or smaller and most likely from natural sources are often involved in cloud formation in the pristine Arctic summer. The result expands the reference for aerosol forcing of climate. Further, for extremely low droplet concentrations, no evidence is found for a connection between cloud liquid water and aerosol particle concentrations.
Alexei Korolev, Alex Khain, Mark Pinsky, and Jeffrey French
Atmos. Chem. Phys., 16, 9235–9254, https://doi.org/10.5194/acp-16-9235-2016, https://doi.org/10.5194/acp-16-9235-2016, 2016
Short summary
Short summary
Relationships between basic microphysical parameters are studied within the framework of homogeneous and extreme inhomogeneous mixing. Analytical expressions and numerical simulations of relationships between droplet concentration, extinction coefficient, liquid water content, and mean volume droplet size are presented. The obtained relationships between moments are used to identify type of mixing for in situ observations obtained in convective clouds.
Mark Pinsky, Alexander Khain, Alexei Korolev, and Leehi Magaritz-Ronen
Atmos. Chem. Phys., 16, 9255–9272, https://doi.org/10.5194/acp-16-9255-2016, https://doi.org/10.5194/acp-16-9255-2016, 2016
Short summary
Short summary
The evolution of monodisperse and polydisperse droplet size distributions (DSDs) during
homogeneous mixing is analyzed. It is shown that the classic conceptual scheme, according to which homogeneous mixing leads to a decrease in the droplet mass under constant droplet concentration, is valid only in cases of initially very narrow DSDs. In cases of wide DSDs a decrease of both mass and concentration take place such that the characteristic droplet sizes remain nearly constant.
Mark Pinsky, Alexander Khain, and Alexei Korolev
Atmos. Chem. Phys., 16, 9273–9297, https://doi.org/10.5194/acp-16-9273-2016, https://doi.org/10.5194/acp-16-9273-2016, 2016
Short summary
Short summary
An idealized diffusion--evaporation model of time-dependent mixing between cloud and non-cloud volumes is analyzed. It is shown that the evolution of microphysical variables and the final equilibrium stage are unambiguously determined by two non-dimensional parameters. Delimitation between the types of mixing on the plane of these parameters is carried out. The definitions of homogeneous and inhomogeneous mixings are reconsidered and clarified. Results are compared with the classical concept.
Ann M. Fridlind, Rachel Atlas, Bastiaan van Diedenhoven, Junshik Um, Greg M. McFarquhar, Andrew S. Ackerman, Elisabeth J. Moyer, and R. Paul Lawson
Atmos. Chem. Phys., 16, 7251–7283, https://doi.org/10.5194/acp-16-7251-2016, https://doi.org/10.5194/acp-16-7251-2016, 2016
Short summary
Short summary
Images of crystals within mid-latitude cirrus clouds are used to derive consistent ice physical and optical properties for a detailed cloud microphysics model, including size-dependent mass, projected area, and fall speed. Based on habits found, properties are derived for bullet rosettes, their aggregates, and crystals with irregular shapes. Derived bullet rosette fall speeds are substantially greater than reported in past studies, owing to differences in mass, area, or diameter representation.
J. W. Taylor, T. W. Choularton, A. M. Blyth, Z. Liu, K. N. Bower, J. Crosier, M. W. Gallagher, P. I. Williams, J. R. Dorsey, M. J. Flynn, L. J. Bennett, Y. Huang, J. French, A. Korolev, and P. R. A. Brown
Atmos. Chem. Phys., 16, 799–826, https://doi.org/10.5194/acp-16-799-2016, https://doi.org/10.5194/acp-16-799-2016, 2016
Short summary
Short summary
We present microphysical observations of cumulus clouds measured over south-west England during COPE in summer 2013. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. The first ice particles observed were frozen drizzle, while columnar ice dominated in the mature stages. We discuss the interactions between the warm rain and secondary ice processes, and their importance for the formation of precipitation.
M. W. Shephard, C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, P. Lehr, J. Zhang, D. K. Henze, D. B. Millet, J. O. Bash, L. Zhu, K. C. Wells, S. L. Capps, S. Chaliyakunnel, M. Gordon, K. Hayden, J. R. Brook, M. Wolde, and S.-M. Li
Atmos. Meas. Tech., 8, 5189–5211, https://doi.org/10.5194/amt-8-5189-2015, https://doi.org/10.5194/amt-8-5189-2015, 2015
Short summary
Short summary
This study provides direct validations of Tropospheric Emission Spectrometer (TES) satellite retrieved profiles against coincident aircraft profiles of carbon monoxide, ammonia, methanol, and formic acid, all of which are of interest for air quality. The comparisons are performed over the Canadian oil sands region during an intensive field campaign in support of the Joint Canada-Alberta Implementation Plan for the Oil Sands Monitoring (JOSM). Initial model evaluations are also provided.
A. M. Fridlind, A. S. Ackerman, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, A. V. Korolev, and C. R. Williams
Atmos. Chem. Phys., 15, 11713–11728, https://doi.org/10.5194/acp-15-11713-2015, https://doi.org/10.5194/acp-15-11713-2015, 2015
Short summary
Short summary
Airbus measurements at elevations circa 11 km within large storm systems near Darwin and Santiago indicate ice mass distributed over area-equivalent diameters of 100-500 µm. Profiler-observed radar reflectivity and mean Doppler velocity under similar conditions are found to be consistent with measurements and with 1D simulations of steady-state stratiform rain columns initialized with observed ice size distributions. Results motivate investigation of ice formation pathways in Part II.
A. S. Ackerman, A. M. Fridlind, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, and A. V. Korolev
Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, https://doi.org/10.5194/acp-15-11729-2015, 2015
Short summary
Short summary
An updraft parcel model with size-resolved microphysics is used to investigate microphysical pathways leading to ice water content > 2 g m-3 with mass median area-equivalent diameter of 200-300 micron reported at ~11 km in tropical deep convection. Parcel simulations require substantial source of small crystals at temperatures > ~-10 deg C growing by vapor deposition. Warm rain in weaker updrafts surprisingly leads to greater ice mass owing to reduced competition for available water vapor.
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Short summary
Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made during a summer intensive field campaign in 2013. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples. Uncertainty of the emission rates estimated with TERRA is estimated as less than 30%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.
J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo
Atmos. Chem. Phys., 15, 3933–3956, https://doi.org/10.5194/acp-15-3933-2015, https://doi.org/10.5194/acp-15-3933-2015, 2015
Short summary
Short summary
Dimensions of ice crystals increased with an increase in temperature and the L-W relationships of crystals with a given L depended heavily on temperature, whereas the aspect ratio depended only weakly on temperature. The relative frequency of occurrence of plates was much larger in anvil clouds compared to that of columnar crystals (i.e., columns and bullet rosettes), whereas the relative occurrence frequency of columnar crystals was much larger in non-anvil clouds.
