Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13753-2020
https://doi.org/10.5194/acp-20-13753-2020
Research article
 | 
16 Nov 2020
Research article |  | 16 Nov 2020

Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern

Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun

Related authors

A change in the relationship between ENSO and the South Atlantic Subtropical Dipole in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2436,https://doi.org/10.5194/egusphere-2023-2436, 2023
Short summary
A change in the relation between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices in the past four decades
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023,https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Changes in sea-surface temperature and atmospheric circulation patterns associated with reductions in Arctic sea ice cover in recent decades
Lejiang Yu and Shiyuan Zhong
Atmos. Chem. Phys., 18, 14149–14159, https://doi.org/10.5194/acp-18-14149-2018,https://doi.org/10.5194/acp-18-14149-2018, 2018
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The Lagrangian Atmospheric Radionuclide Transport Model (ARTM) – sensitivity studies and evaluation using airborne measurements of power plant emissions
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024,https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Large-eddy-model closure and simulation of turbulent flux patterns over oasis surface
Bangjun Cao, Yaping Shao, Xianyu Yang, Xin Yin, and Shaofeng Liu
Atmos. Chem. Phys., 24, 275–285, https://doi.org/10.5194/acp-24-275-2024,https://doi.org/10.5194/acp-24-275-2024, 2024
Short summary
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521, https://doi.org/10.5194/acp-23-15507-2023,https://doi.org/10.5194/acp-23-15507-2023, 2023
Short summary
Investigating multiscale meteorological controls and impact of soil moisture heterogeneity on radiation fog in complex terrain using semi-idealised simulations
Dongqi Lin, Marwan Katurji, Laura E. Revell, Basit Khan, and Andrew Sturman
Atmos. Chem. Phys., 23, 14451–14479, https://doi.org/10.5194/acp-23-14451-2023,https://doi.org/10.5194/acp-23-14451-2023, 2023
Short summary
Effect of the boundary layer low-level jet on fast fog spatial propagation
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023,https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary

Cited articles

Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIRES Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. 
Blackport, R., Screen J. A., van der Wiel K., and Bintanja, R.: Minimal influence of reducedArctic sea ice on coincident cold winters in mid-latitudes, Nat. Clim. Change, 9, 697–704, https://doi.org/10.1038/s41558-019-0551-4, 2019. 
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: updated yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/8GQ8LZQVL0VL, 1996. 
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes, J. Climate, 27, 5411–5421, https://doi.org/10.1175/JCLI-D-13-00424.1, 2014. 
Chen, L., Francis J., and Hanna E.: The “Warm-Arctic/Cold continents” pattern during 1901–2010, Int. J. Climatol., 38, 5245–5254, https://doi.org/10.1002/joc.5725, 2018. 
Download
Short summary
The recent increasing trend of "warm Arctic, cold continents" has attracted much attention, but it remains debatable as to what forces are behind this phenomenon. Sea surface temperature (SST) over the central North Pacific and the North Atlantic oceans influences the trend. On an interdecadal timescale, the recent increase in the occurrences of the warm Arctic–cold Eurasia pattern is a fragment of the interdecadal variability of SST over the Atlantic Ocean and over the central Pacific Ocean.
Altmetrics
Final-revised paper
Preprint