Articles | Volume 19, issue 16
https://doi.org/10.5194/acp-19-10801-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-10801-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology
Ruijun Dang
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, 10029, China
University of Chinese Academy of Sciences, Beijing, 10049, China
Hong Liao
CORRESPONDING AUTHOR
Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology/Joint International Research Laboratory of Climate and
Environment Change, School of Environmental Science and Engineering, Nanjing
University of Information Science and Technology, Nanjing, 210044, China
Related authors
No articles found.
Pengwei Li, Yang Yang, Hailong Wang, Su Li, Ke Li, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 23, 5403–5417, https://doi.org/10.5194/acp-23-5403-2023, https://doi.org/10.5194/acp-23-5403-2023, 2023
Short summary
Short summary
We use a novel technique that can attribute O3 to precursors to investigate O3 changes in the United States during 1995–2019. We found that the US domestic energy and surface transportation emission reductions are primarily responsible for the O3 decrease in summer. In winter, factors such as nitrogen oxide emission reduction in the context of its inhibition of ozone production, increased aviation and shipping activities, and large-scale circulation changes contribute to the O3 increases.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Nadia K. Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
Atmos. Chem. Phys., 23, 4031–4044, https://doi.org/10.5194/acp-23-4031-2023, https://doi.org/10.5194/acp-23-4031-2023, 2023
Short summary
Short summary
Surface ozone, detrimental to human and ecosystem health, is very high and increasing in South Korea. Using a global model of the atmosphere, we found that emissions from South Korea and China contribute equally to the high ozone observed. We found that in the absence of all anthropogenic emissions over East Asia, ozone is still very high, implying that the air quality standard in South Korea is not practically achievable unless this background external to East Asia can be decreased.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-11, https://doi.org/10.5194/acp-2023-11, 2023
Preprint under review for ACP
Short summary
Short summary
Atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. Analysis atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Yuanhao Chen, Zhenxin Liu, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-267, https://doi.org/10.5194/gmd-2022-267, 2023
Revised manuscript under review for GMD
Short summary
Short summary
The heterogenous layout of urban buildings leads to the complex wind field in and over the urban. Large discrepancies exist between the observation and the current simulations without considering the character. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) is developed to simulation the complex wind speed in a typical street. It can better simulate the wind field in and over the inhomogenous street canyon then improve the simulated energy budget in lower atmosphere layer over the urban.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Bufan Xu, Wei Han, Mijie Pang, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-301, https://doi.org/10.5194/gmd-2022-301, 2023
Revised manuscript under review for GMD
Short summary
Short summary
Machine learning model have gained great popularity in air quality prediction. However, they are only available at the air quality monitoring stations. In contrast, chemical transport models (CTM) provide forecasts that are continuous in 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional-feature-selection machine learning prediction (RFSML v1.0) and a CTM forecast.
Mengyun Li, Yang Yang, Hailong Wang, Huimin Li, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 23, 1533–1544, https://doi.org/10.5194/acp-23-1533-2023, https://doi.org/10.5194/acp-23-1533-2023, 2023
Short summary
Short summary
Using the GEOS-Chem model, the impact of the quasi-biennial oscillation (QBO) on summertime tropospheric O3 in China is investigated. In the warm phases of sea surface temperature anomalies over the eastern tropical Pacific, the QBO has a significant positive correlation with near-surface O3 concentrations over central China. The QBO impacts on O3 pollution in China are mainly a result of changing vertical transport of O3.
Huimin Li, Yang Yang, Jianbing Jin, Hailong Wang, Ke Li, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 23, 1131–1145, https://doi.org/10.5194/acp-23-1131-2023, https://doi.org/10.5194/acp-23-1131-2023, 2023
Short summary
Short summary
Future climate change will aggravate ozone pollution in Asia, especially in high-forcing scenarios. Ozone pollution in China will expand from North China to South China and extend into the cold season in a warmer future. The emphasis of this work is to quantify the impacts of future climate change on O3 pollution in Asia, which is of great significance for future O3 pollution mitigation strategies.
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023, https://doi.org/10.5194/acp-23-23-2023, 2023
Short summary
Short summary
We apply the 3-D global chemical transport model (GEOS-Chem) to simulate co-polluted days by O3 and PM2.5 (O3–PM2.5PDs) in Beijing–Tianjin–Hebei in 2013–2020 and investigate the chemical and physical characteristics of O3–PM2.5PDs by composited analyses of such days that are captured by both the observations and the model. We report for the first time the unique features in vertical distributions of aerosols during O3–PM2.5PDs and the physical and chemical characteristics of O3–PM2.5PDs.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, and Hong Liao
Geosci. Model Dev., 15, 7791–7807, https://doi.org/10.5194/gmd-15-7791-2022, https://doi.org/10.5194/gmd-15-7791-2022, 2022
Short summary
Short summary
This study proposes a regional feature selection-based machine learning system to predict short-term air quality in China. The system has a tool that can figure out the importance of input data for better prediction. It provides large-scale air quality prediction that exhibits improved interpretability, fewer training costs, and higher accuracy compared with a standard machine learning system. It can act as an early warning for citizens and reduce exposure to PM2.5 and other air pollutants.