A. Korolev and P. R. Field
Atmos. Meas. Tech., 8, 761–777, https://doi.org/10.5194/amt-8-761-2015, https://doi.org/10.5194/amt-8-761-2015, 2015
J. L. Stith, L. M. Avallone, A. Bansemer, B. Basarab, S. W. Dorsi, B. Fuchs, R. P. Lawson, D. C. Rogers, S. Rutledge, and D. W. Toohey
Atmos. Chem. Phys., 14, 1973–1985, https://doi.org/10.5194/acp-14-1973-2014, https://doi.org/10.5194/acp-14-1973-2014, 2014
L. A. Ladino Moreno, O. Stetzer, and U. Lohmann
Atmos. Chem. Phys., 13, 9745–9769, https://doi.org/10.5194/acp-13-9745-2013, https://doi.org/10.5194/acp-13-9745-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography
Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley
Observed trends in clouds and precipitation (1983–2009): implications for their cause(s)
Statistical characteristics of raindrop size distribution over the Western Ghats of India: wet versus dry spells of the Indian summer monsoon
Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic
Measurement report: Ice nucleating abilities of biomass burning, African dust, and sea spray aerosol particles over the Yucatán Peninsula
The prevalence of precipitation from polar supercooled clouds
Continuous secondary-ice production initiated by updrafts through the melting layer in mountainous regions
Vertical dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models
Breakup of nocturnal low-level stratiform clouds during the southern West African monsoon season
Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6
Towards parameterising atmospheric concentrations of ice-nucleating particles active at moderate supercooling
Meteorological and cloud conditions during the Arctic Ocean 2018 expedition
Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe
Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans
Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
Ice-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core
Shape dependence of snow crystal fall speed
What Drives Daily Precipitation Over Central Amazon? Differences Observed Between Wet and Dry Seasons
Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud
Joint Cloud Water Path and Rain Water Path Retrievals from ORACLES Observations
Captured Cirrus Ice Particles in High Definition
Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint
Case study of a humidity layer above Arctic stratocumulus using balloon-borne turbulence and radiation measurements and large eddy simulations
Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud
Stratocumulus cloud clearings: statistics from satellites, reanalysis models, and airborne measurements
Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica
Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer
Small ice particles at slightly supercooled temperatures in tropical maritime convection
Statistical analysis of ice microphysical properties in tropical mesoscale convective systems derived from cloud radar and in situ microphysical observations
Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region
Conceptual model of diurnal cycle of low-level stratiform clouds over southern West Africa
The structure of turbulence and mixed-phase cloud microphysics in a highly supercooled altocumulus cloud
Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater
Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction
Evaluation of hygroscopic cloud seeding in liquid-water clouds: a feasibility study
The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds
The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic
Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles
Subsiding shells and the distribution of up- and downdraughts in warm cumulus clouds over land
Sensitivity of GPS tropospheric estimates to mesoscale convective systems in West Africa
The sensitivity of oceanic precipitation to sea surface temperature
Aerosol influences on low-level clouds in the West African monsoon
Supercooled liquid fogs over the central Greenland Ice Sheet
Droplet inhomogeneity in shallow cumuli: the effects of in-cloud location and aerosol number concentration
On the distinctiveness of observed oceanic raindrop distributions
Ice-nucleating particles in a coastal tropical site
Mixed-phase orographic cloud microphysics during StormVEx and IFRACS
Classification of Arctic multilayer clouds using radiosonde and radar data in Svalbard
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li
Atmos. Chem. Phys., 21, 4899–4913, https://doi.org/10.5194/acp-21-4899-2021, https://doi.org/10.5194/acp-21-4899-2021, 2021
Short summary
Short summary
The distributions of linear trends in total cloud cover and precipitation in 1983–2009 are both characterized by a broadening of the major ascending zone of Hadley circulation around the Maritime Continent. The broadening is driven primarily by the moisture–convection–latent-heat feedback cycle under global warming conditions. Contribution by other climate oscillations is secondary. The reduction of total cloud cover in China in 1957–2005 is driven by the same mechanism.
Uriya Veerendra Murali Krishna, Subrata Kumar Das, Ezhilarasi Govindaraj Sulochana, Utsav Bhowmik, Sachin Madhukar Deshpande, and Govindan Pandithurai
Atmos. Chem. Phys., 21, 4741–4757, https://doi.org/10.5194/acp-21-4741-2021, https://doi.org/10.5194/acp-21-4741-2021, 2021
Short summary
Short summary
Indian summer monsoon (ISM) rainfall exhibits sub-seasonal variability as active spells with good rainfall (wet spell) and weak spells or breaks with little to no rainfall (dry spell). Studies have shown that during the wet and dry periods of the ISM, there are contrasting behaviors in the formation of weather systems and large-scale instability. Thus, it is worth investigating how the raindrop size distribution varies during intra-seasonal timescale variations of the ISM in the Western Ghats.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, David J. Delene, Michael R. Poellot, Amie Dobracki, James R. Podolske, Jens Redemann, Samuel E. LeBlanc, Michal Segal-Rozenhaimer, and Kristina Pistone
Atmos. Chem. Phys., 21, 4615–4635, https://doi.org/10.5194/acp-21-4615-2021, https://doi.org/10.5194/acp-21-4615-2021, 2021
Short summary
Short summary
Observations from the 2016 NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign examine how biomass burning aerosols from southern Africa affect marine stratocumulus cloud decks over the Southeast Atlantic. Instances of contact and separation between aerosols and clouds are examined to quantify the impact of aerosol mixing into cloud top on cloud drop numbers and sizes. This information is needed for improving Earth system models and satellite retrievals.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Annika Lauber, Jan Henneberger, Claudia Mignani, Fabiola Ramelli, Julie T. Pasquier, Jörg Wieder, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 3855–3870, https://doi.org/10.5194/acp-21-3855-2021, https://doi.org/10.5194/acp-21-3855-2021, 2021
Short summary
Short summary
An accurate prediction of the ice crystal number concentration (ICNC) is important to determine the radiation budget, lifetime, and precipitation formation of clouds. Even though secondary-ice processes can increase the ICNC by several orders of magnitude, they are poorly constrained and lack a well-founded quantification. During measurements on a mountain slope, a high ICNC of small ice crystals was observed just below 0 °C, attributed to a secondary-ice process and parametrized in this study.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Maurin Zouzoua, Fabienne Lohou, Paul Assamoi, Marie Lothon, Véronique Yoboue, Cheikh Dione, Norbert Kalthoff, Bianca Adler, Karmen Babić, Xabier Pedruzo-Bagazgoitia, and Solène Derrien
Atmos. Chem. Phys., 21, 2027–2051, https://doi.org/10.5194/acp-21-2027-2021, https://doi.org/10.5194/acp-21-2027-2021, 2021
Short summary
Short summary
Based on a field experiment conducted in June and July 2016, we analyzed the daytime breakup of continental low-level stratiform clouds over southern West Africa in order to provide complementary guidance for model evaluation during the monsoon season. Those clouds exhibit weaker temperature and moisture jumps at the top compared to marine stratiform clouds. Their lifetime and the transition towards shallow convective clouds during daytime hours depend on their coupling with the surface.
Ryan Patnaude, Minghui Diao, Xiaohong Liu, and Suqian Chu
Atmos. Chem. Phys., 21, 1835–1859, https://doi.org/10.5194/acp-21-1835-2021, https://doi.org/10.5194/acp-21-1835-2021, 2021
Short summary
Short summary
A comprehensive, in situ observation dataset of cirrus clouds was developed based on seven field campaigns, ranging from 87° N–75° S. The observations were compared with a global climate model. Several key factors for cirrus cloud formation were examined, including thermodynamics, dynamics, aerosol indirect effects and geographical locations. Model biases include lower ice mass concentrations, smaller ice crystals and weaker aerosol indirect effects.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Short summary
Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation.
André Welti, E. Keith Bigg, Paul J. DeMott, Xianda Gong, Markus Hartmann, Mike Harvey, Silvia Henning, Paul Herenz, Thomas C. J. Hill, Blake Hornblow, Caroline Leck, Mareike Löffler, Christina S. McCluskey, Anne Marie Rauker, Julia Schmale, Christian Tatzelt, Manuela van Pinxteren, and Frank Stratmann
Atmos. Chem. Phys., 20, 15191–15206, https://doi.org/10.5194/acp-20-15191-2020, https://doi.org/10.5194/acp-20-15191-2020, 2020
Short summary
Short summary
Ship-based measurements of maritime ice nuclei concentrations encompassing all oceans are compiled. From this overview it is found that maritime ice nuclei concentrations are typically 10–100 times lower than over continents, while concentrations are surprisingly similar in different oceanic regions. The analysis of the influence of ship emissions shows no effect on the data, making ship-based measurements an efficient strategy for the large-scale exploration of ice nuclei concentrations.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Jann Schrod, Dominik Kleinhenz, Maria Hörhold, Tobias Erhardt, Sarah Richter, Frank Wilhelms, Hubertus Fischer, Martin Ebert, Birthe Twarloh, Damiano Della Lunga, Camilla M. Jensen, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 12459–12482, https://doi.org/10.5194/acp-20-12459-2020, https://doi.org/10.5194/acp-20-12459-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) concentrations of the last 6 centuries are presented from an ice core in Greenland. The data are accompanied by physical and chemical aerosol data. INPs are correlated to the dust signal from the ice core and seem to follow the annual input of mineral dust. We find no clear trend in the INP concentration. However, modern-day concentrations are higher and more variable than the concentrations of the past. This might have significant atmospheric implications.
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1056, https://doi.org/10.5194/acp-2020-1056, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
In this work, we present new fall speed measurements of natural snow particles and ice crystals. We study the particle fall speed relationships and how they depend on particle shape. We analyse these relationships as a function of particle size, cross-sectional area, and area ratio for different particle shape groups. We also investigate the dependence of the particle fall speed on the orientation as it has a large impact on the cross-sectional area.
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1098, https://doi.org/10.5194/acp-2020-1098, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study suggests that there are two distinct modes driving diurnal precipitating convective clouds over central Amazon. During the wet season, local factors such as turbulence and nighttime cloud coverage are the main controls of daily precipitation, while dry season daily precipitation is modulated primarily by the mesoscale convective pattern. The results imply that models and parameterizations must consider different formulations based on the seasonal cycle to correctly resolve convection.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-772, https://doi.org/10.5194/acp-2020-772, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origins of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells and low-level feeder clouds. Our results indicate that secondary ice processes occur in both of these regions.
