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Abstract. The recent increasing trend of “warm Arctic, cold
continents” has attracted much attention, but it remains de-
batable as to what forces are behind this phenomenon. Here,
we revisited surface temperature variability over the Arctic
and the Eurasian continent by applying the self-organizing-
map (SOM) technique to gridded daily surface temperature
data. Nearly 40 % of the surface temperature trends are ex-
plained by the nine SOM patterns that depict the switch to
the current warm Arctic–cold Eurasia pattern at the begin-
ning of this century from the reversed pattern that domi-
nated the 1980s and 1990s. Further, no cause–effect relation-
ship is found between the Arctic sea ice loss and the cold
spells in the high-latitude to midlatitude Eurasian continent
suggested by earlier studies. Instead, the increasing trend in
warm Arctic–cold Eurasia pattern appears to be related to
the anomalous atmospheric circulations associated with two
Rossby wave trains triggered by rising sea surface tempera-
ture (SST) over the central North Pacific and the North At-
lantic oceans. On interdecadal timescale, the recent increase
in the occurrences of the warm Arctic–cold Eurasia pattern
is a fragment of the interdecadal variability of SST over the
Atlantic Ocean as represented by the Atlantic Multidecadal
Oscillation (AMO) and over the central Pacific Ocean.

1 Introduction

In recent decades, winter season temperature in the Arctic
has been rising at a rate faster than the warming experienced
in any other regions of the world (Stroeve et al., 2007; Screen

and Simmonds, 2010; Stroeve, 2012). In contrast, there has
been an increasing trend in colder-than-normal winters over
the northern midlatitude continents (Mori et al., 2014; Cohen
et al., 2014, 2018). This pattern of opposite winter tempera-
ture trend between the Arctic and high-latitude to midlatitude
continents, referred to as the “warm Arctic–cold continents”
pattern (Overland et al., 2011; Cohen et al., 2014; Walsh,
2014), has received considerable interest in the scientific
community especially with regard to dynamical and physical
mechanisms for the development of the phenomenon (Mori
et al., 2014; Vihma, 2014; Barnes and Screen, 2015; Kug et
al., 2015; Overland et al., 2015; Chen et al., 2018).

Using observational analyses or coupled ocean–
atmosphere modeling, a number of studies have attributed
the recent warm Arctic–cold continents pattern to the Arctic
sea ice loss in boreal winter (Inoue et al., 2012; Tang et
al., 2013; Mori et al., 2014; Kug et al., 2015; Cohen et al.,
2018; Mori et al., 2019). Sea ice variability in different parts
of the Arctic Ocean has been linked to climate variability
in different parts of the world. Specifically, sea ice loss in
the Barents and Kara seas has been linked to cold winters
over East Asia (Kim et al., 2014; Mori et al., 2014; Kug
et al., 2015; Overland et al., 2015) and in central Eurasia
(Mori et al., 2014), while a similar connection has been
found between cold winters in North America and sea ice
retreat in the East Siberian and Chukchi seas (Kug et al.,
2015). A more recent study (Matsumura and Kosaka, 2019)
attributed the warm Arctic–cold continents pattern to the
combined effect of Arctic sea ice loss and the atmospheric
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teleconnection induced by tropical Atlantic sea surface
temperature (SST) anomalies.

Other studies, however, found no cause-and-effect rela-
tionship between Arctic sea ice loss and midlatitude climate
anomalies (Blackport et al., 2019; Fyfe, 2019). Numerical
modeling studies using coupled ocean and atmospheric mod-
els simulated no cold midlatitude winters when the models
were forced with reduced Arctic sea ice cover (McCusker
et al., 2016; Sun et al., 2016; Blackport et al., 2019; Fyfe,
2019). Instead, these studies pointed to internal atmospheric
variability as the likely cause for cold winters in midlati-
tudes. Some studies have also suggested that on the interan-
nual timescale midlatitude atmospheric circulation anoma-
lies triggered by the Pacific and Atlantic SST oscillations
may explain both the Arctic sea ice loss and the cooling of
the high latitudes to midlatitudes (Lee et al., 2011; Luo et
al., 2016; Peings et al., 2019; Matsumura and Kosaka, 2019;
Clark and Lee, 2019). The sea surface temperature anomalies
over the Gulf Stream have also been linked to the Barents Sea
ice loss and Eurasian cooling (Sato et al., 2014).

Despite the recent attention given to the warm Arctic–cold
continents pattern, the roles various dynamical and physical
processes play in the formation of this phenomenon remain
debatable. In this study, we revisit surface temperature vari-
ability over the Arctic and the Eurasian continent (40–90◦ N,
20–130◦ E), where the warm Arctic–cold continents pattern
is a prominent feature (Cohen et al., 2014; Mori et al., 2014),
by applying the self-organizing-map (SOM) technique to
daily surface temperature over the recent four decades. We
will show that while the warm Arctic–cold Eurasian conti-
nent pattern has dominated the recent two decades, its oppo-
site pattern, cold Arctic–warm Eurasian continent, appeared
frequently in the 1980s and 1990s. Using century-long data,
we will further show that the warm Arctic–cold Eurasian
continent pattern is an intrinsic climate mode and the recent
increasing trend in its occurrence is a reflection of an inter-
decadal variability of the pattern. Using linear regression, we
explain the reason for the recent increasing occurrences of
the warm Arctic–cold continents pattern. We also assess the
role of the SST anomalies over the North Pacific and Atlantic
oceans in the variability of the warm Arctic–cold Eurasia pat-
tern on the interdecadal timescale.