Zhenqi Xu, Wei Feng, Yicheng Wang, Haoran Ye, Yuhang Wang, Hong Liao, and Mingjie Xie
Atmos. Chem. Phys., 22, 13739–13752, https://doi.org/10.5194/acp-22-13739-2022, https://doi.org/10.5194/acp-22-13739-2022, 2022
Short summary
Short summary
This work uses a solvent (DMF) that can efficiently dissolve low-volatility OC to examine BrC absorption and sources, which will benefit future investigations on the physicochemical properties of large organic molecules. The study results also shed light on potential sources for methanol-insoluble OC. These results highlight the importance of testing different solvents to investigate the structures and light absorption of low-volatility BrC.
Chenguang Tian, Xu Yue, Jun Zhu, Hong Liao, Yang Yang, Yadong Lei, Xinyi Zhou, Hao Zhou, Yimian Ma, and Yang Cao
Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, https://doi.org/10.5194/acp-22-12353-2022, 2022
Short summary
Short summary
We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. In atmosphere-only simulations, we find global fire aerosols cause surface cooling and rainfall inhibition over many land regions. These fast atmospheric perturbations further lead to a reduction in regional leaf area index and lightning activities. By considering the feedback of fire aerosols on humidity, lightning, and leaf area index, we predict a slight reduction in fire emissions.
Shijie Cui, Dan Dan Huang, Yangzhou Wu, Junfeng Wang, Fuzhen Shen, Jiukun Xian, Yunjiang Zhang, Hongli Wang, Cheng Huang, Hong Liao, and Xinlei Ge
Atmos. Chem. Phys., 22, 8073–8096, https://doi.org/10.5194/acp-22-8073-2022, https://doi.org/10.5194/acp-22-8073-2022, 2022
Short summary
Short summary
Refractory black carbon (rBC) aerosols are important to air quality and climate change. rBC can mix with many other species, which can significantly change its properties and impacts. We used a specific set of techniques to exclusively characterize rBC-containing (rBCc) particles in Shanghai. We elucidated their composition, sources and size distributions and factors that affect their properties. Our findings are very valuable for advancing the understanding of BC and controlling BC pollution.
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Short summary
China has been implementing a sequence of policies for clean air since the year 2013. The aerosol decline produced a 0.09 ± 0.10°C warming during 2013–2017 estimated in this study, and the increase in ozone in the lower troposphere during this time period accelerated the warming, leading to a total 0.16 ± 0.15°C temperature increase in eastern China. Residential emission reductions led to a cooling effect because of a substantial decrease in light-absorbing aerosols.
Jianbing Jin, Mijie Pang, Arjo Segers, Wei Han, Li Fang, Baojie Li, Haochuan Feng, Hai Xiang Lin, and Hong Liao
Atmos. Chem. Phys., 22, 6393–6410, https://doi.org/10.5194/acp-22-6393-2022, https://doi.org/10.5194/acp-22-6393-2022, 2022
Short summary
Short summary
Super dust storms reappeared in East Asia last spring after being absent for one and a half decades. Accurate simulation of such super sandstorms is valuable, but challenging due to imperfect emissions. In this study, the emissions of these dust storms are estimated by assimilating multiple observations. The results reveal that emissions originated from both China and Mongolia. However, for northern China, long-distance transport from Mongolia contributes much more dust than Chinese deserts.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Pinya Wang, Yang Yang, Huimin Li, Lei Chen, Ruijun Dang, Daokai Xue, Baojie Li, Jianping Tang, L. Ruby Leung, and Hong Liao
Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, https://doi.org/10.5194/acp-22-4705-2022, 2022
Short summary
Short summary
China is now suffering from both severe ozone (O3) pollution and heat events. We highlight that North China Plain is the hot spot of the co-occurrences of extremes in O3 and high temperatures in China. Such coupled extremes exhibit an increasing trend during 2014–2019 and will continue to increase until the middle of this century. And the coupled extremes impose more severe health impacts to human than O3 pollution occurring alone because of elevated O3 levels and temperatures.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022, https://doi.org/10.5194/acp-22-4101-2022, 2022
Short summary
Short summary
Aerosols can influence O3 through aerosol–radiation interactions, including aerosol–photolysis interaction (API) and aerosol–radiation feedback (ARF). The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 9.3–11.4 ppb, with API and ARF contributing 74.6 %–90.0 % and 10.0 %–25.4 % of the O3 decrease in three episodes, respectively, which indicates that API is the dominant way for O3 reduction related to aerosol–radiation interactions.
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja-Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, and Daniel J. Jacob
Atmos. Meas. Tech., 15, 1075–1091, https://doi.org/10.5194/amt-15-1075-2022, https://doi.org/10.5194/amt-15-1075-2022, 2022
Short summary
Short summary
This paper uses a machine learning algorithm to infer high-resolution maps of particulate air quality in eastern China, Japan, and the Korean peninsula, using data from a geostationary satellite along with meteorology. We then perform an extensive evaluation of this inferred air quality and use it to diagnose trends in the region. We hope this paper and the associated data will be valuable to other scientists interested in epidemiology, air quality, remote sensing, and machine learning.
