Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13781-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13781-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ozone affected by a succession of four landfall typhoons in the Yangtze River Delta, China: major processes and health impacts
Chenchao Zhan
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Chongwu Huang
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Jane Liu
School of Geographic Sciences, Fujian Normal University, Fuzhou 350007, China
Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
Tijian Wang
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Meng Xu
Jiangsu Provincial Climate Center, Nanjing 210009, China
Chaoqun Ma
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Jianwei Yu
Jiangsu Provincial Meteorological Observatory, Nanjing 210008, China
Yumeng Jiao
Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu 233030, China
Mengmeng Li
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Shu Li
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Bingliang Zhuang
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Ming Zhao
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Dongyang Nie
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210023, China
Related authors
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024, https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
Short summary
We investigate extremely hot weather impacts on surface ozone over the southeastern coast of China with and without tropical cyclones. Compared to hot days alone, ozone concentration decreased notably in the Yangtze River Delta (YRD) but increased in the Pearl River Delta (PRD) during tropical cyclones and hot days. The YRD benefited from strong and clean sea winds aiding ozone elimination. In contrast, the PRD experienced strong northeasterly winds that potentially transport ozone pollution.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
Haoran Zhang, Chengchun Shi, Chuanyou Ying, Shengheng Weng, Erling Ni, Lanbu Zhao, Peiheng Yang, Keqin Tang, Xueyu Zhou, Chuanhua Ren, Tengyu Liu, Mengmeng Li, Nan Li, and Xin Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2630, https://doi.org/10.5194/egusphere-2025-2630, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study reports a unique diurnal pattern of nitrous acid (HONO), featuring higher concentrations around noon, based on one-month measurements in coastal Fujian, southeast China. Using an improved chemical transport model, we successfully reproduced the observed HONO levels and temporal variations. Further process analyses and sensitivity experiments quantified the formation mechanisms of HONO in coastal areas and shed light on its impact on the formation of OH radicals and ozone.
Mengzhu Xi, Min Xie, Yi Luo, Danyang Ma, Lingyun Feng, Shitong Chen, and Shuxian Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2466, https://doi.org/10.5194/egusphere-2025-2466, 2025
Short summary
Short summary
Tropical cyclones have a significant impact on ozone in coastal areas by affecting atmospheric circulation and meteorological conditions. We have studied the impact and future trends of climate change in the Yangtze River Delta region and found that the intensification of climate change will exacerbate the impact of TC on O3 in the Yangtze River Delta, requiring strengthened monitoring and early warning.
Danyang Ma, Min Xie, Huan He, Tijian Wang, Mengzhu Xi, Lingyun Feng, Shuxian Zhang, and Shitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-10, https://doi.org/10.5194/egusphere-2025-10, 2025
Short summary
Short summary
The PM2.5 concentration in China underwent significant changes in 2013. We examined the underlying causes from three perspectives: anthropogenic pollutant emissions, meteorological conditions, and CO2 concentration variations. Our study highlighted the importance of considering the role of CO2 on vegetation when predicting PM2.5 concentrations and developing corresponding control strategies.
Hua Lu, Min Xie, Nan Wang, Bojun Liu, Jinyue Jiang, Bingliang Zhuang, Jianfeng Yang, Kunqin Lv, and Danyang Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-598, https://doi.org/10.5194/egusphere-2025-598, 2025
Short summary
Short summary
Fires are important sources of air pollution in many regions. This study isolates fire-specific PM2.5 from observations, showing its increasing proportion in recent years. Our findings indicate that fire-specific PM2.5 disproportionately affects impoverished populations in Asia Pacific. Furthermore, we suggest that, under future climate change, fire-specific PM2.5 will likely continue rising. This highlights the need for interventions to reduce fire-related air pollution and its health impacts.
Xin Zeng, Tijian Wang, Congwu Huang, Bingliang Zhuang, Shu Li, Mengmeng Li, Min Xie, Qian Zhang, and Nanhong Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-608, https://doi.org/10.5194/egusphere-2025-608, 2025
Short summary
Short summary
In this study, we enhanced the regional climate-chemistry-ecology model to reveal the seasonal and spatial variations of N2O levels. The lowest concentration was recorded in June (334.01 ppb), while the highest occurred in December (335.42 ppb). Certain regions, such as the North China Plain and the Ganges Basin, exhibited higher nitrous oxide levels. We also gained deeper insights into the complex interactions between N2O emissions and atmospheric processes.