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-849, https://doi.org/10.5194/acp-2020-849, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This work highlights a new algorithm using data collected from the 2016–2018 NASA ORACLES field campaign. This algorithm synthesizes cloud and rain measurements to attain estimates of cloud and precipitation properties over the southeast Atlantic Ocean. Estimates produced by this algorithm compare well against in-situ estimates. increased rain fractions and rain rates are found in regions of atmospheric instability. This dataset can be used to explore aerosol–cloud–precipitation interactions.
Nathan Magee, Katie Boaggio, Samantha Staskiewicz, Aaron Lynn, Xuanyi Zhao, Nicholas Tusay, Terance Schuh, Manisha Bandamede, Lucas Bancroft, David Connolly, Kevin Hurler, Bryan Miner, and Elissa Khoudary
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-486, https://doi.org/10.5194/acp-2020-486, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The cryo-electron microscopy images and analysis in this paper result from the first balloon-borne capture, preservation, and high-resolution imaging of ice particles from cirrus clouds. The images show cirrus particle complexity in unprecedented detail, revealing unexpected morphology, a mixture of surface roughness scales and patterns, embedded aerosols, and a large variety of habits within a single cloud. The results should inform ongoing efforts to refine modeling of cirrus radiative impact.
Andreas Petzold, Patrick Neis, Mihal Rütimann, Susanne Rohs, Florian Berkes, Herman G. J. Smit, Martina Krämer, Nicole Spelten, Peter Spichtinger, Philippe Nédélec, and Andreas Wahner
Atmos. Chem. Phys., 20, 8157–8179, https://doi.org/10.5194/acp-20-8157-2020, https://doi.org/10.5194/acp-20-8157-2020, 2020
Short summary
Short summary
The first analysis of 15 years of global-scale water vapour and relative humidity observations by passenger aircraft in the MOZAIC and IAGOS programmes resolves detailed features of water vapour and ice-supersaturated air in the mid-latitude tropopause. Key results provide in-depth insight into seasonal and regional variability and chemical signatures of ice-supersaturated air masses, including trend analyses, and show a close link to cirrus clouds and their highly important effects on climate.
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-584, https://doi.org/10.5194/acp-2020-584, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This paper describes a case study of a three-day period with a persistent humidity inversion above a mixed-phase cloud layer in the Arctic. It is based on measurements with a tethered balloon, complemented with results from a dedicated high-resolution large-eddy simulation. Both methods show that the humidity layer acts to provide moisture to the cloud layer through downward turbulent transport. This supply of additional moisture can contribute to the persistence of Arctic clouds.
Adam Majewski and Jeffrey R. French
Atmos. Chem. Phys., 20, 5035–5054, https://doi.org/10.5194/acp-20-5035-2020, https://doi.org/10.5194/acp-20-5035-2020, 2020
Short summary
Short summary
The study reports formation of supercooled drizzle drops in response to repeating kilometer-wide updrafts and downdrafts within a mixed-phase, mountain-layer cloud containing very little ice despite cold cloud top temperatures (T ~ -30°C). The discrete, embedded hydrometeor growth layers and downwind transition to drizzle production at cloud top indicates the relative importance of kinematic mechanisms in determining the location of precipitation development in cloud.
Hossein Dadashazar, Ewan Crosbie, Mohammad S. Majdi, Milad Panahi, Mohammad A. Moghaddam, Ali Behrangi, Michael Brunke, Xubin Zeng, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 20, 4637–4665, https://doi.org/10.5194/acp-20-4637-2020, https://doi.org/10.5194/acp-20-4637-2020, 2020
Short summary
Short summary
Clearings in the marine-boundary-layer (MBL) cloud deck of the Pacific Ocean were studied. Remote sensing, reanalysis, and airborne data were used along with machine-learning modeling to characterize the spatiotemporal nature of clearings and factors governing their growth. The most significant implications of our results are linked to modeling of fog and MBL clouds, with implications for societal and environmental issues like climate, military operations, transportation, and coastal ecology.
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Short summary
Thin (~ 100 m) supercooled liquid water (SLW, water staying in liquid phase below 0 °C) clouds have been detected, analysed, and modelled over the Dome C (Concordia, Antarctica) station during the austral summer 2018–2019 using observations and meteorological analyses. The SLW clouds were observed at the top of the planetary boundary layer and the SLW content was always strongly underestimated by the model indicating an incorrect simulation of the surface energy budget of the Antarctic Plateau.
Steven J. Abel, Paul A. Barrett, Paquita Zuidema, Jianhao Zhang, Matt Christensen, Fanny Peers, Jonathan W. Taylor, Ian Crawford, Keith N. Bower, and Michael Flynn
Atmos. Chem. Phys., 20, 4059–4084, https://doi.org/10.5194/acp-20-4059-2020, https://doi.org/10.5194/acp-20-4059-2020, 2020
Short summary
Short summary
In situ measurements of a free-tropospheric (FT) biomass burning aerosol plume in contact with the boundary layer inversion overriding a pocket of open cells (POC) and surrounding stratiform cloud are presented. The data highlight the contrasting thermodynamic, aerosol and cloud properties in the two cloud regimes and further demonstrate that the cloud regime plays a key role in regulating the flow of FT aerosols into the boundary layer, which has implications for the aerosol indirect effect.
Gary Lloyd, Thomas Choularton, Keith Bower, Jonathan Crosier, Martin Gallagher, Michael Flynn, James Dorsey, Dantong Liu, Jonathan W. Taylor, Oliver Schlenczek, Jacob Fugal, Stephan Borrmann, Richard Cotton, Paul Field, and Alan Blyth
Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, https://doi.org/10.5194/acp-20-3895-2020, 2020
Short summary
Short summary
Measurements of liquid and ice cloud particles were made using an aircraft to penetrate fresh growing convective clouds in the tropical Atlantic. We found small ice particles at surprisingly high temperatures just below freezing. At colder temperatures secondary ice processes rapidly generated high concentrations of ice crystals.
Emmanuel Fontaine, Alfons Schwarzenboeck, Delphine Leroy, Julien Delanoë, Alain Protat, Fabien Dezitter, John Walter Strapp, and Lyle Edward Lilie
Atmos. Chem. Phys., 20, 3503–3553, https://doi.org/10.5194/acp-20-3503-2020, https://doi.org/10.5194/acp-20-3503-2020, 2020
Short summary
Short summary
This study investigates properties of ice hydrometeors (shape, concentration, density, and size) in deep convective systems. The analysis focuses on similarities and differences over four locations in the tropical troposphere. It shows that measurements as a function of temperature and radar reflectivity factors tend to be similar in the four types of deep convective systems when concentrations of ice are larger than 0.1 g m-3.
Mary Kacarab, K. Lee Thornhill, Amie Dobracki, Steven G. Howell, Joseph R. O'Brien, Steffen Freitag, Michael R. Poellot, Robert Wood, Paquita Zuidema, Jens Redemann, and Athanasios Nenes
Atmos. Chem. Phys., 20, 3029–3040, https://doi.org/10.5194/acp-20-3029-2020, https://doi.org/10.5194/acp-20-3029-2020, 2020
Short summary
Short summary
We find that extensive biomass burning aerosol plumes from southern Africa can profoundly influence clouds in the southeastern Atlantic. Concurrent variations in vertical velocity, however, are found to magnify the relationship between boundary layer aerosol and the cloud droplet number. Neglecting these covariances may strongly bias the sign and magnitude of aerosol impacts on the cloud droplet number.
Fabienne Lohou, Norbert Kalthoff, Bianca Adler, Karmen Babić, Cheikh Dione, Marie Lothon, Xabier Pedruzo-Bagazgoitia, and Maurin Zouzoua
Atmos. Chem. Phys., 20, 2263–2275, https://doi.org/10.5194/acp-20-2263-2020, https://doi.org/10.5194/acp-20-2263-2020, 2020
Short summary
Short summary
A conceptual model of the low-level stratiform clouds (LLSCs), which develop almost every night in southern West Africa, is built with the dataset acquired during the DACCIWA (Dynamics Aerosol Chemistry Cloud Interactions in West Africa) ground-based field experiment. Several processes occur during the four phases composing this diurnal cycle: the cooling of the air until saturation (stable and jet phases), LLSC and low-level jet interactions (stratus phase), and LLSC breakup (convective phase).