Donglin Chen, Hong Liao, Yang Yang, Lei Chen, Delong Zhao, and Deping Ding
Atmos. Chem. Phys., 22, 1825–1844, https://doi.org/10.5194/acp-22-1825-2022, https://doi.org/10.5194/acp-22-1825-2022, 2022
Short summary
Short summary
The black carbon (BC) vertical profile plays a critical role in BC–meteorology interaction, which also influences PM2.5 concentrations. More BC mass was assigned into high altitudes (above 1000 m) in the model, which resulted in a stronger cooling effect near the surface, a larger temperature inversion below 421 m, more reductions in PBLH, and a larger increase in near-surface PM2.5 in the daytime caused by the direct radiative effect of BC.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, https://doi.org/10.5194/acp-21-15883-2021, 2021
Short summary
Short summary
This study focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a NH3 emission inventory for mainland China in 2016. The inventory showed a higher level of accuracy than other inventories based on evaluation using the WRF-Chem and observation data.
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021, https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary
Short summary
Due to the COVID-19 pandemic, human activities were strictly restricted in China. Even though anthropogenic aerosol emissions largely decreased, haze events still occurred. Our results shows that PM2.5 over the North China Plain is largely contributed by local sources. For other regions in China, PM2.5 is largely contributed from nonlocal sources. As emission reduction is a future goal, aerosol long-range transport and unfavorable meteorology are increasingly important to air quality.
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622, https://doi.org/10.5194/gmd-14-5607-2021, https://doi.org/10.5194/gmd-14-5607-2021, 2021
Short summary
Short summary
When discussing the accuracy of a dust forecast, the shape and position of the plume as well as the intensity are key elements. The position forecast determines which locations will be affected, while the intensity only describes the actual dust level. A dust forecast with position misfit directly results in incorrect timing profiles of dust loads. In this paper, an image-morphing-based data assimilation is designed for realigning a simulated dust plume to correct for the position error.
Chao Qin, Yafeng Gou, Yuhang Wang, Yuhao Mao, Hong Liao, Qin'geng Wang, and Mingjie Xie
Atmos. Chem. Phys., 21, 12141–12153, https://doi.org/10.5194/acp-21-12141-2021, https://doi.org/10.5194/acp-21-12141-2021, 2021
Short summary
Short summary
In this study, we found that the aqueous solution in aerosols is an important absorbing phase for gaseous polyols in the atmosphere, indicating that the dissolution in aerosol liquid water should not be ignored when investigating gas–particle partitioning of water-soluble organics. The exponential increase in effective partitioning coefficients of polyol tracers with sulfate ion concentrations could be attributed to organic–inorganic interactions in the particle phase.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Liangying Zeng, Yang Yang, Hailong Wang, Jing Wang, Jing Li, Lili Ren, Huimin Li, Yang Zhou, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, https://doi.org/10.5194/acp-21-10745-2021, 2021
Short summary
Short summary
Using an aerosol–climate model, the impacts of El Niño with different durations on aerosols in China are examined. The modulation on aerosol concentrations and haze days by short-duration El Niño events is 2–3 times more than that by long-duration El Niño events in China. The frequency of short-duration El Niño has been increasing significantly in recent decades, suggesting that El Niño events have exerted increasingly intense modulation on aerosol pollution in China over the past few decades.
Zhongjing Jiang, Jing Li, Xiao Lu, Cheng Gong, Lin Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 2601–2613, https://doi.org/10.5194/acp-21-2601-2021, https://doi.org/10.5194/acp-21-2601-2021, 2021
Short summary
Short summary
This study demonstrates that the intensity of the western Pacific subtropical high (WPSH), a major synoptic pattern in the northern Pacific during summer, can induce a dipole change in surface ozone pollution over eastern China. Ozone concentration increases in the north and decreases in the south during the strong WPSH phase, and vice versa. The change in chemical processes associated with the WPSH change plays a decisive role, whereas the natural emission of ozone precursors accounts for ~ 30 %.
Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin
Atmos. Chem. Phys., 20, 15207–15225, https://doi.org/10.5194/acp-20-15207-2020, https://doi.org/10.5194/acp-20-15207-2020, 2020
Short summary
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Yixuan Gu, Fengxia Yan, Jianming Xu, Yuanhao Qu, Wei Gao, Fangfang He, and Hong Liao
Atmos. Chem. Phys., 20, 14361–14375, https://doi.org/10.5194/acp-20-14361-2020, https://doi.org/10.5194/acp-20-14361-2020, 2020
Short summary
Short summary
High levels and statistically insignificant changes of ozone are detected at a remote monitoring site on Sheshan Island in Shanghai, China, from 2012 to 2017; 6-year observations suggest regional transport exerted minimum influence on the offshore oceanic air in September and October. Both city plumes and oceanic air inflows could contribute to ozone enhancements in Shanghai, and the latter are found to lead to 20–30 % increases in urban ozone concentrations based on WRF-Chem simulations.
Ke Li, Daniel J. Jacob, Lu Shen, Xiao Lu, Isabelle De Smedt, and Hong Liao
Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, https://doi.org/10.5194/acp-20-11423-2020, 2020
Short summary
Short summary
Surface summer ozone increased in China from 2013 to 2019 despite new governmental efforts targeting ozone pollution. We find that the ozone increase is mostly due to anthropogenic drivers, although meteorology also plays a role. Further analysis for the North China Plain shows that PM2.5 continued to decrease through 2019, while emissions of volatile organic compounds (VOCs) stayed flat. This could explain the anthropogenic increase in ozone, as PM2.5 scavenges the radical precursors of ozone.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Juan Feng, Jianlei Zhu, Jianping Li, and Hong Liao
Atmos. Chem. Phys., 20, 9883–9893, https://doi.org/10.5194/acp-20-9883-2020, https://doi.org/10.5194/acp-20-9883-2020, 2020
Short summary
Short summary
This paper explores the month-to-month variability of aerosol concentrations (ACs) over China. The AC variability is dominated by the monopole mode and the meridional dipole mode. The associated dynamic and thermal impacts of the climate systems are examined to explain their contributions to the formation of the two modes. The result suggests the variations are originating from the tropical Pacific, and extratropical atmospheric systems contribute to the dominant variabilities of ACs over China.