Beiyao Xu, Steven Dobbie, Huiyi Yang, Lianxin Yang, Yu Jiang, Andrew Challinor, Karina Williams, Yunxia Wang, and Tijian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4077, https://doi.org/10.5194/egusphere-2024-4077, 2025
Short summary
Short summary
Ozone (O3) pollution harms rice production and threatens food security. To understand these impacts, we calibrated a crop model using unique data from experiments where rice was grown in open fields under controlled O3 exposure (free air). This is the first time such data has been used to improve a model’s ability to predict how rice responds to O3 pollution. Our work provides a more accurate tool to study O3’s effects and guide strategies to protect agriculture.
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024, https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
Short summary
We investigate extremely hot weather impacts on surface ozone over the southeastern coast of China with and without tropical cyclones. Compared to hot days alone, ozone concentration decreased notably in the Yangtze River Delta (YRD) but increased in the Pearl River Delta (PRD) during tropical cyclones and hot days. The YRD benefited from strong and clean sea winds aiding ozone elimination. In contrast, the PRD experienced strong northeasterly winds that potentially transport ozone pollution.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179, https://doi.org/10.5194/amt-17-167-2024, https://doi.org/10.5194/amt-17-167-2024, 2024
Short summary
Short summary
Observations of vertical wind in regions with complex terrain are essential, but they are always sparse and have poor representation. Data verification and quality control are conducted on the wind profile radar and Aeolus wind products in this study, trying to compensate for the limitations of wind field observations. The results shed light on the comprehensive applications of multi-source wind profile data in complicated terrain regions with sparse ground-based wind observations.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Shiyue Zhang, Gang Zeng, Tijian Wang, Xiaoye Yang, and Vedaste Iyakaremye
Atmos. Chem. Phys., 22, 16017–16030, https://doi.org/10.5194/acp-22-16017-2022, https://doi.org/10.5194/acp-22-16017-2022, 2022
Short summary
Short summary
Severe haze days in eastern China (HDEC) are affected by the atmospheric circulation variations on a synoptic scale, while the dominant atmospheric circulation patterns influencing HDEC and the differences between them are still unclear. This study obtains three dominant circulation types that could lead to severe HDEC and investigates the differences between them. The results provide a basis for establishing applicable haze prediction and management policies.
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Da Gao, Min Xie, Jane Liu, Tijian Wang, Chaoqun Ma, Haokun Bai, Xing Chen, Mengmeng Li, Bingliang Zhuang, and Shu Li
Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, https://doi.org/10.5194/acp-21-5847-2021, 2021
Short summary
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, https://doi.org/10.5194/acp-21-5705-2021, 2021
Short summary
Short summary
The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020, https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary
Short summary
Combining simulations from a global chemical transport model and a trajectory model, we find that black carbon aerosols from South Asia and East Asia contribute 77 % of the surface black carbon in the Tibetan Plateau. The Asian monsoon largely modulates inter-annual transport of black carbon from non-local regions to the Tibetan Plateau surface in most seasons, while inter-annual fire activities in South Asia influence black carbon concentration over the Tibetan Plateau surface mainly in spring.
Cited articles
Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: Recent
Northern Hemisphere tropical expansion primarily driven by black carbon and
tropospheric ozone, Nature, 485, 350–354, https://doi.org/10.1038/nature11097, 2012.
Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An estimate
of the global burden of anthropogenic ozone and fine particulate matter on
premature human mortality using atmospheric modeling, Environ. Health
Perspect., 118, 1189–1195, https://doi.org/10.1289/ehp.0901220, 2010.
Chameides, W. and Walker, J. C. G.: A photochemical theory of tropospheric
ozone, J. Geophys. Res., 78, 8751–8760,
https://doi.org/10.1029/JC078i036p08751, 1973.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation, Mon. Weather Rev., 129, 587–604, 2001.