Paul A. Barrett, Alan Blyth, Philip R. A. Brown, and Steven J. Abel
Atmos. Chem. Phys., 20, 1921–1939, https://doi.org/10.5194/acp-20-1921-2020, https://doi.org/10.5194/acp-20-1921-2020, 2020
Short summary
Short summary
Here we present new in situ observations from altocumulus clouds made with a research aircraft. By carefully measuring the cloud top height, we are able to study the turbulence and cloud properties in high vertical resolution, something not presented before. The clouds contain both ice particles and liquid drops, even though the temperature is −30 °C. These measurements will hopefully assist future developers of climate models to verify and assess the performance of simulations.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Fei Wang, Zhanqing Li, Qi Jiang, Gaili Wang, Shuo Jia, Jing Duan, and Yuquan Zhou
Atmos. Chem. Phys., 19, 14967–14977, https://doi.org/10.5194/acp-19-14967-2019, https://doi.org/10.5194/acp-19-14967-2019, 2019
Short summary
Short summary
Though many laboratory, modeling, and field experimental studies on cloud seeding have been conducted for more than a half-century, assessing the effectiveness of cloud seeding is still very challenging due to the notorious difficulties in gaining convincing scientific evidences. The goals of this study are to evaluate any consequence of aircraft hygroscopic seeding and to develop a feasible method for analyzing the cloud seeding effect for stratocumulus clouds.
Lester Alfonso, Graciela B. Raga, and Darrel Baumgardner
Atmos. Chem. Phys., 19, 14917–14932, https://doi.org/10.5194/acp-19-14917-2019, https://doi.org/10.5194/acp-19-14917-2019, 2019
Short summary
Short summary
The aim of this paper is to find some observational evidence of gel formation in clouds, by analyzing the distribution of the largest droplet at an early stage of cloud formation, and to show that the mass of the gel (
lucky droplet) is a mixture of Gaussian and Gumbel distributions. The results obtained may help advance the understanding of precipitation formation and are a novel application of the theory of critical phenomena in cloud physics.
Jianhao Zhang and Paquita Zuidema
Atmos. Chem. Phys., 19, 14493–14516, https://doi.org/10.5194/acp-19-14493-2019, https://doi.org/10.5194/acp-19-14493-2019, 2019
Short summary
Short summary
Boundary layer (BL) semi-direct effects in the remote SE Atlantic are investigated using LASIC field measurements and satellite retrievals. Low-cloud cover and cloud liquid water path decrease with increasing smoke loadings in the BL. Daily-mean surface-based mixed layer is warmer by 0.5 K, moisture accumulates near the surface throughout the night, and the BL deepens by 200 m, with LWPs and cloud top heights increasing, in the sunlit morning hours, as part of the smoke-altered BL diurnal cycle.
Xianda Gong, Heike Wex, Thomas Müller, Alfred Wiedensohler, Kristina Höhler, Konrad Kandler, Nan Ma, Barbara Dietel, Thea Schiebel, Ottmar Möhler, and Frank Stratmann
Atmos. Chem. Phys., 19, 10883–10900, https://doi.org/10.5194/acp-19-10883-2019, https://doi.org/10.5194/acp-19-10883-2019, 2019
Short summary
Short summary
For the diverse aerosol on Cyprus, we found the following: new particle formation can be a source of cloud condensation nuclei. Particle hygroscopicity showed that particles ~<100 nm contained mostly organic material, while larger ones were more hygroscopic. Two separate methods obtained similar concentrations of ice-nucleating particles (INP), with mostly no evidence of a local origin. Different parameterizations overestimated INP concentration in this rather polluted region.
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Short summary
This study presents airborne measurements in shallow convection over land to investigate the dynamic properties of clouds focusing on possible narrow downdraughts in the surrounding of the clouds. A characteristic narrow downdraught region (
subsiding shell) is found directly outside the cloud borders for the mean vertical wind distribution. The
subsiding shellresults from the distribution of the highly variable updraughts and downdraughts in the near vicinity of the cloud.
Samuel Nahmani, Olivier Bock, and Françoise Guichard
Atmos. Chem. Phys., 19, 9541–9561, https://doi.org/10.5194/acp-19-9541-2019, https://doi.org/10.5194/acp-19-9541-2019, 2019
Short summary
Short summary
A mesoscale convective system (MCS) is a cloud system that occurs in connection with an ensemble of thunderstorms and produces a contiguous precipitation area of the order of 100 km or more. Numerous questions related to MCSs remain poorly answered (e.g., their life cycle, and interactions between physical processes and atmospheric circulations). This work shows how a GPS technique can provide relevant and complementary information on MCSs passing over or in the vicinity of observation stations.
Jörg Burdanowitz, Stefan A. Buehler, Stephan Bakan, and Christian Klepp
Atmos. Chem. Phys., 19, 9241–9252, https://doi.org/10.5194/acp-19-9241-2019, https://doi.org/10.5194/acp-19-9241-2019, 2019
Short summary
Short summary
Sensitivity of precipitation to sea surface temperature over the ocean determines how precipitation potentially changes in a warming climate. This relationship has hardly been studied over ocean due to a lack of long-term oceanic data. Our study shows how the precipitation sensitivity depends on resolution, what process limits oceanic precipitation and how the event duration depends on temperature. This provides valuable information for future climate observations, modeling and understanding.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Christopher J. Cox, David C. Noone, Max Berkelhammer, Matthew D. Shupe, William D. Neff, Nathaniel B. Miller, Von P. Walden, and Konrad Steffen
Atmos. Chem. Phys., 19, 7467–7485, https://doi.org/10.5194/acp-19-7467-2019, https://doi.org/10.5194/acp-19-7467-2019, 2019
Short summary
Short summary
Fogs are frequently reported by observers on the Greenland Ice Sheet. Fogs play a role in the hydrological and energetic balances of the ice sheet surface, but as yet the properties of Greenland fogs are not well known. We observed fogs in all months from Summit Station for 2 years and report their properties. Annually, fogs impart a slight warming to the surface and a case study suggests that they are particularly influential by providing insulation during the coldest part of the day in summer.
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 19, 7297–7317, https://doi.org/10.5194/acp-19-7297-2019, https://doi.org/10.5194/acp-19-7297-2019, 2019
Short summary
Short summary
This work looks at how the amount of aerosols contained in cloud affects the spatial orientation of the cloud droplets. Droplet orientation is important because it can lead to changes in the amount of time it takes precipitation to form. The results show that the aerosol amount does not have any effect on the droplet orientation. It is found however that the droplets are spaced closer together (there is increased droplet clustering) at cloud edge and top, as compared to center and bottom.
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019, https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary
Short summary
Raindrop size distributions have not been systematically studied over the oceans but are significant for remotely sensing, assimilating, and modeling rain. Here we investigate raindrop populations with new global in situ data, compare them against satellite estimates, and explore a new technique to classify the shapes of these distributions. The results indicate the inadequacy of a commonly assumed shape in some regions and the sizable impact of shape variability on satellite measurements.
Luis A. Ladino, Graciela B. Raga, Harry Alvarez-Ospina, Manuel A. Andino-Enríquez, Irma Rosas, Leticia Martínez, Eva Salinas, Javier Miranda, Zyanya Ramírez-Díaz, Bernardo Figueroa, Cedric Chou, Allan K. Bertram, Erika T. Quintana, Luis A. Maldonado, Agustín García-Reynoso, Meng Si, and Victoria E. Irish
Atmos. Chem. Phys., 19, 6147–6165, https://doi.org/10.5194/acp-19-6147-2019, https://doi.org/10.5194/acp-19-6147-2019, 2019
Short summary
Short summary
This study presents results obtained during a field campaign conducted in the tropical village of Sisal located on the coast of the Gulf of Mexico. Air masses arriving in Sisal during the passage of cold fronts have surprisingly higher ice-nucleating particle (INP) concentrations than the campaign average. The high concentrations of INPs at T > −15 C and the supermicron size of the INPs suggest that biological particles may have been a significant contributor to the INP population in Sisal.
Douglas H. Lowenthal, A. Gannet Hallar, Robert O. David, Ian B. McCubbin, Randolph D. Borys, and Gerald G. Mace
Atmos. Chem. Phys., 19, 5387–5401, https://doi.org/10.5194/acp-19-5387-2019, https://doi.org/10.5194/acp-19-5387-2019, 2019
Short summary
Short summary
Snow and liquid cloud particles were measured during the StormVEx and IFRACS programs at Storm Peak Lab to better understand snow formation in wintertime mountain clouds. We found significant interactions between the ice and liquid phases of the cloud. A relationship between large droplet and small ice crystal concentrations suggested snow formation by droplet freezing. Blowing snow can bias surface measurements, but its effect was ambiguous, calling for further work on this issue.
Maiken Vassel, Luisa Ickes, Marion Maturilli, and Corinna Hoose
Atmos. Chem. Phys., 19, 5111–5126, https://doi.org/10.5194/acp-19-5111-2019, https://doi.org/10.5194/acp-19-5111-2019, 2019
Short summary
Short summary
Multilayer clouds are coexisting clouds at different heights. We evaluate measurements and find that Arctic multilayer clouds occur in 29 % of the investigated days at Ny-Ålesund, Svalbard. Multilayer clouds can interact by ice crystals falling from the upper cloud into the lower cloud. This is possible in 23 % of the investigated days, and in 9 % it is not possible. Weather models are still error-prone in the Arctic and we suggest that multilayer clouds should be included more in future work.