2 Datasets and methods

2.1 Datasets

Daily surface air temperature and other climate variables
used in the current analyses, including 500 hPa geopoten-
tial height, 800 hPa wind, and mean sea level pressure, all
come from the European Centre for Medium-Range Weather
Forecasts (ECMWF) interim reanalysis (ERA-Interim; Dee
et al., 2011) with a horizontal resolution of approximately
79 km (T255) and 60 vertical levels in the atmosphere.

Compared to the earlier versions of ERA (e.g., ERA-40;
Uppala et al., 2005) and other global reanalysis products
(e.g., the NCEP reanalysis; Kalnay et al., 1996), ERA-
Interim has been found to be more accurate in portray-
ing the Arctic warming trend (Dee et al., 2011; Screen
and Simmonds, 2011) despite its known warm and moist
bias in the surface layer (Jakobson et al., 2012). Daily sea
ice data are obtained from the US National Snow and Ice
Data Center (NSIDC; ftp://sidads.colorado.edu/DATASETS/
nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily, last
access: 31 August 2020). Gridded monthly SST data used
in the current analysis are obtained from the US Na-
tional Oceanic and Atmospheric Administration (NOAA)
data archives (ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.
highres/, last access: 3 July 2020) (Reynolds et al. 2007). In
our analyses, we retain the trends in the data over the 1979–
2019 period.

The results obtained from the data within the recent four
decades are put into the context of the variability over longer
timescales using data from the 20th Century Reanalysis
project version 2C (20CR), which spans more than a century
(from 1851 to 2015) (Compo et al., 2011). The 20CR reanal-
ysis data, which have a horizontal resolution of 2◦ latitude
by 2◦ longitude and temporal resolution of 6 h, were pro-
duced by a model driven at the lower boundary by observed
monthly SST and sea ice conditions and with data assimila-
tion of surface pressure observations. Several indices used
to describe known modes of climate variability, including
the Arctic Oscillation (AO), Northern Atlantic Oscillation
(NAO), Atlantic Multidecadal Oscillation (AMO) (Enfield
et al., 2001), and Pacific Decadal Oscillation (PDO) (Man-
tua et al., 1997), are obtained from NOAA’s Climate Pre-
diction Center (CPC) (https://www.esrl.noaa.gov/psd/data/
climateindices/list/, last access: 21 March 2020).

2.2 Methods

From the perspective of nonlinear dynamic, a region’s cli-
mate has its intrinsic modes of variability, but the frequency
of occurrence of these internal modes can be modulated by
remote forces external to the region (Palmer, 1999; Hoskins
and Woollings, 2015; Shepherd, 2016). In this study, we
will first obtain the main modes of variability of wintertime
surface temperature in a region (40–90◦ N, 20–130◦ E) by
applying the SOM method (Kohonen, 2001) to daily sur-
face temperature data for the 40 winters (December, January,
February) from December 1979 to February 2019. The use
of daily data over four decades allows for capturing the vari-
ability across two timescales (synoptic and decadal). SOM
is a clustering method based on a neural network that can
transform multi-dimensional data into a two-dimensional ar-
ray without supervised learning. The array includes a series
of nodes arranged by a Sammon map (Sammon, 1969). Each
node in the array has a vector that can represent a spatial pat-
tern of the input data. The distance of any two nodes in the
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Table 1. Spatial correlation (Corr) between the daily winter (December, January, and February; DJF) surface air temperature and the corre-
sponding SOM pattern for each day from 1979 to 2018.

3× 1 2× 2 3× 2 4× 2 3× 3 5× 2 4× 3 5× 3 4× 4

Corr 0.26 0.43 0.48 0.48 0.50 0.49 0.50 0.51 0.51

Sammon map represents the level of similarity between the
spatial patterns of the two nodes. Because SOM has fewer
limitations than most other commonly used clustering meth-
ods (e.g., orthogonality required by the empirical orthogonal
function or EOF method), the SOM method can better de-
scribe the main variability patterns of the input data (Reusch
et al., 2005).

The SOM method has been used in atmospheric research
at midlatitudes and high latitudes of the Northern Hemi-
sphere (Skific et al., 2009; Johnson and Feldstein, 2010;
Horton et al., 2015; Loikith and Broccoli, 2015; Vihma et
al., 2019). For example, Johnson and Feldstein (2010) used
SOM to identify spatial patterns of daily wintertime North
Pacific sea level pressure and relate the variability of the oc-
currences of those patterns to some large-scale circulation
indices. Loikith and Broccoli (2015) compared observed and
model-simulated circulation patterns across the North Amer-
ican domain using an approaching involving SOM. The SOM
method was also used to detect circulation pattern trends in a
subset of North America during two different periods (Hor-
ton et al., 2015).