Lili Ren, Yang Yang, Hailong Wang, Rudong Zhang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 20, 9067–9085, https://doi.org/10.5194/acp-20-9067-2020, https://doi.org/10.5194/acp-20-9067-2020, 2020
Short summary
Short summary
Observations show that the concentrations of Arctic aerosols have declined since the early 1980s, which potentially contributed to the recent, rapid Arctic warming. We found that changes in sulfate and black carbon aerosols over the midlatitudes of the Northern Hemisphere had a larger impact on Arctic temperature than other regions and that the aerosol-induced temperature change explained approximately 20 % of the observed Arctic warming during 1980–2018.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Cheng Gong, Yadong Lei, Yimian Ma, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 20, 3841–3857, https://doi.org/10.5194/acp-20-3841-2020, https://doi.org/10.5194/acp-20-3841-2020, 2020
Short summary
Short summary
We evaluate ozone–vegetation feedback using a fully coupled chemistry–carbon–climate global model (ModelE2-YIBs). Ozone damage to photosynthesis, stomatal conductance, and isoprene emissions parameterized by different schemes and sensitivities is jointly considered. In general, surface ozone concentrations are increased due to ozone–vegetation interactions, especially over the regions with a high ambient ozone level such as the eastern US, eastern China, and western Europe.
Yadong Lei, Xu Yue, Hong Liao, Cheng Gong, and Lin Zhang
Geosci. Model Dev., 13, 1137–1153, https://doi.org/10.5194/gmd-13-1137-2020, https://doi.org/10.5194/gmd-13-1137-2020, 2020
Short summary
Short summary
We coupled a dynamic vegetation model YIBs with the chemical transport model GEOS-Chem to develop a new tool for studying interactions between atmospheric chemistry and biosphere. Within this framework, leaf area index and stomatal conductance are predicted for chemical simulations. In turn, surface ozone causes negative impacts to plant growth and the consequent dry deposition. Such interactions are important for air pollution prediction but ignored in most of current chemical models.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Yang Yang, Sijia Lou, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 20, 2579–2590, https://doi.org/10.5194/acp-20-2579-2020, https://doi.org/10.5194/acp-20-2579-2020, 2020
Short summary
Short summary
Aerosol concentration decreased in Europe during 1980–2018, of which 7 % was induced by the changes in non-European emissions. Aerosols transported from other source regions are increasingly important to air quality in Europe. Contributions to the sulfate radiative forcing over Europe from both European and non-European emissions should decrease at a comparable rate in the next three decades. Future changes in non-European emissions are important in causing regional climate change in Europe.
Xu Yue, Hong Liao, Huijun Wang, Tianyi Zhang, Nadine Unger, Stephen Sitch, Zhaozhong Feng, and Jia Yang
Atmos. Chem. Phys., 20, 2353–2366, https://doi.org/10.5194/acp-20-2353-2020, https://doi.org/10.5194/acp-20-2353-2020, 2020
Short summary
Short summary
We explore ecosystem responses in China to 1.5 °C global warming under stabilized versus transient pathways. Remarkably, GPP shows 30 % higher enhancement in the stabilized than the transient pathway because of the lower ozone (smaller damages to photosynthesis) and fewer aerosols (higher light availability) in the former pathway. Our analyses suggest that an associated reduction of CO2 and pollution emissions brings more benefits to ecosystems in China via 1.5 °C global warming.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Cheng Gong and Hong Liao
Atmos. Chem. Phys., 19, 13725–13740, https://doi.org/10.5194/acp-19-13725-2019, https://doi.org/10.5194/acp-19-13725-2019, 2019
Short summary
Short summary
Severe O3 pollution events (OPEs) were observed frequently in summer in North China. We found a typical weather pattern that was responsible for the 21 OPEs observed in North China in May to July of 2014–2017. This weather pattern is characterized by high daily maximum temperature, low relative humidity and an anomalous high-pressure system at 500 hPa. Under such a weather pattern, chemical production of O3 is high between 800 and 900 hPa, which is then transported downward to enhance O3 levels.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Shixian Zhai, Daniel J. Jacob, Xuan Wang, Lu Shen, Ke Li, Yuzhong Zhang, Ke Gui, Tianliang Zhao, and Hong Liao
Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, https://doi.org/10.5194/acp-19-11031-2019, 2019
Short summary
Short summary
Observed annual mean PM2.5 decreased by 30–50 % in China from 2013–2018. However, meteorologically PM2.5 variability complicates trend attribution. We used a stepwise multiple linear regression model to quantitatively separate contributions from anthropogenic emissions and meteorology. Results show that 88 % of the PM2.5 decrease across China is attributable to anthropogenic emission changes, and 12 % is attributable to meteorology.