Cited articles
Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015.
Bacon, N. J., Swanson, B. D., Baker, M. B., and Davis, E. J.: Breakup of
levitated frost particles, J. Geophys. Res., 103, 13763–13775,
https://doi.org/10.1029/98JD01162, 1998.
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric
Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field
Studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009.
Baumgardner, D., Jonsson, H. H., Dawson, W., O'Connor, D. P., and Newton, R.:
The Cloud, Aerosol and Precipitation Spectrometer: A New Instrument for
Cloud Investigations, Atmos. Res., 59–60, 251–264,
https://doi.org/10.1016/S0169-8095(01)00119-3, 2001.
Beard, K. V.: Ice initiation in warm-base convective clouds: An assessment of
microphysical mechanisms, Atmos. Res., 28, 125–152,
https://doi.org/10.1016/0169-8095(92)90024-5, 1992.
Bergeron, T.: On the physics of clouds and precipitation, Procès
Verbaux de l'Association de Météorologie, International Union of
Geodesy and Geophysics, Lisbon, 2, 156–178, 1935.
Beswick, K. M., Gallagher, M. W., Webb, A. R., Norton, E. G., and Perry, F.: Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project, Atmos. Chem. Phys., 8, 5449–5463, https://doi.org/10.5194/acp-8-5449-2008, 2008.
Bower, K. N., Moss, S. J., Johnson, D. W., Choularton, T. W., Latham, J., Brown,
P. R. A., Blyth, A. M., and Cardwell, J.: A parametrization of ice water content
observed in frontal and convective clouds, Q. J. Roy. Meteor. Soc., 122,
1815–1844, https://doi.org/10.1002/qj.49712253605, 1996.
Braham, R. R.: What is the Role of Ice in Summer Rain-Showers?, J. Atmos.
Sci., 21, 640–645, https://doi.org/10.1175/1520-0469(1964)021<0640:WITROI>2.0.CO;2, 1964.
Brownscombe, J. L. and Thorndike, N. S. C.: Freezing and Shattering of Water
Droplets in Free Fall, Nature, 220, 687–689, https://doi.org/10.1038/220687a0,
1968.
Cai, Y., Montague, D. C., Mooiweer-Bryan, W., and Deshler, T.: Performance
characteristics of the ultra high sensitivity aerosol spectrometer for
particles between 55 and 800 nm: Laboratory and field studies, J. Aerosol
Sci., 39, 759–769, https://doi.org/10.1016/j.jaerosci.2008.04.007, 2008.
Cantrell, W. and Heymsfield, A. J.: Production of Ice in Tropospheric
Clouds: A Review, B. Am. Meteorol. Soc., 86, 795–808,
https://doi.org/10.1175/BAMS-86-6-795, 2005.
Choularton, T. W., Latham, J., and Mason, B. J.: A possible mechanism of ice
splinter production during riming, Nature, 274, 791–792,
https://doi.org/10.1038/274791a0, 1978.
Choularton, T. W., Griggs, D., Y. Humood, B., and Latham, J.: Laboratory
studies of riming, and its relation to ice splinter production, Q. J. Roy.
Meteor. Soc., 106, 367–374, https://doi.org/10.1002/qj.49710644809, 1980.
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–4985, https://doi.org/10.5194/acp-12-4963-2012, 2012.
Creamean, J. M., Kirpes, R. M., Pratt, K. A., Spada, N. J., Maahn, M., de Boer, G., Schnell, R. C., and China, S.: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location, Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018, 2018.
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–273, https://doi.org/10.5194/acp-11-257-2011, 2011.
Crosier, J., Choularton, T. W., Westbrook, C. D., Blyth, A. M., Bower, K.
N., Connolly, P. J., Dearden, C., Gallagher, M. W., Cui, Z., and Nicol, J.
C.: Microphysical properties of cold frontal rainbands, Q. J. Roy. Meteor.
Soc., 140, 1257–1268, https://doi.org/10.1002/qj.2206, 2014.
Davison, C., Ratvasky, T., and Lilie, L.: Naturally Aspirating Isokinetic
Total Water Content Probe: Wind Tunnel Test Results and Design
Modifications, in: SAE 2011 International Conference on Aircraft and Engine
Icing and Ground Deicing, Chicago, Illinois, 13–17 June 2011.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Diaz Martinez, M., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol as
a unique source of ice nucleating particles, P. Natl. Acad. Sci. USA, 113,
5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016.
Dong, Y. Y. and Hallett, J.: Droplet accretion during rime growth and the
formation of secondary ice crystals, Q. J. Roy. Meteor. Soc., 115, 127–142, https://doi.org/10.1002/qj.49711548507, 1989.
Dong, Y. Y., Oraltay, R. G., and Hallett, J.: Ice particle generation during
evaporation, Atmos. Res., 32, 45–53, https://doi.org/10.1016/0169-8095(94)90050-7, 1994.
Dye, J. E. and Hobbs, P. V.: Effect of carbon dioxide on the shattering of
freezing water drops, Nature, 209, 464–466, https://doi.org/10.1038/209464a0, 1966.
Dye, J. E. and Hobbs, P. V: The Influence of Environmental Parameters on the
Freezing and Fragmentation of Suspended Water Drops, J. Atmos. Sci., 25,
82–96, https://doi.org/10.1175/1520-0469(1968)025<0082:TIOEPO>2.0.CO;2, 1968.
Emersic, C. and Connolly, P. J.: Microscopic observations of riming on an
ice surface using high speed video, Atmos. Res., 185, 65–72,
https://doi.org/10.1016/j.atmosres.2016.10.014, 2017.
Evans, D. G. and Hutchinson, W. C. A.: The electrification of freezing water
droplets and of colliding ice particles, Q. J. Roy. Meteor. Soc., 89,
370–375, https://doi.org/10.1002/qj.49708938108, 1963.
Field, P. R., Wood, R., Brown, P. R. A., Kaye, P. H., Hirst, E., Greenaway,
R., and Smith, J. A.: Ice Particle Interarrival Times Measured with a Fast
FSSP, J. Atmos. Ocean. Tech., 20, 249–261,
https://doi.org/10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2, 2003.
Field, P. R., Heymsfield, A. J., and Bansemer, A.: Shattering and Particle
Interarrival Times Measured by Optical Array Probes in Ice Clouds, J. Atmos.
Ocean. Tech., 23, 1357–1371, https://doi.org/10.1175/JTECH1922.1, 2006.
Field, P. R., Lawson, P., Brown, P., Lloyd, G., Westbrook, C., Moisseev, D.,
Miltenberger, A., Nenes, A., Blyth, A., Choularton, T., Connolly, P.,
Bühl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P., Flossmann, A.
I., Heymsfield, A. J., Huang, Y., and Sullivan, S.: Secondary Ice Production: Current State of the Science and Recommendations for the Future, Meteor.
Mon., 58, 7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017.
Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R.,
DeMott, P. J., Prenni, A. J., and Heymsfield, A. J.: Ice properties of
single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment:
2. Model results, J. Geophys. Res., 112, D24202,
https://doi.org/10.1029/2007JD008646, 2007.
Fu, S., Deng, X., Shupe, M. D., and Xue, H.: A modelling study of the
continuous ice formation in an autumnal Arctic mixed-phase cloud case,
Atmos. Res., 228, 77–85, https://doi.org/10.1016/j.atmosres.2019.05.021, 2019.
Fukuta, N. and Takahashi, T.: The Growth of Atmospheric Ice Crystals: A
Summary of Findings in Vertical Supercooled Cloud Tunnel Studies, J. Atmos.
Sci., 56, 1963–1979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2, 1999.
Gagin, A.: Effect of supersaturation on the ice crystal production by
natural aerosols, J. Rech. Atmos., 6, 175–185, 1972.
Gagin, A. and Nozyce, N.: The nucleation of ice crystals during the freezing
of large supercooled drops, J. Rech. Atmos., 18, 119–129, 1984.
Gardiner, B. A. and Hallett, J.: Degradation of In-Cloud Forward Scattering
Spectrometer Probe Measurements in the Presence of Ice Particles, J. Atmos.
Ocean. Tech., 2, 171–180, https://doi.org/10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2, 1985.
Gayet, J.-F., Febvre, G., and Larsen, H.: The Reliability of the PMS FSSP in
the Presence of Small Ice Crystals, J. Atmos. Ocean. Tech., 13,
1300–1310, https://doi.org/10.1175/1520-0426(1996)013<1300:TROTPF>2.0.CO;2, 1996.
Gonda, T. and Yamazaki, T.: Morfology of ice droxtals growth from
supercooled water droplets, J. Cryst. Growth, 45, 66–69, https://doi.org/10.1016/0022-0248(78)90416-5, 1978.