In this study, the SOM method is applied to ERA-
Interim wintertime daily temperature anomalies from De-
cember 1979 to February 2019. The anomalies are calculated
by subtracting 40-year-averaged daily temperature from the
original daily temperature at each grid point. Prior to SOM
analysis, it is necessary to determine how many SOM nodes
are needed to best capture the variability in the data. Accord-
ing to previous studies (Lee and Feldstein, 2013; Gibson et
al., 2017; Schudeboom et al., 2018), the rule for determining
the number of SOM nodes is that the number should be suffi-
ciently large to capture the variability of the data analyzed but
not too large to introduce unimportant details. Table 1 shows
the averaged spatial correlation between all daily surface air
temperature anomalies and their matching nodes. The spatial
correlation coefficients increase from 0.26 for a 3× 1 grid to
0.51 for a 4×4 grid, but the gain from a 3×3 grid to a 4×4
grid is relatively small. Hence, a 3×3 grid seems to meet the
abovementioned rule and will be utilized in this study.

The contribution of each SOM node to the trend in win-
tertime surface temperature anomalies is calculated by the
product of each node pattern and its frequency trend nor-
malized by the total number (90) of wintertime days (Lee
and Feldstein, 2013). The sum of the contributions from all
nodes denotes the SOM-explained trends. Residual trends
are equal to the subtraction of SOM-explained trends from
the total trends. The anomalous atmospheric circulation pat-

tern corresponding to each of the SOM pattern is obtained
by composite analysis that computes a composite mean of an
atmospheric circulation field (e.g., 500 hPa height) over all
occurrences of that SOM node. Regression analysis is also
performed where atmospheric circulation variables are re-
gressed onto the time series of the occurrence of a SOM node
to further elucidate the relationship between the variability of
atmospheric circulations and surface temperatures. The sta-
tistical significance of composite and regression analyses in
this study is tested by using the Student’s t test.

3 Results

3.1 Surface temperature variability

The majority of the nine SOM nodes depict a dipole pat-
tern characterized by opposite changes in surface temper-
atures between the Arctic Ocean and the Eurasian conti-
nent, although the sign switch does not always occur at the
continent–ocean boundary (Fig. 1). The differences in the po-
sition of the boundary between the warm and cold anomalies
reflects the transition between the cold Arctic–warm Eurasia
pattern (denoted, in descending order of the occurrence fre-
quency, by nodes 3, 9, and 6) and the warm Arctic–cold Eura-
sia pattern (depicted, in descending order of the occurrence
frequency, by nodes 1, 7, and 4). The spatial patterns repre-
sented by the first group of nodes are almost mirror images of
the patterns denoted by the corresponding nodes in the sec-
ond group. For example, the second node in group 1 (node
9, 15.4 %) and the first node in group 2 (node 1, 17.1 %)
show a mirror image pattern with cold (warm) anomalies in
the Arctic Ocean extending into northern Eurasia and warm
(cold) anomalies in the rest of the Eurasian continent in the
study domain. In both cases, the region of maximum magni-
tude anomalies is centered near Svalbard, Norway. The sec-
ond pair, denoted by node 3 (17.2 %) and 7 (13.7 %), has
the boundary of separation moved northward from the north-
ern Eurasian continent toward the shore of the Arctic Ocean.
While the maximum anomaly in the Arctic Ocean remains
close to Svalbard, maximum values over the continent are
found in central Russia. Nodes 4–6 display a noticeable tran-
sition from node 1 to node 7 and from node 3 to node 9,
respectively. Although nodes 2 and 8 show an approximate
monopole spatial pattern, they also represent a transition be-
tween nodes 1 and 3, and between nodes 7 and 9, respec-
tively. The above SOM analysis does not consider the trend in
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Figure 1. Spatial patterns of SOM nodes for daily wintertime (DJF) surface air temperature anomalies (◦C) from ERA-Interim reanalysis
over the 1979–2019 period. The number in brackets denotes the frequency of the occurrence for each node.

surface air temperature. The result is similar when the trend
is removed (not shown).

The temporal variability on this timescale is typically re-
lated to synoptic processes, and hence the questions are
what synoptic patterns are responsible for the occurrence
of the spatial patterns depicted by each of the nine SOM
nodes and how these patterns are related to those of the
Arctic sea ice anomalies. These questions can be answered
by using the composite method. Specifically, for each SOM
node, composite maps are made, respectively, for the anoma-
lous 500 hPa geopotential height, mean sea level pressure,
850 hPa wind, downward longwave radiation, surface tur-
bulent heat flux, and sea ice concentration over all the
days when the spatial variability of the surface temperature
anomalies is best matched by the spatial pattern of that node.