China National Environmental Monitoring Centre: available at: http://106.37.208.233:20035/, last access: 10 November 2020.
Deng, T., Wang, T., Wang, S., Zou, Y., Yin, C., Li, F., Liu, L., Wang, N.,
Song, L., Wu, C., and Wu, D.: Impact of typhoon periphery on high ozone and
high aerosol pollution in the Pearl River Delta region, The Scie.
Total Eenviron., 668, 617-630, https://doi.org/10.1016/j.scitotenv.2019.02.450, 2019.
Department of atmospheric science: University of Wyoming, available at: http://weather.uwyo.edu/, last access: 10 November 2020.
Ding, A. J., Wang, T., Thouret, V., Cammas, J.-P., and Nédélec, P.: Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmos. Chem. Phys., 8, 1–13, https://doi.org/10.5194/acp-8-1-2008, 2008.
Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station, Atmos. Chem. Phys., 13, 5813–5830, https://doi.org/10.5194/acp-13-5813-2013, 2013.
Ding, A., Nie, W., Huang, X., Chi, X., Sun, J., Kerminen, V.-M., Xu, Z.,
Guo, W., Petäjä, T., Yang, X., Kulmala, M., and Fu, C.: Long-term
observation of air pollution-weather/climate interactions at the SORPES
station: a review and outlook, Front. Environ. Sci.
Eng., 10, 15, https://doi.org/10.1007/s11783-016-0877-3, 2016.
Dong, J. Y., Liu, X. R., and Zhang, B. Z.: Meta-analysis of association between
short-term ozone exposure and population mortality in China, Acta Sci.
Circum., 36. 1477–1485, 2016 (in Chinese).
Fan, Q., Lan, J., Liu, Y. M., Wang, X. M., Chan, P. W., Hong, Y. Y., Feng,
Y. R., Liu, Y. X., Zeng, Y. J., and Liang, G. X.: Process analysis of
regional aerosol pollution during spring in the Pearl River Delta region,
China, Atmos. Environ., 122, 829–838, 2015.
Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C.,
Pfister, G. G., Fadnavis, S., and Pithani, P.: Premature mortality in India
due to PM2.5 and ozone exposure, Geophys. Res. Lett., 43, 4650–4658,
https://doi.org/10.1002/2016gl068949, 2016.
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 38-31–38-34, https://doi.org/10.1029/2002gl015311, 2002.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe
urban haze formation in China, P. Natl. Acad.
Sci. USA, 111, 17373–17378,
https://doi.org/10.1073/pnas.1419604111, 2014.
Hong, S. Y., Dudhia, J., and Chen, S. H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103–120, 2004.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, 2006.
Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system, Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, 2016.
Huang, J. P., Fung, J. C. H., Lau, A. K. H., and Qin, Y.: Numerical simulation and process analysis of typhoon-related ozone episodes in Hong Kong, J. Geophys. Res.-Atmos., 110, D05301, https://doi.org/10.1029/2004jd004914, 2005.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and
Prevot, A. S.: High secondary aerosol contribution to particulate pollution
during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774,
2014.
Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski,
D., Shi, Y. L., Calle, E., and Thun, M.: Long-Term Ozone Exposure and
Mortality., New Engl. J. Med., 360, 1085–1095, 2009.
Jiang, Y. C., Zhao, T. L., Liu, J., Xu, X. D., Tan, C. H., Cheng, X. H., Bi, X. Y., Gan, J. B., You, J. F., and Zhao, S. Z.: Why does surface ozone peak before a typhoon landing in southeast China?, Atmos. Chem. Phys., 15, 13331–13338, https://doi.org/10.5194/acp-15-13331-2015, 2015.
Jiménez, P. A. and Dudhia, J.: Improving the Representation of Resolved
and Unresolved Topographic Effects on Surface Wind in the WRF Model, J. Appl. Meteorol. Climatol., 51, 300–316,
https://doi.org/10.1175/jamc-d-11-084.1, 2012.
Jin, Y., Andersson, H., and Zhang, S.: Air Pollution Control Policies in
China: A Retrospective and Prospects, Int. J. Environ. Res. Public Health, 13, 1219,
https://doi.org/10.3390/ijerph13121219, 2016.