Lei Chen, Jia Zhu, Hong Liao, Yi Gao, Yulu Qiu, Meigen Zhang, Zirui Liu, Nan Li, and Yuesi Wang
Atmos. Chem. Phys., 19, 10845–10864, https://doi.org/10.5194/acp-19-10845-2019, https://doi.org/10.5194/acp-19-10845-2019, 2019
Short summary
Short summary
The formation mechanism of a severe haze episode that occurred over North China in December 2015, the aerosol radiative impacts on the haze event and the influence mechanism were examined. The PM2.5 increase during the aerosol accumulation stage was mainly attributed to strong production by the aerosol chemistry process and weak removal by advection and vertical mixing. Restrained vertical mixing was the main reason for near-surface PM2.5 increase when aerosol radiative feedback was considered.
Juan Feng, Jianping Li, Hong Liao, and Jianlei Zhu
Atmos. Chem. Phys., 19, 10787–10800, https://doi.org/10.5194/acp-19-10787-2019, https://doi.org/10.5194/acp-19-10787-2019, 2019
Short summary
Short summary
Background climate can affect the aerosol concentration (AC). It is found that when negative NAO overlaps El Niño, the anomalous circulations are not favorable for the transportation of aerosol, resulting in enhanced AC over eastern China. By contrast, a sole negative NAO event is linked with increased AC over central China. The results suggest that both the extratropical and tropical climate systems play an important role in impacting the AC over China.
Run Liu, Lu Mao, Shaw Chen Liu, Yuanhang Zhang, Hong Liao, Huopo Chen, and Yuhang Wang
Atmos. Chem. Phys., 19, 8563–8568, https://doi.org/10.5194/acp-19-8563-2019, https://doi.org/10.5194/acp-19-8563-2019, 2019
Short summary
Short summary
The recent paper by Shen et al. (2018; referred to hereafter as SHEN) made a sweeping statement on the winter haze pollution in Beijing by claiming an
Insignificant effect of climate change on winter haze in Beijing. We argue that the paper contains three serious flaws. Any one of the three flaws can nullify the claim of SHEN.
Lu Shen, Daniel J. Jacob, Xiong Liu, Guanyu Huang, Ke Li, Hong Liao, and Tao Wang
Atmos. Chem. Phys., 19, 6551–6560, https://doi.org/10.5194/acp-19-6551-2019, https://doi.org/10.5194/acp-19-6551-2019, 2019
Xuan Wang, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Lei Zhu, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mathew J. Evans, Ben H. Lee, Jessica D. Haskins, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Gregory L. Huey, and Hong Liao
Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, https://doi.org/10.5194/acp-19-3981-2019, 2019
Short summary
Short summary
Chlorine radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a comprehensive simulation of tropospheric chlorine in a global 3-D model, which includes explicit accounting of chloride mobilization from sea salt aerosol. We find the chlorine chemistry contributes 1.0 % of the global oxidation of methane and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
Yu-Hao Mao, Hong Liao, and Hai-Shan Chen
Atmos. Chem. Phys., 17, 4799–4816, https://doi.org/10.5194/acp-17-4799-2017, https://doi.org/10.5194/acp-17-4799-2017, 2017
Short summary
Short summary
We applied a global 3-D CTM to examine the impacts of the East Asian summer and winter monsoons on the interannual variations of surface concentrations, vertical distributions, and direct radiative forcing of black carbon (BC) over eastern China and the mechanisms through which the monsoon influences the variations of BC. Model results from our study have important implications for guiding measures to reduce BC emissions to mitigate near-term climate warming and to improve air quality in China.
Jia Zhu, Hong Liao, Yuhao Mao, Yang Yang, and Hui Jiang
Atmos. Chem. Phys., 17, 3729–3747, https://doi.org/10.5194/acp-17-3729-2017, https://doi.org/10.5194/acp-17-3729-2017, 2017
Short summary
Short summary
Asian O3 outflow exhibited a small and statistically insignificant decadal trend with large interannual variations from 1986–2006. The latter were mainly caused by variations in the meteorological conditions. Future climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. These findings help us to understand the variations in tropospheric O3 in the regions downwind of East Asia on different timescales.
Yu Fu, Amos P. K. Tai, and Hong Liao
Atmos. Chem. Phys., 16, 10369–10383, https://doi.org/10.5194/acp-16-10369-2016, https://doi.org/10.5194/acp-16-10369-2016, 2016
Short summary
Short summary
The effects of climate change would partly counteract the emission-driven increase in PM2.5 in winter in most of eastern China, but exacerbate PM2.5 pollution in summer in North China Plain. Land cover and land use change might partially offset the increase in summertime PM2.5 but further enhance wintertime PM2.5 in the model by modifying the dry deposition of various PM2.5 precursors and biogenic volatile organic compound emissions, which also act as important factors in modulating air quality.
Yixuan Gu, Hong Liao, and Jianchun Bian
Atmos. Chem. Phys., 16, 6641–6663, https://doi.org/10.5194/acp-16-6641-2016, https://doi.org/10.5194/acp-16-6641-2016, 2016
Short summary
Short summary
This is the first study to examine nitrate aerosol in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau (TP) and the South Asian summer monsoon (SASM) region in summer. Nitrate aerosol is simulated to be the most dominant aerosol species in the UTLS over the studied region. The mechanisms for the accumulation of nitrate in the UTLS over the TP/SASM region include vertical transport and the gas-to-aerosol conversion of nitric acid to form nitrate.