3.2 Large-scale circulation patterns

For all SOM nodes, the spatial pattern of the composited
500 hPa geopotential height anomalies (Fig. 2) is similar to
that of mean sea level pressure anomalies (not shown), in-
dicating an approximately barotropic structure. For nodes 1,
4, and 7, the 500 hPa height anomalies show a dipole struc-
ture of positive values over Siberia and negative values to
its south over the Eurasian continent. Anomalous southwest-

erly winds on the western side of the anticyclone over Siberia
transport warm and moist air from northern Europe and the
North Atlantic Ocean into the Atlantic sector of the Arc-
tic Ocean (Fig. 3), providing a plausible explanation of the
warm surface temperature anomalies in the region (Fig. 1).
On the eastern side of the anticyclone, anomalous northwest-
erly winds bring cold and dry air from the Arctic Ocean into
the Eurasian continent, which is consistent with the negative
surface temperature anomalies there. The opposite occurs for
nodes 3, 6, and 9. A similar explanation involving anoma-
lous pressure and wind fields can be applied to other nodes.
The dipole structure that dominates the anomalous 500 hPa
height fields over the North Atlantic Ocean for most nodes
resembles the spatial pattern of the NAO (Fig. 2). In addi-
tion, the patterns for several nodes, such as nodes 4 and 7,
have some resemblance to the spatial pattern of the AO over
larger geographical region. The possible connection to NAO
and AO is further investigated by averaging the daily index
values of NAO or AO over all occurrence days for each node.
The results (Table 2) show that nodes 1, 2, and 3 (5, 8, and
9) correspond to a significant positive (negative) phase of
the NAO index characterized by negative (positive) height
anomalies over Iceland and positive (negative) values over
the central North Atlantic Ocean. Association is also found
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Figure 2. Corresponding 500 hPa geopotential height anomalies (gpm) from ERA-Interim reanalysis over the 1979–2019 period for each
node in Fig. 1. Dotted regions indicate the above-95 % confidence level. The subdomain in 1 shows the study region.

between nodes 1, 2, 3, and 6 (5, 7, 8, and 9) and the positive
(negative) phases of the AO index.

3.3 Downward radiative fluxes

Besides the anomalous circulation patterns, anomalous sur-
face radiative fluxes may also play a role in shaping the spa-
tial pattern of surface temperature variability. In fact, the spa-
tial pattern of the mean anomalous daily downward longwave
radiation for an individual node (Fig. 4) is in good agreement
with the spatial pattern of the surface temperature anoma-
lies of that node. In other words, increased downward long-
wave radiation is associated with positive surface tempera-
ture anomalies, and vice versa. As expected from previous
studies (e.g., Sedlar et al. 2011), there is a significant posi-
tive correlation between downward longwave radiative fluxes
and the anomalous total column water vapor and mid-level
cloud cover (not shown). The correlation to low- and high-
level cloud cover is, however, not significant (not shown).
Most of the water vapor in both the Arctic and Eurasia is de-

rived from the North Atlantic Ocean, but the water vapor is
transported into the Arctic by southwesterly flows and into
Eurasia by northwesterly winds. The anomalous shortwave
radiation corresponding to each node (not shown) is an or-
der of magnitude smaller than that of the longwave radiation
anomalies and has a spatial pattern opposite to that of the
mid-level cloud cover and the longwave radiation anomalies.

3.4 Sea ice

The analyses presented above attempt to explain the spatial
pattern of surface temperature variability for each node from
the perspective of anomalous heat advection and surface ra-
diative fluxes. As mentioned earlier, there has been a debate
in the literature about the role played by the sea ice anomalies
in the Barents and Kara seas in the development of the warm
Arctic–cold Eurasia pattern. Here, we examine the anoma-
lous turbulent heat flux (Fig. 5) and sea ice concentration
(Fig. 6) for each node. Turbulent heat flux is considered posi-
tive when it is directed from the atmosphere downward to the
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Figure 3. Corresponding anomalous 850 hPa wind field (m s−1) from ERA-Interim reanalysis over the 1979–2019 period for each node in
Fig. 1. Shaded regions indicate the above-95 % confidence level.

Table 2. Averaged anomalous NAO and AO indices for all occurrences of each SOM node. Asterisks indicate the above-95 % confidence
level.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

NAO 0.38∗ 0.22∗ 0.12∗ 0.05 −0.22∗ −0.02 −0.07 −0.31∗ −0.32∗

AO 0.44∗ 0.38∗ 1.03∗ −0.42 −0.62∗ 0.22∗ −0.44∗ −1.11∗ −0.41∗

ocean or land surfaces. Thus, a positive anomaly indicates ei-
ther an increase in the atmosphere-to-surface heat transfer or
a decrease in the heat transfer from the surface to the atmo-
sphere. The magnitude of anomalous turbulent heat flux is
found to be comparable to that of anomalous downward long-
wave radiation (Fig. 4). For all nodes, the heat flux anomalies
are larger over the ocean than over land (Fig. 5). For node 1,
positive turbulent heat flux anomalies occur mainly over the
Barents Sea, the western and central North Atlantic Ocean,
and the eastern North Pacific Ocean, indicating an increase
in heat transport from the air to the ocean due possibly to
an increase in vertical temperature gradient caused by warm
air advection associated with anomalous circulation (Figs. 2
and 3). The downward heat transfer results in sea ice melt in