Kamens, R., Jang, M., Chien, C. J., and Leach, K.: Aerosol formation from
the reaction of alpha-pinene and ozone using a gas-phase kinetics aerosol
partitioning model, Environ. Sci. Technol., 33, 1430–1438,
1999.
Kan, H., Chen, R., and Tong, S.: Ambient air pollution, climate change, and
population health in China, Environ. Int., 42, 10–19,
https://doi.org/10.1016/j.envint.2011.03.003, 2012.
Khoder, M. I.: Atmospheric conversion of sulfur dioxide to particulate
sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid
in an urban area, Chemosphere, 49, 675–684, 2002.
Kim, H.-J. and Wang, B.: Sensitivity of the WRF model simulation of the East Asian summer monsoon in 1993 to shortwave radiation schemes and ozone absorption, Asia-Pac. J. Atmos. Sci., 47, 167–180, https://doi.org/10.1007/s13143-011-0006-y, 2011.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Streets, D. G., Fu, J. S., and Jang, C. J.: Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system, Atmos. Chem. Phys., 12, 10971–10987, https://doi.org/10.5194/acp-12-10971-2012, 2012.
Li, G. H., Zhang, R. Y., Fan, J. W., and Tie, X. X.: Impacts of black carbon aerosol on photolysis and ozone, J. Geophys. Res.-Atmos., 110, D23206, https://doi.org/10.1029/2005JD005898, 2005.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, Nat. Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Huang, X., Chen, P., Zhao,
M., and Liu, J.: Formation and Evolution Mechanisms for Two Extreme Haze
Episodes in the Yangtze River Delta Region of China During Winter 2016,
J. Geophys. Res.-Atmos., 124, 3607–3623,
https://doi.org/10.1029/2019jd030535, 2019.
Li, M. M., Wang, T., Xie, M., Zhuang, B., Li, S., Han, Y., and Chen, P.:
Impacts of aerosol-radiation feedback on local air quality during a severe
haze episode in Nanjing megacity, eastern China, Tellus B: Chem.
Phys. Meteorol., 69, 1339548, https://doi.org/10.1080/16000889.2017.1339548, 2017a.
Li, M. M., Wang, T., Xie, M., Zhuang, B., Li, S., Han, Y., Song, Y., and Cheng,
N.: Improved meteorology and ozone air quality simulations using MODIS land
surface parameters in the Yangtze River Delta urban cluster, China, J. Geophys. Res.-Atmos., 122, 3116–3140, https://doi.org/10.1002/2016jd026182,
2017b.
Li, S. H. and Hong, H. P.: Typhoon wind hazard estimation for China using
an empirical track model, Nat. Hazards, 82, 1009–1029,
https://doi.org/10.1007/s11069-016-2231-2, 2016.
Li, S., Wang, T., Huang, X., Pu, X., Li, M., Chen, P., Yang, X.-Q., and
Wang, M.: Impact of East Asian Summer Monsoon on Surface Ozone Pattern in
China, J. Geophys. Res.-Atmos., 123, 1401–1411,
https://doi.org/10.1002/2017jd027190, 2018.
Liao, J., Wang, T., Jiang, Z., Zhuang, B., Xie, M., Yin, C., Wang, X., Zhu,
J., Fu, Y., and Zhang, Y.: WRF/Chem modeling of the impacts of urban
expansion on regional climate and air pollutants in Yangtze River Delta,
China, Atmos. Environ., 106, 204–214,
https://doi.org/10.1016/j.atmosenv.2015.01.059, 2015.
Liao, Z., Gao, M., Sun, J., and Fan, S.: The impact of synoptic circulation
on air quality and pollution-related human health in the Yangtze River Delta
region, The Sci. Total Environ., 607–608, 838–846,
https://doi.org/10.1016/j.scitotenv.2017.07.031, 2017.
Liu, D., Pang, L., and Xie, B.: Typhoon disaster in China: prediction,
prevention, and mitigation, Nat. Hazards, 49, 421–436,
https://doi.org/10.1007/s11069-008-9262-2, 2009.
