Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9235–9254, 2016
https://doi.org/10.5194/acp-16-9235-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 9235–9254, 2016
https://doi.org/10.5194/acp-16-9235-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jul 2016

Research article | 28 Jul 2016

Theoretical study of mixing in liquid clouds – Part 1: Classical concepts

Alexei Korolev1, Alex Khain2, Mark Pinsky2, and Jeffrey French3 Alexei Korolev et al.
  • 1Environment and Climate Change Canada, Cloud Physics and Severe Weather Section, Toronto, Canada
  • 2Department of Atmospheric Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
  • 3University of Wyoming, Laramie, WY, USA

Abstract. The present study considers final stages of in-cloud mixing in the framework of classical concept of homogeneous and extreme inhomogeneous mixing. Simple analytical relationships between basic microphysical parameters were obtained for homogeneous and extreme inhomogeneous mixing based on the adiabatic consideration. It was demonstrated that during homogeneous mixing the functional relationships between the moments of the droplets size distribution hold only during the primary stage of mixing. Subsequent random mixing between already mixed parcels and undiluted cloud parcels breaks these relationships. However, during extreme inhomogeneous mixing the functional relationships between the microphysical parameters hold both for primary and subsequent mixing. The obtained relationships can be used to identify the type of mixing from in situ observations. The effectiveness of the developed method was demonstrated using in situ data collected in convective clouds. It was found that for the specific set of in situ measurements the interaction between cloudy and entrained environments was dominated by extreme inhomogeneous mixing.

Publications Copernicus
Short summary
Relationships between basic microphysical parameters are studied within the framework of homogeneous and extreme inhomogeneous mixing. Analytical expressions and numerical simulations of relationships between droplet concentration, extinction coefficient, liquid water content, and mean volume droplet size are presented. The obtained relationships between moments are used to identify type of mixing for in situ observations obtained in convective clouds.
Relationships between basic microphysical parameters are studied within the framework of...
Citation
Altmetrics
Final-revised paper
Preprint