Gonda, T. and Yamazaki, T.: Initial Growth forms of Snow Crystals Growing
from Frozen Cloud Droplets, J. Meteorol. Soc. Jpn., 62, 190–192,
https://doi.org/10.2151/jmsj1965.62.1_190, 1984.
Griggs, D. and Choularton, T.: Freezing modes of riming drops with
application to ice splinter production, Q. J. Roy. Meteor. Soc., 109,
243–253, https://doi.org/10.1002/qj.49710945912, 1983.
Hallett, J.: Experimental Studies of the Crystallization of Supercooled
Water, J. Atmos. Sci., 21, 671–682, https://doi.org/10.1175/1520-0469(1964)021<0671:ESOTCO>2.0.CO;2, 1964.
Hallett, J. and Mossop, S. C.: Production of secondary ice particles during
the riming process, Nature, 249, 26–28, https://doi.org/10.1038/249026a0, 1974.
Hallett, J., Sax, R. I., Lamb, D., and Murty, A. S. R.: Aircraft measurements
of ice in Florida cumuli, Q. J. Roy. Meteor. Soc., 104, 631–651,
https://doi.org/10.1002/qj.49710444108, 1978.
Harris-Hobbs, R. L. and Cooper, W. A.: Field Evidence Supporting
Quantitative Predictions of Secondary Ice Production Rates, J. Atmos. Sci.,
44, 1071–1082, https://doi.org/10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2, 1987.
Heymsfield, A. J.: On measurements of small ice particles in clouds,
Geophys. Res. Lett., 34, L23812, https://doi.org/10.1029/2007GL030951, 2007.
Hobbs, P. V: Ice Multiplication in Clouds, J. Atmos. Sci., 26, 315–318,
https://doi.org/10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2, 1969.
Hobbs, P. V. and Alkezweeny, A. J.: The Fragmentation of Freezing Water
Droplets in Free Fall, J. Atmos. Sci., 25, 881–888,
https://doi.org/10.1175/1520-0469(1968)025<0881:TFOFWD>2.0.CO;2, 1968.
Hobbs, P. V. and Farber, R.: Fragmentation of ice particles in clouds, J.
Rech. Atmos., 6, 245–258, 1972.
Hobbs, P. V. and Rangno, A. L.: Ice Particle Concentrations in Clouds, J.
Atmos. Sci., 42, 2523–2549, https://doi.org/10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2, 1985.
Hobbs, P. V. and Rangno, A. L.: Rapid Development of High Ice Particle
Concentrations in Small Polar Maritime Cumuliform Clouds, J. Atmos. Sci.,
47, 2710–2722, https://doi.org/10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2, 1990.
Iwabuchi, T. and Magono, C.: A Laboratory Experiment on the Freezing
Electrification of Freely Falling Water Droplets, J. Meteorol. Soc. Jpn.,
53, 393–401, https://doi.org/10.2151/jmsj1965.53.6_393, 1975.
Jayaratne, E. R., Saunders, C. P. R., and Hallett, J.: Laboratory studies of
the charging of soft-hail during ice crystal interactions, Q. J. Roy.
Meteor. Soc., 109, 609–630, https://doi.org/10.1002/qj.49710946111, 1983.
Jensen, E. J., Lawson, P., Baker, B., Pilson, B., Mo, Q., Heymsfield, A. J., Bansemer, A., Bui, T. P., McGill, M., Hlavka, D., Heymsfield, G., Platnick, S., Arnold, G. T., and Tanelli, S.: On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys., 9, 5519–5537, https://doi.org/10.5194/acp-9-5519-2009, 2009.
Johnson, D. A. and Hallett, J.: Freezing and shattering of supercooled water
drops, Q. J. Roy. Meteor. Soc., 94, 468–482, https://doi.org/10.1002/qj.49709440204, 1968.
Jiusto, J. E. and Weickmann, H. K.: Types of snowfall, B. Am. Meteorol. Soc., 54, 1149–1162, https://doi.org/10.1175/1520-0477(1973)054<1148:TOS>2.0.CO;2, 1973
Kachurin, L. G. and Bekryaev, V. I.: Investigation of the electrification of
crystallizing water, Dokl. Akad. Nauk. SSSR, 130, 57–60, 1960.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Keppas, S. C., Crosier, J., Choularton, T. W., and Bower, K. N.: Ice lollies:
An ice particle generated in supercooled conveyor belts, Geophys. Res.
Lett., 44, 5222–5230, https://doi.org/10.1002/2017GL073441, 2017.
Khain, A., Arkhipov, V., Pinsky, M., Feldman, Y., and Ryabov, Ya.: Rain Enhancement and Fog Elimination by Seeding with Charged Droplets. Part I: Theory and Numerical Simulations, J. Appl. Meteorol., 43, 1513–1529 https://doi.org/10.1175/JAS-3281.1, 2004.
King, W. D. and Fletcher, N. H.: Thermal Shock as an Ice Multiplication
Mechanism. Part I. Theory, J. Atmos. Sci., 33, 85–96,
https://doi.org/10.1175/1520-0469(1976)033<0085:TSAAIM>2.0.CO;2, 1976a.
King, W. D. and Fletcher, N. H.: Thermal Shock as an Ice Multiplication
Mechanism. Part II. Experimental, J. Atmos. Sci., 33, 97–102,
https://doi.org/10.1175/1520-0469(1976)033<0097:TSAAIM>2.0.CO;2, 1976b.
Knollenberg, R. G.: Techniques for probing cloud microstructure, in: Clouds
their Formation, Optical Properties, and Effects, edited by: Hobbs, P. V. and
Deepak, A., Academic Press, New York, 15–91, 1981.
Kobayashi, T.: The growth of snow crystals at low supersaturatios, Philos. Mag., 6, 1363–1370, https://doi.org/10.1080/14786436108241231, 1961.
Koenig, L. R.: The Glaciating Behavior of Small Cumulonimbus Clouds, J.
Atmos. Sci., 20, 29–47, https://doi.org/10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2, 1963.
Koenig, L. R.: Drop Freezing Through Drop Breakup, J. Atmos. Sci., 22,
448–451, https://doi.org/10.1175/1520-0469(1965)022<0448:DFTDB>2.0.CO;2, 1965.
Kolomeychuk, R. J., McKay, D. C., and Iribarne, J. V: The Fragmentation and
Electrification of Freezing Drops, J. Atmos. Sci., 32, 974–979,
https://doi.org/10.1175/1520-0469(1975)032<0974:TFAEOF>2.0.CO;2, 1975.
Korolev, A.: Reconstruction of the Sizes of Spherical Particles from Their
Shadow Images. Part I: Theoretical Considerations, J. Atmos. Ocean. Tech.,
24, 376–389, https://doi.org/10.1175/JTECH1980.1, 2007a.
Korolev, A.: Limitations of the Wegener-Bergeron-Findeisen Mechanism in the Evolution of Mixed-phase Clouds, J. Atmos. Sci., 64, 3372–3375, 2007b.
Korolev, A. and Field, P. R.: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements, Atmos. Meas. Tech., 8, 761–777, https://doi.org/10.5194/amt-8-761-2015, 2015.
Korolev, A., Emery, E., and Creelman, K.: Modification and Tests of Particle
Probe Tips to Mitigate Effects of Ice Shattering, J. Atmos. Ocean. Tech., 30, 690–708, https://doi.org/10.1175/JTECH-D-12-00142.1, 2013.
Korolev, A., Shashkov, A., and Barker, H.: Calibrations and Performance of
the Airborne Cloud Extinction Probe, J. Atmos. Ocean. Tech., 31, 326–345, https://doi.org/10.1175/JTECH-D-13-00020.1, 2014.
Korolev, A., Heckman, I., and Wolde, M.: Observation of Phase Composition and
Humidity in: Oceanic Mesoscale Convective Systems, 15th AMS Cloud Physics
Conference, Vancouver, BC, 9–13 July 2018, available at:
https://ams.confex.com/ams/15CLOUD15ATRAD/webprogram/Paper347111.html (last access: 27 January 2020), 2018
Korolev, A. V. and Isaac, G. A.: Relative humidity in liquid, mixed-phase,
and ice clouds, J. Atmos. Sci., 63, 2865–2880, https://doi.org/10.1175/JAS3784.1,
2006.
Korolev, A. V. and Mazin, I. P.: Supersaturation of Water Vapor in Clouds, J.
Atmos. Sci., 60, 2957–2974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2, 2003.
Korolev, A. V., Strapp, J. W., Isaac, G. A., and Nevzorov, A. N.: The Nevzorov
Airborne Hot-Wire LWC–TWC Probe: Principle of Operation and Performance
Characteristics, J. Atmos. Ocean. Tech., 15, 1495–1510,
https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2, 1998.