Liu, H., Liu, S., Xue, B. R., Lv, Z. F., Meng, Z. H., Yang, X. F., Xue, T.,
Yu, Q., and He, K. B.: Ground-level ozone pollution and its health impacts
in China, Atmos. Environ., 173, 223–230, 2018.
Lou, S., Liao, H., and Zhu, B.: Impacts of aerosols on surface-layer ozone
concentrations in China through heterogeneous reactions and changes in
photolysis rates, Atmos. Environ., 85, 123–138,
https://doi.org/10.1016/j.atmosenv.2013.12.004, 2014.
Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang,
T., Gao, M., Zhao, Y., and Zhang, Y.: Severe Surface Ozone Pollution in
China: A Global Perspective, Environ. Sci. Technol. Lett.,
5, 487–494, https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contributions of the Geophysical Institute of the Slovak Academy of Sciences, 151, 163–187, 1954.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
NOAA: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, NCAR, Research Data Archive, https://doi.org/10.5065/D6M043C6, 2020.
Shu, L., Xie, M., Wang, T., Gao, D., Chen, P., Han, Y., Li, S., Zhuang, B., and Li, M.: Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China, Atmos. Chem. Phys., 16, 15801–15819, https://doi.org/10.5194/acp-16-15801-2016, 2016.
Shu, L., Xie, M., Gao, D., Wang, T., Fang, D., Liu, Q., Huang, A., and Peng, L.: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China, Atmos. Chem. Phys., 17, 12871–12891, https://doi.org/10.5194/acp-17-12871-2017, 2017.
Tang, X. Y., Li, J. L., Dong, Z. X., Wang, Y. Y., Wang, W. X., Qi, L. W., Liu,
X. L., Zhang, Y. T., Zhang, X. J., Tian, B. S., Jin, S. W., Yang, L. Q., Zhang,
Y. X.: Photochemical pollution in Lanzhou, China – a case study. J.
Environ. Sci. China, 1, 31–38, 1989.
Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and
Cofala, J.: The global impact of ozone on agricultural crop yields under
current and future air quality legislation, Atmos. Environ., 43,
604–618, https://doi.org/10.1016/j.atmosenv.2008.10.033, 2009.
Voorhees, A. S., Wang, J., Wang, C., Zhao, B., Wang, S., and Kan, H.: Public
health benefits of reducing air pollution in Shanghai: a proof-of-concept
methodology with application to BenMAP, The Sci. Total
Environm., 485–486, 396–405, https://doi.org/10.1016/j.scitotenv.2014.03.113, 2014.
Wang, T. and Kwok, J. Y. H.: Measurement and analysis of a multiday
photochemical smog episode in the Pearl River delta of China, J. Appl.
Meteorol., 42, 404–416, 2003.
Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M., and Russell, A. G.: Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system, Atmos. Chem. Phys., 10, 4423–4437, https://doi.org/10.5194/acp-10-4423-2010, 2010.
Wang, M., Cao, C., Li, G., and Singh, R. P.: Analysis of a severe prolonged
regional haze episode in the Yangtze River Delta, China, Atmos.
Environ., 102, 112–121, https://doi.org/10.1016/j.atmosenv.2014.11.038, 2015.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, The Sci. Total
Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, T., Gao, T., Zhang, H., Ge, M., Lei, H., Zhang, P., Zhang, P., Lu, C.,
Liu, C., Zhang, H., Zhang, Q., Liao, H., Kan, H., Feng, Z., Zhang, Y., Qie,
X., Cai, X., Li, M., Liu, L., and Tong, S.: Review of Chinese atmospheric
science research over the past 70 years: Atmospheric physics and atmospheric
environment, Sci. China Earth Sci., 62, 1903–1945,
https://doi.org/10.1007/s11430-019-9536-1, 2019.
Wei, X., Lam, K.-S., Cao, C., Li, H., and He, J.: Dynamics of the Typhoon
Haitang Related High Ozone Episode over Hong Kong, Adv. Meteorol.,
2016, 1–12, https://doi.org/10.1155/2016/6089154, 2016.