the Greenland Sea and the Barents Sea (Fig. 6). For node 4,
the anomalous southerly winds over the Nordic Sea produce
larger positive turbulent heat flux anomalies (Fig. 5). For
node 7, the anticyclone is located more northwards, which
generates opposite anomalous winds between the Nordic and
northern Barents seas and the southern Barents Sea and thus
opposite turbulent heat flux anomalies that are consistent
with the opposite sea ice concentration anomalies in the two
regions (Fig. 5). For nodes 3, 6, and 9, the anomalous cold air
from the central Arctic Ocean flows into warm water in the
Nordic and Barents seas, producing negative turbulent heat
flux anomalies and positive sea ice concentration anomalies
(Figs. 5 and 6). Sorokina et al. (2016) noted that turbulent
heat flux usually peaks 2 d before changes in surface temper-
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Figure 4. Corresponding anomalous daily accumulated downward longwave radiation (105 W m−2) from ERA-Interim reanalysis over the
1979–2019 period for each node in Fig. 1. Dotted regions indicate the above-95 % confidence level.

ature pattern occur. The pattern of the composited anoma-
lous 500 hPa geopotential height, turbulent heat flux, and sea
ice concentration 2 d prior to the day when the nodes occur
(not shown) is similar to the current-day pattern in Figs. 2,
5, and 6. Our results support the conclusion of Sorokina et
al. (2016) and Blackport et al. (2019) that the anomalous at-
mospheric circulations lead to the anomalous sea ice concen-
tration in the Barents Sea.

3.5 Trends in wintertime surface temperature

The results above suggest that both the surface temperature
anomaly patterns over the Arctic Ocean and Eurasian conti-
nent and the sea ice concentration anomalies in the Nordic
and Barents seas can be explained largely by changes in at-
mospheric circulations and the associated vertical and hor-
izontal heat and moisture transfer by mean and turbulent
flows. Next, we assess the trends of wintertime surface tem-
perature and the contributions of the SOM nodes to the
trends.

We first examine the time series of the accumulated num-
ber of days for each node in each winter for the 1979–2019
period (Fig. 7). The time series for nodes 1, 4, 6, and 9 ex-
hibit variability on interannual as well as decadal timescales.
The occurrence frequency is noticeably larger after 2003 than
prior to 2003 for nodes 1 and 4, and vice versa for nodes 6
and 9, and the difference between the two periods is signif-
icant at 95 % confidence level. Given the spatial patterns of
these four nodes (Fig. 1), this indicates that the warm Arctic–
cold Eurasia pattern occurred more frequently after 2003. A
linear trend analysis of the time series for each node (Table 3)
reveals significant positive trends in occurrence frequency for
nodes 1 and 4 and significant negative trends for nodes 6 and
9, which agree with the result from a previous study (Clark
and Lee, 2019; Overland et al., 2015) that suggested an in-
creasing trend of the warm Arctic–cold Eurasia pattern.

These trends in the occurrence frequency of the SOM
nodes contribute to the trends in the total wintertime (De-
cember, January, and February; DJF) surface temperature
anomalies (Fig. 8a) that have significant positive trends over
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Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible and latent heat) (105 W m−2) from ERA-Interim reanal-
ysis over the 1979–2019 period for each node in Fig. 1. Positive values denote heat flux from atmosphere to ocean, and vice versa. Dotted
regions indicate the above-95 % confidence level.

Table 3. Trends in the frequency of occurrences for each SOM node (d yr−1). Asterisks indicate the above-95 % confidence level.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Trend 0.80∗ 0.10 −0.18 0.22∗ −0.02 −0.39∗ 0.17 −0.17 −0.50∗

the Arctic Ocean and in regions of northern and eastern
Europe and negative, mostly insignificant trends in central
Siberia. The contribution, however, varies from node to node
(Fig. 9). Node 1 has the largest domain-averaged contribution
of 18.7 %, followed by its mirror node (node 9) at 10.1 %.
Nodes 4 and 6 account for 2.8 % and 4.3 % of the total trend,
respectively. None of the remaining nodes explain more than
2 %. All nodes together explain 39.5 % of the total trend in
wintertime surface air temperature. The spatial pattern of
the SOM-explained trends (Fig. 8b) is similar to the warm
Arctic–cold continents pattern, whereas the residual trend re-
sembles more the total trend (Fig. 8c).

3.6 Mechanisms

The results presented above indicate that the SOM patterns
explain nearly 40 % of the trend in wintertime surface air
temperature anomalies and majority of the contributions (35
out of 40 %) come from the two pairs of the nodes (nodes
1, 9, and 4, 6). The analyses hereafter will focus on these
four nodes. Below, we assess the atmospheric and oceanic
conditions associated with the occurrences of the four nodes
via regression analysis. Specifically, the anomalous seasonal
SST and atmospheric circulation variables are regressed onto
the normalized time series of the number of days when each
of the four nodes occurs (Figs. 10, 11, and 12).

Atmos. Chem. Phys., 20, 13753–13770, 2020 https://doi.org/10.5194/acp-20-13753-2020
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Figure 6. Corresponding anomalous wintertime sea ice concentration from the NSIDC over the 1979–2019 period for each node in Fig. 1.
Dotted regions indicate the above-95 % confidence level.