Korolev, A. V., Bailey, M. P., Hallett, J., and Isaac, G. A.: Laboratory and
in situ observation of deposition growth of frozen drops, J. Appl.
Meteorol., 43, 612–622, https://doi.org/10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2, 2004.
Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A.,
Wasey, M., and Marcotte, D.: Small Ice Particles in Tropospheric Clouds: Fact
or Artifact? Airborne Icing Instrumentation Evaluation Experiment, B. Am.
Meteorol. Soc., 92, 967–973, https://doi.org/10.1175/2010BAMS3141.1, 2011.
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification
with Deep Convolutional Neural Networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1145/3065386, 2017.
Ladino, L. A., Korolev, A., Heckman, I., Wolde, M., Fridlind, A. M., and
Ackerman, A. S.: On the role of ice-nucleating aerosol in the formation of
ice particles in tropical mesoscale convective systems, Geophys. Res. Lett.,
44, 1574–1582, https://doi.org/10.1002/2016GL072455, 2017.
Lance, S., Brock, C. A., Rogers, D., and Gordon, J. A.: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683–1706, https://doi.org/10.5194/amt-3-1683-2010, 2010.
Landau, L. D. and Lifshitz, E. M.: Fluid Mechanics, Pergamon Press, Oxford, 6, 539 pp., 1987.
Langham, E. J. and Mason, B. J.: The Heterogeneous and Homogeneous
Nucleation of Supercooled Water, P. Roy. Soc. A-Math. Phy., 247, 493–504,
https://doi.org/10.1098/rspa.1958.0207, 1958.
Lasher-Trapp, S., Leon, D. C., DeMott, P. J., Villanueva-Birriel, C. M.,
Johnson, A. V., Moser, D. H., Tully, C. S., and Wu, W.: A Multisensor
Investigation of Rime Splintering in Tropical Maritime Cumuli, J. Atmos.
Sci., 73, 2547–2564, https://doi.org/10.1175/JAS-D-15-0285.1, 2016.
Latham, J. and Mason, B. J.: Generation of electric charge associated with
the formation of soft hail in thunderclouds, P. Roy. Soc. A.-Math. Phy., 260, 237–249, https://doi.org/10.1098/rspa.1961.0052, 1961.
Lauber, A., Schätzle, M., Handmann, P., Kiselev, A., and Leisner, T.:
Production of secondary ice particles and splintering of freezing droplets
as a potential mechanism of ice multiplication, in: Proceedings of the
International Conference on Clouds and Precipitation, Manchester, United
Kingdom, 24–29 July 2016, available at:
https://bwsyncandshare.kit.edu/dl/fiCNioFokGC4zRCLdPongUXD/ICCP_2016_Kiselev.ppt (last access: 27 January 2020), 2016.
Lauber, A., Kiselev, A., Pander, T., Handmann, P., and Leisner, T.: Secondary
Ice Formation during Freezing of Levitated Droplets, J. Atmos. Sci., 75,
2815–2826, https://doi.org/10.1175/JAS-D-18-0052.1, 2018.
Lawson, P., Gurganus, C., Woods, S., and Bruintjes, R.: Aircraft Observations
of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” Secondary Ice Process, J. Atmos. Sci., 74,
2899–2920, https://doi.org/10.1175/JAS-D-17-0033.1, 2017.
Lawson, R. P.: Effects of ice particles shattering on the 2D-S probe, Atmos. Meas. Tech., 4, 1361–1381, https://doi.org/10.5194/amt-4-1361-2011, 2011.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L.: An overview
of microphysical properties of Arctic clouds observed in May and July 1998
during FIRE ACE, J. Geophys. Res., 106, 14989–15014,
https://doi.org/10.1029/2000JD900789, 2001.
Lawson, R. P., O'Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and
Jonsson, H.: The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New
Airborne, High-Speed, High-Resolution Particle Imaging Probe, J. Atmos.
Ocean. Tech., 23, 1462–1477, https://doi.org/10.1175/JTECH1927.1, 2006.
Lawson, R. P., Woods, S., and Morrison, H.: The microphysics of ice and precipitation development in tropical cumulus clouds, J. Atmos. Sci., 72, 2429–2445, https://doi.org/10.1175/JAS-D-14-0274.1, 2015.
Lloyd, G., Choularton, T. W., Bower, K. N., Gallagher, M. W., Connolly, P. J., Flynn, M., Farrington, R., Crosier, J., Schlenczek, O., Fugal, J., and Henneberger, J.: The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch, Atmos. Chem. Phys., 15, 12953–12969, https://doi.org/10.5194/acp-15-12953-2015, 2015.
Macklin, W. C.: The Production of Ice Splinters During Riming, Nubila, 3,
30–33, 1960.
Macklin, W. C. and Payne, G. S.: The spreading of accreted droplets, Q. J.
Roy. Meteor. Soc., 95, 724–730, https://doi.org/10.1002/qj.49709540606, 1969.
Magono, C. and Lee, C.: Meteorological classification of natural snow crystals, J. Fac. Sci., Hokkaido Univ., Ser. VII, 2, 321–335, 1966.
Magono, C., Fujita, S.-I., and Taniguchi, T.: Unusual Types of Single Ice
Crystals Originating from Frozen Cloud Droplets, J. Atmos. Sci., 36,
2495–2501, https://doi.org/10.1175/1520-0469(1979)036<2495:UTOSIC>2.0.CO;2, 1979
Mason, B. J.: The Physics of clouds, Oxford University Press, 2nd edn., 671 pp., 1971.
Mason, B. J. and Maybank, J.: The fragmentation and electrification of
freezing water drops, Q. J. Roy. Meteor. Soc., 86, 176–185, https://doi.org/10.1002/qj.49708636806, 1960.
Mazin, I. P., Korolev, A. V., Heymsfield, A., Isaac, G. A., and Cober, S. G.: Thermodynamics of Icing Cylinder for Measurements of Liquid Water
Content in Supercooled Clouds, J. Atmos. Ocean. Tech., 18, 543–558, 2001.
McFarquhar, G. M., Um, J., Freer, M., Baumgardner, D., Kok, G. L., and Mace,
G.: Importance of small ice crystals to cirrus properties: Observations from
the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Geophys.
Res. Lett., 34, L13803, https://doi.org/10.1029/2007GL029865, 2007.
Milbrandt, J. A. and Yau, M. K.: A Multimoment Bulk Microphysics
Parameterization. Part II: A Proposed Three-Moment Closure and Scheme
Description, J. Atmos. Sci., 62, 3065–3081, https://doi.org/10.1175/JAS3535.1, 2005.
Mossop, S. C.: Concentrations of Ice Crystals in Clouds, B. Am. Meteorol.
Soc., 51, 474–479, https://doi.org/10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2, 1970.
Mossop, S. C.: Some Factors Governing Ice Particle Multiplication in Cumulus
Clouds, J. Atmos. Sci., 35, 2033–2037,
https://doi.org/10.1175/1520-0469(1978)035<2033:SFGIPM>2.0.CO;2, 1978.
Mossop, S. C.: The mechanism of ice splinter production during riming, Geophys. Res. Lett., 7, 167–169, 1980.
Mossop, S. C.: The Origin and Concentration of Ice Crystals in Clouds, B.
Am. Meteorol. Soc., 66, 264–273, https://doi.org/10.1175/1520-0477(1985)066<0264:TOACOI>2.0.CO;2, 1985.
Mossop, S. C. and Hallett, J.: Ice Crystal Concentration in Cumulus Clouds:
Influence of the Drop Spectrum, Science, 186, 632–634,
https://doi.org/10.1126/science.186.4164.632, 1974.
Mossop, S. C., Ono, A., and Heffernan, K. J.: Studies of ice crystal in
natural clouds, Journal de Recherches Atmosphériques, 3, 45–64, 1964.
Mossop, S. C., Cottis, R. E., and Bartlett, B. M.: Ice crystal concentrations
in cumulus and stratocumulus clouds, Q. J. Roy. Meteor. Soc., 98, 105–123,
https://doi.org/10.1002/qj.49709841509, 1972.
Muchnik, V. M. and Rudko, J. S.: Peculiarities of freezing supercooled water
drops, Trudy Ukrainsk Hydro Meteorological Institute, 26, 64–73, 1961.
Nix, N. and Fukuta, N.: Nonsteady-State Kinetics of Droplet Growth in Cloud
Physics, J. Atmos. Sci., 31, 1334–1343,
https://doi.org/10.1175/1520-0469(1974)031<1334:NSKODG>2.0.CO;2, 1974.
Ono, A.: Some Aspects of the Natural Glaciation Processes in Relatively Warm
Maritime Clouds, J. Meteorol. Soc. Jpn., 49A, 845–858,
https://doi.org/10.2151/jmsj1965.49A.0_845, 1971.