Xie, M., Zhu, K., Wang, T., Yang, H., Zhuang, B., Li, S., Li, M., Zhu, X.,
and Ouyang, Y.: Application of photochemical indicators to evaluate ozone
nonlinear chemistry and pollution control countermeasure in China,
Atmos. Environ., 99, 466–473, https://doi.org/10.1016/j.atmosenv.2014.10.013, 2014.
Xie, M., Liao, J., Wang, T., Zhu, K., Zhuang, B., Han, Y., Li, M., and Li, S.: Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China, Atmos. Chem. Phys., 16, 6071–6089, https://doi.org/10.5194/acp-16-6071-2016, 2016a.
Xie, M., Zhu, K., Wang, T., Chen, P., Han, Y., Li, S., Zhuang, B., and Shu,
L.: Temporal characterization and regional contribution to O3 and NOx at an
urban and a suburban site in Nanjing, China, The Sci. Total
Environ., 551–552, 533–545, https://doi.org/10.1016/j.scitotenv.2016.02.047, 2016b.
Xie, M., Shu, L., Wang, T.-J., Liu, Q., Gao, D., Li, S., Zhuang, B.-L., Han,
Y., Li, M.-M., and Chen, P.-L.: Natural emissions under future climate
condition and their effects on surface ozone in the Yangtze River Delta
region, China, Atmos. Environ., 150, 162–180,
https://doi.org/10.1016/j.atmosenv.2016.11.053, 2017.
Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong, D. C., and Hao, J.: Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates, Atmos. Chem. Phys., 17, 9869–9883, https://doi.org/10.5194/acp-17-9869-2017, 2017.
Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability, Atmos. Chem. Phys., 8, 2595–2607, https://doi.org/10.5194/acp-8-2595-2008, 2008.
Yang, J. X., Lau, A. K. H., Fung, J. C. H., Zhou, W., and Wenig, M.: An air
pollution episode and its formation mechanism during the tropical cyclone
Nuri's landfall in a coastal city of south China, Atmos. Environ.,
54, 746–753, https://doi.org/10.1016/j.atmosenv.2011.12.023, 2012.
Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen,
D.: An Overview of the China Meteorological Administration Tropical Cyclone
Database, J. Atmos. Ocean. Technol., 31, 287–301,
https://doi.org/10.1175/jtech-d-12-00119.1, 2014.
Zhan, C.-C., Xie, M., Fang, D.-X., Wang, T.-J., Wu, Z., Lu, H., Li, M.-M.,
Chen, P.-L., Zhuang, B.-L., Li, S., Zhang, Z.-Q., Gao, D., Ren, J.-Y., and
Zhao, M.: Synoptic weather patterns and their impacts on regional particle
pollution in the city cluster of the Sichuan Basin, China, Atmos.
Environ., 208, 34–47, https://doi.org/10.1016/j.atmosenv.2019.03.033, 2019.
Zhang, Q. A., Wu, L. G., and Liu, Q. F.: Tropical Cyclone Damages in China
1983–2006, B. Am. Meteorol. Soc. 90, 489–496,
2009.
Zhao, C., Wang, Y., Yang, Q., Fu, R., Cunnold, D., and Choi, Y.: Impact of
East Asian summer monsoon on the air quality over China: View from space,
J. Geophys. Res., 115, D09301, https://doi.org/10.1029/2009jd012745, 2010.
Zhao, K., Li, X., Xue, M., Jou, B. J.-D., and Lee, W.-C.: Short-term
forecasting through intermittent assimilation of data from Taiwan and
mainland China coastal radars for Typhoon Meranti (2010) at landfall,
J. Geophys. Res.-Atmos., 117, D06108,
https://doi.org/10.1029/2011jd017109, 2012.
Short summary
The Yangtze River Delta (YRD) region has been suffering from severe ozone (O3) pollution in recent years. Synoptic systems, like typhoons, can have a significant effect on O3 episodes. However, research on landfall typhoons affecting O3 in the YRD is limited. This work aims to reveal the main processes of landfall typhoons affecting surface O3 and estimate health impacts of O3 during the study period in the YRD, which can be useful for taking reasonable pollution control measures in this area.
The Yangtze River Delta (YRD) region has been suffering from severe ozone (O3) pollution in...
Altmetrics
Final-revised paper
Preprint