Jin Feng, Hong Liao, and Jianping Li
Atmos. Chem. Phys., 16, 4927–4943, https://doi.org/10.5194/acp-16-4927-2016, https://doi.org/10.5194/acp-16-4927-2016, 2016
Short summary
Short summary
We examine the impacts of monthly variations in Pacific-North America (PNA) teleconnection on aerosol concentrations in the United States during wintertime by observations from the EPA-AQS and the model results from the GEOS-Chem. The surface-layer PM2.5 concentrations in the PNA positive phases were higher by 8.7 % (12.2 %) relative to the PNA negative phases based on observed (simulated) concentrations, which have important implications for understanding and prediction of air quality in the US.
Q. Mu and H. Liao
Atmos. Chem. Phys., 14, 9597–9612, https://doi.org/10.5194/acp-14-9597-2014, https://doi.org/10.5194/acp-14-9597-2014, 2014
Y. Yang, H. Liao, and J. Li
Atmos. Chem. Phys., 14, 6867–6879, https://doi.org/10.5194/acp-14-6867-2014, https://doi.org/10.5194/acp-14-6867-2014, 2014
H. Jiang, H. Liao, H. O. T. Pye, S. Wu, L. J. Mickley, J. H. Seinfeld, and X. Y. Zhang
Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, https://doi.org/10.5194/acp-13-7937-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
Model-based insights into aerosol perturbation on pristine continental convective precipitation
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Local and remote climate impacts of future African aerosol emissions
The dependence of aerosols' global and local precipitation impacts on the emitting region
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Aggravated air pollution and health burden due to traffic congestion in urban China
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations
Transported aerosols regulate the pre-monsoon atmosphere over North-East India: a WRF-Chem modelling study
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires
Where does the dust deposited over the Sierra Nevada snow come from?
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Dust pollution in China affected by different spatial and temporal types of El Niño
A new process-based and scale-respecting desert dust emission scheme for global climate models – Part I: description and evaluation against inverse modeling emissions
An improved representation of aerosol mixing state for air quality–weather interactions
Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing
Size-resolved dust direct radiative effect efficiency derived from satellite observations
Modeling coarse and giant desert dust particles
Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model
Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018
Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China
Mapping the dependence of black carbon radiative forcing on emission region and season
Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Toward targeted observations of the meteorological initial state for improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region
Below-cloud scavenging of aerosol by rain: a review of numerical modelling approaches and sensitivity simulations with mineral dust in the Met Office's Unified Model
Predicting gridded winter PM2.5 concentration in the east of China
Satellite-based evaluation of AeroCom model bias in biomass burning regions
Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
What controls the historical timeseries of shortwave fluxes in the North Atlantic?
Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic
Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023, https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
Short summary
Relatively clean background aerosol over the Tibetan Plateau makes the study of aerosol–cloud–precipitation interactions distinctive. A convection on 24 July 2014 in Naqu was selected using the Weather Research Forecasting (WRF) model, including the Thompson aerosol-aware microphysical scheme. Our study uses a compromise approach to the limited observations. We show that the transformation of cloud water to graupel and the development of convective clouds are favored in a polluted situation.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023, https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Short summary
Human-induced aerosol pollution has major impacts on both local and global precipitation. This study demonstrates using a global climate model that both the strength and localization of aerosols' precipitation impacts are highly dependent on which region the aerosols are emitted from. The findings highlight that the geographic distribution of human-induced aerosol emissions must be accounted for when quantifying their influence on global precipitation.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Neeldip Barman and Sharad Gokhale
EGUsphere, https://doi.org/10.5194/egusphere-2023-88, https://doi.org/10.5194/egusphere-2023-88, 2023
Short summary
Short summary
The study shows that during the pre-monsoon season transported aerosols, especially from Indo-Gangetic Plains (IGP) has a greater impact w.r.t air pollution, radiative forcing and rainfall over North-East (NE) India than emissions from within NE India itself. Hence, controlling emissions in the IGP will be significantly more fruitful in reducing pollution as well as climatic impacts over this region.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2022-1449, https://doi.org/10.5194/egusphere-2022-1449, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, that accounts for long-range interactions. The model is verified against atomistic simulations of typical acid-base clusters participating in atmospheric new particle formation. Results show that accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such forces in atmospheric new particle formation modelling.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez Garcia-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-719, https://doi.org/10.5194/acp-2022-719, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Chenguang Tian, Xu Yue, Jun Zhu, Hong Liao, Yang Yang, Yadong Lei, Xinyi Zhou, Hao Zhou, Yimian Ma, and Yang Cao
Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, https://doi.org/10.5194/acp-22-12353-2022, 2022
Short summary
Short summary
We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. In atmosphere-only simulations, we find global fire aerosols cause surface cooling and rainfall inhibition over many land regions. These fast atmospheric perturbations further lead to a reduction in regional leaf area index and lightning activities. By considering the feedback of fire aerosols on humidity, lightning, and leaf area index, we predict a slight reduction in fire emissions.
