Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10379-2020
https://doi.org/10.5194/acp-20-10379-2020
Research article
 | 
08 Sep 2020
Research article |  | 08 Sep 2020

Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models

Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley

Related authors

The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China
Xiao Fu, Tao Wang, Li Zhang, Qinyi Li, Zhe Wang, Men Xia, Hui Yun, Weihao Wang, Chuan Yu, Dingli Yue, Yan Zhou, Junyun Zheng, and Rui Han
Atmos. Chem. Phys., 19, 1–14, https://doi.org/10.5194/acp-19-1-2019,https://doi.org/10.5194/acp-19-1-2019, 2019
Short summary
Combined impacts of nitrous acid and nitryl chloride on lower-tropospheric ozone: new module development in WRF-Chem and application to China
Li Zhang, Qinyi Li, Tao Wang, Ravan Ahmadov, Qiang Zhang, Meng Li, and Mengyao Lv
Atmos. Chem. Phys., 17, 9733–9750, https://doi.org/10.5194/acp-17-9733-2017,https://doi.org/10.5194/acp-17-9733-2017, 2017
Short summary
Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China
Qinyi Li, Li Zhang, Tao Wang, Yee Jun Tham, Ravan Ahmadov, Likun Xue, Qiang Zhang, and Junyu Zheng
Atmos. Chem. Phys., 16, 14875–14890, https://doi.org/10.5194/acp-16-14875-2016,https://doi.org/10.5194/acp-16-14875-2016, 2016
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024,https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024,https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024,https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024,https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024,https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary

Cited articles

Akritidis, D., Katragkou, E., Zanis, P., Pytharoulis, I., Melas, D., Flemming, J., Inness, A., Clark, H., Plu, M., and Eskes, H.: A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation, Atmos. Chem. Phys., 18, 15515–15534, https://doi.org/10.5194/acp-18-15515-2018, 2018. 
Alvarez II, R. J., Senff, C. J., Langford, A. O., Weickmann, A. M., Law, D. C., Machol, J. L., Merritt, D. A., Marchbanks, R. D., Sandberg, S. P., Brewer, W. A., Hardesty, R. M., and Banta, R. M.: Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling, J. Atmos. Ocean. Technol., 28, 1258–1272, https://doi.org/10.1175/jtech-d-10-05044.1, 2011. 
Barletta, B., Meinardi, S., Simpson, I. J., Atlas, E. L., Beyersdorf, A. J., Baker, A. K., Blake, N. J., Yang, M., Midyett, J. R., Novak, B. J., McKeachie, R. J., Fuelberg, H. E., Sachse, G. W., Avery, M. A., Campos, T., Weinheimer, A. J., Rowland, F. S., and Blake, D. R.: Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers, Atmos. Chem. Phys., 9, 5371–5388, https://doi.org/10.5194/acp-9-5371-2009, 2009. 
Baylon, P. M., Jaffe, D. A., Pierce, R. B., and Gustin, M. S.: Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S, Environ. Sci. Technol., 50, 2994–3001, https://doi.org/10.1021/acs.est.6b00219, 2016. 
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Altmetrics
Final-revised paper
Preprint