Figure 7. Time series of the number of days for occurrence of each SOM node in Fig. 1 over the 1979–2019 period. The red lines denote the
trend in the time series.
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Table 4. Frequencies of occurrence (%) of wintertime surface air
temperature patterns in Fig. 1 for all winters before 1998 and after
1998 for the period of 1979–2019. Values with asterisks are signifi-
cantly different from climatology above the 95 % confidence level.

Frequencies of occurrence

SOM All Winters Winters
patterns winters before 1998 after 1998

Node 1 17.1 7.4∗ 26.8
Node 2 4.4 3.3 5.4
Node 3 17.2 18.8 15.6
Node 4 8.6 5.4 11.7
Node 5 3.4 3.4 3.5
Node 6 10.2 15.2∗ 2.1∗

Node 7 13.7 10.6 16.8
Node 8 10.1 12.1 8.0
Node 9 15.4 23.7∗ 7.1∗

Figure 8. Total (a), SOM-explained (b), and residual (c) trend in
wintertime (DJF) surface air temperature (◦C yr−1) over the 1979–
2019 period. Dots in panel (a) indicate the above-95 % confidence
level.

For node 1, the SST regression pattern in the Pacific Ocean
shows significant positive anomalies over the tropical west-
ern Pacific Ocean and central North Pacific Ocean (Fig. 10).
The positive SST anomalies also occur over most of the
North Atlantic. Negative SST anomalies occur over the cen-
tral tropical Pacific Ocean, though they are not significant
at 95 % confidence level. The SST regression pattern is re-
versed for node 9. The direction of wave activity flux in-
dicates the direction of group speed of stationary planetary
wave. Here, we calculate the wave activity flux defined by
Takaya and Nakamura (2001), which considers the influence
of midlatitude zonal wind (Fig. 12). For node 1, the cor-
responding anomalous 500 hPa height regression (Fig. 11)
shows two Rossby wave trains: one is excited over the cen-
tral Pacific Ocean and propagates northeastwards into North
America and the North Atlantic Ocean, and the other, which
displays a stronger signal, originates from central North At-
lantic and propagates northeastwards to the Arctic Ocean and
southeastwards to the Eurasian continent (Figs. 11 and 12).
For node 9, the corresponding anomalous 500 hPa height and
streamfunction show an opposite pattern, but the wave activ-
ity flux is similar to that of node 1.

For node 4, the SST anomalies over the tropical Pacific
Ocean appear to be in a La Niña state, which shows stronger
negative SST anomalies over the eastern tropical Pacific
Ocean than those for node 1 (Fig. 10). The positive SST
anomalies over the North Pacific shift more northwards rel-
ative to that of node 1. The positive SST anomalies over
the North Atlantic are weaker than those for node 1. The
corresponding wave train over the Pacific Ocean is stronger
than that over the Atlantic Ocean (Fig. 11), which is also be
observed in the pattern of wave activity and streamfunction
(Fig. 12). The corresponding pattern for node 6 is nearly re-
versed, but there are some noticeable differences in the am-
plitude of the wave train and SST anomalies. For example,
the magnitude of the anomalous SST and the 500 hPa height
over the central North Pacific is larger for node 6 than that
for node 4.

Besides the abovementioned variables, similar regression
analysis is also performed for the anomalous 850 hPa wind
field and anomalous downward longwave radiation (not
shown). Their regression patterns, which are similar to those
in Figs. 3 and 4, explain well the decadal variability of the
number of days for nodes 1, 4, 6, and 9. Together, these re-
sults in Figs. 10–12 indicate that the decadal variability of
the occurrence frequency of the four nodes in recent decades
is related to two wave trains induced by SST anomalies over
the central North Pacific Ocean and the North Atlantic Ocean
(Figs. 10 and 11). The aforementioned SST regression pat-
terns over the Atlantic and Pacific oceans also show features
of the AMO and PDO (Fig. 10). Since both the AMO and
PDO exhibited a phase change in the late 1990s (Yu et al.,
2017), the question is whether a similar change in the SOM
frequency also appears in the late 1990s. A comparison of the
averaged frequency before and after 1998 shows a significant
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Figure 9. Trends in surface air temperature explained by each SOM node (◦C yr−1) over the 1979–2019 period. The percentage in the upper
part of each panel indicates the fraction of the total trend represented by each node.

Figure 10. Anomalous SST (◦C) from NOAA over the 1979–2019 period regressed into the normalized time series of occurrence number
for nodes 1, 4, 6, and 9.

https://doi.org/10.5194/acp-20-13753-2020 Atmos. Chem. Phys., 20, 13753–13770, 2020



13764 L. Yu et al.: Eurasian wintertime temperature pattern

Figure 11. Anomalous 500 hPa geopotential height (gpm) from ERA-Interim reanalysis over the 1979–2019 period regressed into the nor-
malized time series of occurrence number for nodes 1, 4, 6, and 9.

drop in frequency for nodes 6 and 9 and an increase in fre-
quency for node 1 (not shown). This result suggests that the
change in the AMO and PDO indices may contribute to the
change in the frequencies of the warm Arctic–cold Eurasian
continent pattern.