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022, https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Short summary
Multiple linear regression (MLR) analyses often interpret the correlation coefficient (r2) as the contribution of an independent variable to the dependent variable. Since a good correlation does not imply a causal relationship, we propose that r2 should be interpreted as the maximum possible contribution. Moreover, MLR results are sensitive to the length of time analyzed; long-term analysis gives a more accurate assessment because of its additional constraints.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022, https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Short summary
Meteorological discontinuities in the vertical direction define the lowest atmosphere as the boundary layer, while in the horizontal direction it identifies the contrast zone as the internal boundary. Both of them determine the polluted air mass dimension over the North China Plain. This study reveals the boundary layer structures under three categories of internal boundaries, modified by thermal, dynamical, and blending effects. It provides a new insight to understand regional pollution.
Lichao Yang, Wansuo Duan, Zifa Wang, and Wenyi Yang
Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022, https://doi.org/10.5194/acp-22-11429-2022, 2022
Short summary
Short summary
The initial meteorological state has a great impact on PM2.5 forecasts. Assimilating additional observations is an effective way to improve the accuracy of the initial meteorological state. Here we used an advanced optimization approach to identify where we should preferentially place the meteorological observations associated with PM2.5 forecasts in the Beijing–Tianjin–Hebei region of China. We provide evidence that the target observation strategy is effective for improving PM2.5 forecasts.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022, https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Short summary
The PM2.5 concentration has been greatly reduced in recent years in China and has entered a crucial stage that required fine seasonal prediction. However, there is still no study aimed at predicting gridded PM2.5 concentration. A model for seasonal prediction of gridded winter PM2.5 concentration in the east of China was developed by analyzing the contributions of emissions and climate variability, which could provide scientific support for air pollution control at the regional and city levels.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Daniel Peter Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-583, https://doi.org/10.5194/acp-2022-583, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We determine what causes long-term trends in shortwave radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute mainly to changes in clouds caused by greenhouse gas-induced warming.
Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, and Lucia Deaconu
Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, https://doi.org/10.5194/acp-22-10789-2022, 2022
Short summary
Short summary
Extensive stratocumulus clouds over the south-eastern Atlantic (SEA) can lead to a cooling effect on the climate. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). Here, we investigated the source attribution of CCN in the SEA as well as the cloud responses. Our results show that aerosol nucleation contributes most to CCN in the marine boundary layer. In terms of emissions, anthropogenic sources contribute most to the CCN and cloud droplets.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Cited articles
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M.,
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in
sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys.
Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004jd005659, 2005.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001jd000807, 2001.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, Gb2018, https://doi.org/10.1029/2006gb002840, 2007.
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions
conducive to Beijing severe haze more frequent under climate change, Nat.
Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Chang, D., Song, Y., and Liu, B.: Visibility trends in six megacities in
China 1973–2007, Atmos. Res., 94, 161–167,
https://doi.org/10.1016/j.atmosres.2009.05.006, 2009.
Che, H. Z., Zhang, X. Y., Li, Y., Zhou, Z. J., and Qu, J. J.: Horizontal
visibility trends in China 1981–2005, Geophys. Res. Lett., 34, L24706,
https://doi.org/10.1029/2007gl031450, 2007.
Chen, H. P. and Wang, H. J.: Haze Days in North China and the associated
atmospheric circulations based on daily visibility data from 1960 to 2012,
J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015jd023225, 2015.
Chen, L., Zhu, J., Liao, H., Gao, Y., Qiu, Y., Zhang, M., and Li, N.: Assessing the formation and evolution mechanisms of severe haze pollution in Beijing–Tianjin–Hebei region by using process analysis, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-245, in review, 2019.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
Deng, J. J., Du, K., Wang, K., Yuan, C. S., and Zhao, J. J.: Long-term
atmospheric visibility trend in Southeast China, 1973–2010, Atmos. Environ.,
59, 11–21, https://doi.org/10.1016/j.atmosenv.2012.05.023, 2012.
Ding, Y. H. and Liu, Y. J.: Analysis of long-term variations of fog and
haze in China in recent 50 years and their relations with atmospheric
humidity, Sci. China Earth Sci., 57, 36–46, https://doi.org/10.1007/s11430-013-4792-1, 2014.
Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H.,
Chan, T., and Mulawa, P. A.: Concentration and chemical characteristics of
PM2.5 in Beijing, China: 2001–2002, Sci. Total Environ., 355, 264–275,
https://doi.org/10.1016/j.scitotenv.2005.03.001, 2006.
Duchon, C. E.: Lanczos Filtering in One and Two Dimensions, J. Appl.
Meteorol., 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:lfioat>2.0.co;2, 1979.
EC-JRC/PBL: European Commission, Joint Research Center/Netherlands Environmental Assessment Agency, Emission Database for Global Atmospheric Research version 4.2, available at: http://edgar.jrc.ec.europa.eu (last access: 15 August 2019), 2011.
Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N2O5
hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone,
and OH, Geophys. Res. Lett., 32, L09813, https://doi.org/10.1029/2005gl022469, 2005.
Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific
transport of mineral dust in the United States, Atmos. Environ., 41,
1251–1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+- - - -Na+- - -Cl−-H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fu, C. B., Wu, J., Gao, Y. C., Zhao, D. M., and Han, Z. W.: Consecutive
extreme visibility events in China during 1960–2009, Atmos. Environ., 68,
1–7, https://doi.org/10.1016/j.atmosenv.2012.11.035, 2013.