Ono, A.: Evidence on the nature of ice crystal multiplication processes in
natural cloud, J. Rech. Atmos., 6, 399–408, 1972.
Oraltay, R. G. and Hallett, J.: Evaporation and melting of ice crystals: A
laboratory study, Atmos. Res., 24, 169–189, https://doi.org/10.1016/0169-8095(89)90044-6, 1989.
Pinsky, M., Khain, A., and Korolev, A.: Theoretical Analysis of Liquid–Ice
Interaction in the Unsaturated Environment with Application to the Problem
of Homogeneous Mixing, J. Atmos. Sci., 75, 1045–1062, https://doi.org/10.1175/jas-d-17-0228.1, 2018.
Pitter, R. L. and Pruppacher, H. R.: A wind tunnel investigation of freezing
of small water drops falling at terminal velocity in air, Q. J. Roy. Meteor.
Soc., 99, 540–550, https://doi.org/10.1002/qj.49709942111, 1973.
Price, H. C., Baustian, K. J., McQuaid, J. B., Blyth, A., Bower, K. N.,
Choularton, T., Cotton, R. J., Cui, Z., Field, P. R., Gallagher, M., Hawker,
R., Merrington, A., Miltenberger, A., Neely, R. R., Parker, S. T.,
Rosenberg, P. D., Taylor, J. W., Trembath, J., Vergara-Temprado, J., Whale,
T. F., Wilson, T. W., Young, G., and Murray, B. J.: Atmospheric
Ice-Nucleating Particles in the Dusty Tropical Atlantic, J. Geophys. Res.-Atmos., 123, 2175–2193, https://doi.org/10.1002/2017JD027560, 2018.
Qu, Z., Barker, H. W., Korolev, A. V., Milbrandt, J. A., Heckman, I., Bélair, S., Leroyer, S., Vaillancourt, P. A., Wolde, M., Schwarzenböck, A., Leroy, D., Strapp, J. W., Cole, J. N. S., Nguyen, L., and Heidinger, A.: Evaluation of a high-resolution numerical weather prediction model's simulated clouds using observations from CloudSat, GOES-13 and in situ aircraft, Q. J. Roy. Meteor. Soc., 144, 1681–1694, https://doi.org/10.1002/qj.3318, 2018.
Rangno, A. L.: Fragmentation of Freezing Drops in Shallow Maritime Frontal
Clouds, J. Atmos. Sci., 65, 1455–1466, https://doi.org/10.1175/2007jas2295.1, 2008.
Rangno, A. L. and Hobbs, P. V.: Production of ice particles in clouds due to
aircraft penetrations, J. Clim. Appl. Meteorol., 22, 214–232, https://doi.org/10.1175/1520-0450(1983)022<0214:POIPIC>2.0.CO;2, 1983.
Rosinski, J., Nagamoto, C. T., and Kerrigan, T. C.: Heterogeneous nucleation
of water and ice in the transient supersaturation field surrounding a
freezing drop, J. Rech. Atmos., 9, 107–117, 1975.
Schwarzenboeck, A., Shcherbakov, V., Lefevre, R., Gayet, J. F., Pointin, Y.,
and Duroure, C.: Indications for stellar-crystal fragmentation in Arctic
clouds, Atmos. Res., 92, 220–228, https://doi.org/10.1016/j.atmosres.2008.10.002, 2009.
Stith, J. L., Avallone, L. M., Bansemer, A., Basarab, B., Dorsi, S. W., Fuchs, B., Lawson, R. P., Rogers, D. C., Rutledge, S., and Toohey, D. W.: Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates, Atmos. Chem. Phys., 14, 1973–1985, https://doi.org/10.5194/acp-14-1973-2014, 2014.
Stott, D. and Hutchinson, W. C. A.: The electrification of freezing water
drops, Q. J. Roy. Meteor. Soc., 91, 80–86, https://doi.org/10.1002/qj.49709138711,
1965.
Takahashi, C.: Deformations of Frozen Water Drops and Their Frequencies, J.
Meteorol. Soc. Jpn., 53, 402–411, https://doi.org/10.2151/jmsj1965.53.6_402, 1975.
Takahashi, C.: Relation between the Deformation and the Crystalline Nature
of Frozen Water Drops, J. Meteorol. Soc. Jpn., 54, 448–453,
https://doi.org/10.2151/jmsj1965.54.6_448, 1976.
Takahashi, C. and Mori, M.: Growth of snow crystals from frozen water
droplets, Atmos. Res., 82, 385–390, https://doi.org/10.1016/j.atmosres.2005.12.013, 2006.
Takahashi, C. and Yamashita, A.: Deformation and Fragmentation of Freezing
Water Drops in Free Fall, J. Meteorol. Soc. Jpn., 47, 431–436,
https://doi.org/10.2151/jmsj1965.47.6_431, 1969.
Takahashi, C. and Yamashita, A.: Shattering of Frozen Water Drops in a
Supercooled Cloud, J. Meteorol. Soc. Jpn., 48, 373–376,
https://doi.org/10.2151/jmsj1965.48.4_373, 1970.
Takahashi, T.: High ice crystal production in winter cumuli over the Japan
Sea, Geophys. Res. Lett., 20, 451–454, https://doi.org/10.1029/93GL00613, 1993.
Takahashi, T., Nagao, Y.,and Kushiyama, Y.: Possible High Ice Particle
Production during Graupel–Graupel Collisions, J. Atmos. Sci., 52,
4523–4527, https://doi.org/10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2, 1995.
Uyeda, H. and Kikuchi, K.: Freezing Experiment of Supercooled Water Droplets
Frozen by Using Single Crystal Ice, J. Meteorol. Soc. Jpn., Ser. II, 56,
43–51, https://doi.org/10.2151/jmsj1965.56.1_43, 1978.
Vaillant de Guélis, T., Schwarzenböck, A., Shcherbakov, V., Gourbeyre, C., Laurent, B., Dupuy, R., Coutris, P., and Duroure, C.: Study of the diffraction pattern of cloud particles and the respective responses of optical array probes, Atmos. Meas. Tech., 12, 2513–2529, https://doi.org/10.5194/amt-12-2513-2019, 2019.
Vardiman, L.: The Generation of Secondary Ice Particles in Clouds by
Crystal–Crystal Collision, J. Atmos. Sci., 35, 2168–2180,
https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2, 1978.
Wegener, A.: Thermodynamik der Atmosphäre, J. A. Barth, Leipzig, 1911.
Welti, A., Müller, K., Fleming, Z. L., and Stratmann, F.: Concentration and variability of ice nuclei in the subtropical maritime boundary layer, Atmos. Chem. Phys., 18, 5307–5320, https://doi.org/10.5194/acp-18-5307-2018, 2018.
Wex, H., Huang, L., Zhang, W., Hung, H., Traversi, R., Becagli, S., Sheesley, R. J., Moffett, C. E., Barrett, T. E., Bossi, R., Skov, H., Hünerbein, A., Lubitz, J., Löffler, M., Linke, O., Hartmann, M., Herenz, P., and Stratmann, F.: Annual variability of ice-nucleating particle concentrations at different Arctic locations, Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019, 2019.
Wildeman, S., Sterl, S., Sun, C., and Lohse, D.: Fast Dynamics of Water
Droplets Freezing from the Outside In, Phys. Rev. Lett., 118, 84101,
https://doi.org/10.1103/PhysRevLett.118.084101, 2017.
Williams, A. and Marcotte, D.: Wind measurements on a maneuvering
twin-engine turboprop aircraft accounting for flow distortion, J. Atmos.
Ocean. Tech., 17, 795–810, 2000.
Wolde, M. and Pazmany, A.: NRC dual-frequency airborne radar for
atmospheric research, in: 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, 22–29 October 2005, Amer. Meteor. Soc., P1R.9, available at: https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96918.htm (last access: 27 January 2020), 2005.
Woodley, W. L., Henderson, T. J., Vonnegut, B., Gordon, G., Breidenthal, R., and Holle, S. M.: Aircraft-produced ice particles (APIPs) in supercooled clouds and the probable mechanism for their production, J. Appl. Meteorol., 30, 1469–1489, https://doi.org/10.1175/1520-0450(1991)030<1469:APIPIS>2.0.CO;2, 1991.
Short summary
This study attempts identification of mechanisms of secondary ice production (SIP) based on the observation of small faceted ice crystals. It was found that in both mesoscale convective systems and frontal clouds, SIP was observed right above the melting layer and extended to the higher altitudes with colder temperatures. A principal conclusion of this work is that the freezing drop shattering mechanism is plausibly accounting for the measured ice concentrations in the observed condition.
This study attempts identification of mechanisms of secondary ice production (SIP) based on the...
Altmetrics
Final-revised paper
Preprint