3.7 Interdecadal variability

The four-decade-long ERA-Interim reanalysis is not ade-
quate for examining interdecadal to multi-decadal variations
represented by the PDO and AMO indices. Further analy-
sis is performed using the 20CR daily reanalysis data for the
1854–2014 period. Before applying the SOM technique to
the 20CR data, we first remove the trend to eliminate the in-
fluence from the global warming. No low-pass filter is ap-
plied before SOM analysis in order to test the stability of the
SOM results for the different periods. The spatial SOM pat-
terns from the detrended century-long 20CR data (Fig. 13)
are similar to those for the 1979–2019 period (Fig. 1). Nodes
1, 4, and 7 correspond to the positive phase of the warm

Arctic–cold Eurasia pattern, and the negative phase can be
observed in nodes 3, 6, and 9. The magnitude in Fig. 13 is
smaller compared to the recent four decades in Fig. 1. The
occurrence frequencies of the four nodes (1, 4, 6, and 9;
Fig. 14) are close to those of the recent four decades (Fig. 7).
It indicates that the SOM method can obtain stably the main
modes of wintertime surface air temperature variability. For
the recent four decades, the time series of the number of days
also displays a noticeable increasing (decreasing) trend for
nodes 1 and 4 (6 and 9), suggesting that the trend in the re-
cent four decades is a reflection of an interdecadal variability
of wintertime surface air temperature.

Next, we apply a 40-year low-pass filter to the time series
of the occurrence frequencies for nodes 1, 4, 6, and 9 and
the AMO and PDO indices and calculate correlations. There
is a significant correlation between the time series and the
AMO index, with correlation coefficients of 0.36 for node 1,
0.27 for node 4, −0.37 for node 6, and −0.20 for node 9,
all of which are at the 95 % confidence level. No significant
correlations, however, are found between the filtered time se-
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Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001) and stream function (colors, units: 107 m2 s−1) from
ERA-Interim reanalysis over the 1979–2019 period regressed onto the normalized time series of occurrence number for nodes 1, 4, 6, and 9.

Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December, January, and February) surface air temperature anoma-
lies (◦C) from the 20CR reanalysis for the 1851–2014 period. The number in brackets denotes the frequency of the occurrence for each
node.

https://doi.org/10.5194/acp-20-13753-2020 Atmos. Chem. Phys., 20, 13753–13770, 2020



13766 L. Yu et al.: Eurasian wintertime temperature pattern

Figure 14. Time series of the number of days for occurrence of each SOM node in Fig. 13 from the 20CR reanalysis for the 1851–2014
period. The thick red lines denote the result in Fig. 7 from the ERA-Interim reanalysis for the 1979–2019 period.

ries and the PDO index. If we define a SST index to repre-
sent the variability of SST anomalies over the central North
Pacific Ocean (20–40◦ N, 150◦ E–150◦W), the 40-year low-
pass-filtered central North Pacific Ocean SST index is now
significantly correlated with the filtered time series of occur-
rence frequencies for nodes 1 and 9 (0.55 for node 1 and
−0.46 for node 9). The correlation results are consistent with
the SST regression map for the recent decades (Fig. 10).

To confirm the effect of SST anomalies on the warm
Arctic–cold Eurasia pattern, we also perform EOF analy-
sis of wintertime detrended seasonal surface air temperature
anomalies for the 1854–2014 period (Fig. 15). The spatial
patterns of the first and second EOF modes show the neg-
ative phase of the warm Arctic–cold Eurasia pattern and
the 40-year low-pass-filtered time series is inversely corre-
lated with the 40-year low-pass-filtered wintertime AMO in-
dex (−0.46, p < 0.05 for mode 1 and −0.44, p < 0.05 for
mode 2). The 40-year low-pass-filtered time series of the
two EOF modes have a significant negative correlation with
the 40-year low-pass-filtered central North Pacific Ocean
SST index, with correlation coefficients of −0.19 and −0.26
(p < 0.05). Only PC1 has a significant correlation with the
PDO index (0.38, p < 0.05). Thus, the increase in the occur-
rence of the warm Arctic–cold Eurasia pattern in the recent
decades is a part of the interdecadal variability of the pattern,
which is influenced by the AMO index, the PDO index, and
the central North Pacific SST.

4 Conclusions and discussions

In this study, we examine the variability of wintertime sur-
face air temperature in the Arctic and the Eurasian continent
(20–130◦ E) by applying the SOM method to daily temper-

ature from the gridded ERA-Interim dataset for the period
of 1979–2019 and from the 20CR reanalysis for the period
of 1854–2014 and the EOF method to seasonal tempera-
ture from the 20CR reanalysis for the period of 1854–2014.
The spatial pattern in the surface temperature variations in
the study region, as revealed by the nine SOM nodes, is
dominated by concurrent warming in the Arctic and cooling
in Eurasia, and vice versa. The nine SOM patterns explain
nearly 40 % of the trends in wintertime surface temperature
and 88 % of that are accounted for by only four nodes. Two
of the four nodes (nodes 1 and 4) represent the warm Arctic–
cold Eurasia pattern and the other two (nodes 6 and 9) de-
pict the opposite cold Arctic–warm Eurasia pattern. There
is a clear shift in the frequency of the occurrence of these
patterns near the beginning of this century, with the warm
Arctic–cold Eurasia pattern dominating since 2003, while
the opposite pattern has been prevailing from the 1980s to
the 1990s. The warm Arctic–cold Eurasia pattern is accom-
panied by an anomalous high pressure and anticyclonic cir-
culation over the Eurasian continent. The anomalous winds
and the associated temperature and moisture advection inter-
act with local longwave radiative forcing and turbulent fluxes
to produce positive (negative) temperature anomalies in the
Arctic (Eurasian continent). The circulation is reversed for
the cold Arctic–warm Eurasia pattern. The warm, moist air
mass is advected to the Arctic by the anomalous atmospheric
circulations, and the increased downward turbulent heat flux
also explains sea ice melt in the Barents and Kara seas. In
other words, the sea ice loss in the Barents and Kara seas and
the cooling of the Eurasian continent can both be traced to
anomalous atmospheric circulations.

Increasing occurrences of the warm Arctic–cold Eurasian
continent pattern appear to relate to rising SST over the cen-
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Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF analysis of wintertime surface air temperature anomalies
from the 20CR reanalysis for the 1851–2014 period. Prior to EOF analysis, surface air temperature data are detrended. A 40-year low-pass
filter is applied to the time series of PC1, PC2, AMO, PDO, and central North Pacific Ocean (CNPO) indices. The correlation coefficients
between PC1 and AMO, PDO, and CNPO indices are −0.46 (p < 0.0001), 0.38 (p < 0.0001), and −0.19 (p = 0.019); those between PC2
and AMO, PDO, and CNPO indices are −0.44 (p < 0.0001), 0.38 (p < 0.0001), and −0.26 (p = 0.0009).

tral North Pacific and North Atlantic oceans (positive AMO
phase). The SST anomalies trigger two Rossby wave trains
spanning from the North Pacific Ocean, North America, and
the North Atlantic Ocean to the Eurasian continent. The two
wave trains are strengthened through local sea–atmosphere–
ice interactions in mid-to-high latitudes, which influence the
change in the occurrence frequency of the warm Arctic–cold
Eurasian continent pattern. Our results agree with those of
previous studies (Lee et al., 2011; Sato et al., 2014; Clark and
Lee, 2019). But previous studies only focus on the effects of
SST anomalies over either the North Pacific or North Atlantic
oceans. We also note that the two wave trains excited by SST
anomalies over different oceans differ in amplitudes, leading
to somewhat different warm Arctic–cold Eurasia patterns.

Using century-long data, we show that the warm Arctic–
cold Eurasia pattern is an intrinsic climate mode, which
has been stable since 1854. The recent increasing trend in
its occurrence is a reflection of an interdecadal variabil-
ity of the pattern resulting from the interdecadal variability
of SST anomalies over the central Pacific Ocean and over
the Atlantic Ocean represented by the AMO index. Sung et
al. (2018) investigated interdecadal variability of the warm
Arctic–cold Eurasia pattern and considered the variability of

the SST over the North Atlantic as its origin. Our results sug-
gest that the variability of the SST over the North Pacific also
plays an important role. However, internal atmospheric vari-
ability remains another potential source. The Rossby wave
trains also lead to the deepening of a trough in East Asia
and generate an anomalous low pressure and cold tempera-
ture in northern China (Fig. 10), which further suggests that
a warmer Arctic, especially warmer Barents and Kara seas, is
not the driver for the increasing occurrence of cold spells in
East Asia, as suggested in previous studies (Kim et al., 2014;
Mori et al., 2014; Kug et al., 2015; Overland et al., 2015).

Our results suggest that the increasing trend in warm
Arctic–cold Eurasia pattern may be related to the anomalous
SST over the central North Pacific and the North Atlantic
oceans. But we cannot rule out the influence of the Arc-
tic sea ice loss on the trend. The Arctic sea ice loss results
from both Arctic warming due to anthropogenic increasing
of greenhouse gas concentrations and natural variability of
climate system such as SST anomalies. This study considers
natural variability or internal driver of climate system. The
Arctic warming caused external forcing related to increasing
greenhouse gas emissions can produce an anomalous anticy-
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clone over the Barents and Kara seas, leading to the warm
Arctic–cold continents pattern.

Although the ERA-Interim reanalysis is overall superior in
describing the Arctic atmospheric environment to other sim-
ilar global reanalysis products, it contains warm and moist
biases in the surface layer (Jakobson et al., 2012; Chaudhuri
et al., 2014; Simmons and Poli, 2015; Wang et al., 2019).
However, we believe these biases, as well as the relatively
coarse resolution, should have minimum impact in the re-
sults from the current analyses. Further, although the current
analyses were performed on a predetermined SOM grid with
3×3 nodes, an increase in the number of SOM nodes did not
change the conclusions.

Our results help broaden the current understanding of the
formation mechanisms for the warm Arctic–cold Eurasia pat-
tern. The SST anomalies over Northern Hemisphere oceans
may offer a potential for predicting its occurrence. The sta-
tistical relationship between SST anomalies and the occur-
rences of the warm Arctic–cold continents pattern may help
improve the predictability of wintertime surface air tempera-
ture over Eurasian continent on interdecadal timescales.
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