Gao, M., Guttikunda, S. K., Carmichael, G. R., Wang, Y. S., Liu, Z. R.,
Stanier, C. O., Saide, P. E., and Yu, M.: Health impacts and economic losses
assessment of the 2013 severe haze event in Beijing area, Sci. Total
Environ., 511, 553–561, https://doi.org/10.1016/j.scitotenv.2015.01.005, 2015a.
Gao, Y., Zhang, M., Liu, Z., Wang, L., Wang, P., Xia, X., Tao, M., and Zhu, L.: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain, Atmos. Chem. Phys., 15, 4279–4295, https://doi.org/10.5194/acp-15-4279-2015, 2015b.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of atmospheric processes affecting the dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode, Atmos. Chem. Phys., 9, 849–864, https://doi.org/10.5194/acp-9-849-2009, 2009.
Hao, J. M., Tian, H. Z., and Lu, Y. Q.: Emission inventories of NOx from
commercial energy consumption in China, 1995–1998, Environ. Sci. Technol.,
36, 552–560, https://doi.org/10.1021/es015601k, 2002.
Harvard University: GEOS-Chem model, available at: http://acmg.seas.harvard.edu/geos/, last access: 15 August 2019.
Huang, X., Song, Y., Zhao, C., Li, M. M., Zhu, T., Zhang, Q., and Zhang, X. Y.: Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China, J. Geophys. Res.-Atmos., 119, 14165–14179, https://doi.org/10.1002/2014jd022301, 2014.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, https://doi.org/10.1016/s1352-2310(99)00462-8, 2000.
Jeong, J. I. and Park, R. J.: Effects of the meteorological variability on
regional air quality in East Asia, Atmos. Environ., 69, 46–55,
https://doi.org/10.1016/j.atmosenv.2012.11.061, 2013.
Jia, B., Wang, Y., Yao, Y., and Xie, Y.: A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China, Atmos. Chem. Phys., 15, 11919–11929, https://doi.org/10.5194/acp-15-11919-2015, 2015.
Jiang, J. K., Zhou, W., Cheng, Z., Wang, S. X., He, K. B., and Hao, J. M.: Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013), Aerosol Air Qual. Res., 15, 494–503, https://doi.org/10.4209/aaqr.2014.04.0070, 2015.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Li, J., Li, C. C., Zhao, C. S., and Su, T. N.: Changes in surface aerosol
extinction trends over China during 1980-2013 inferred from
quality-controlled visibility data, Geophys. Res. Lett., 43,
8713–8719, https://doi.org/10.1002/2016gl070201, 2016.
Li, J., Du, H. Y., Wang, Z. F., Sun, Y. L., Yang, W. Y., Li, J. J., Tang,
X., and Fu, P. Q.: Rapid formation of a severe regional winter haze episode
over a mega-city cluster on the North China Plain, Environ. Pollut., 223,
605–615, https://doi.org/10.1016/j.envpol.2017.01.063, 2017.
Li, J., Li, C., and Zhao, C.: Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data, Atmos. Chem. Phys., 18, 3289–3298, https://doi.org/10.5194/acp-18-3289-2018, 2018a.
Li, J., Sun, J., Zhou, M., Cheng, Z., Li, Q., Cao, X., and Zhang, J.: Observational analyses of dramatic developments of a severe air pollution event in the Beijing area, Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018, 2018b.
Li, K., Liao, H., Cai, W. J., and Yang, Y.: Attribution of Anthropogenic
Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over
Eastern China, Geophys. Res. Lett., 45, 2072–2081,
https://doi.org/10.1002/2017gl076570, 2018.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime
fog-haze days across central and eastern China and its relation with East
Asian winter monsoon, Int. J. Climatol., 36, 346–354,
https://doi.org/10.1002/joc.4350, 2016.
Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from
210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological
fields, J. Geophys. Res.-Atmos., 106, 12109–12128, https://doi.org/10.1029/2000jd900839,
2001.
Liu, X. G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., Zhang, Y., Tian, H., and Hu, M.: Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13, 4501–4514, https://doi.org/10.5194/acp-13-4501-2013, 2013.
Lou, S. J., Liao, H., Yang, Y., and Mu, Q.: Simulation of the interannual
variations of tropospheric ozone over China: Roles of variations in
meteorological parameters and anthropogenic emissions, Atmos. Environ., 122,
839–851, https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015.
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011.
Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., Tian, P., Han, Z.,
Xia, X., Wang, Y., and Zhang, R.: Roles of regional transport and
heterogeneous reactions in the PM2.5 increase during winter haze episodes in
Beijing, Sci. Total Environ., 599–600, 246–253,
https://doi.org/10.1016/j.scitotenv.2017.04.193, 2017.
Mu, Q. and Liao, H.: Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters, Atmos. Chem. Phys., 14, 9597–9612, https://doi.org/10.5194/acp-14-9597-2014, 2014.
NCDC: GSOD visibility dataset, available at: https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd, last access: 15 August 2019.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of
carbonaceous aerosols over the United States and implications for natural
visibility, J. Geophys. Res.-Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190, 2003.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys.
Res.-Atmos., 109, D15204, https://doi.org/10.1029/2003jd004473, 2004.
Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K.,
and Seinfeld, J. H.: Effect of changes in climate and emissions on future
sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys.
Res.-Atmos., 114, D01205, https://doi.org/10.1029/2008jd010701, 2009.
Streets, D. G. and Aunan, K.: The importance of China's household sector
for black carbon emissions, Geophys. Res. Lett., 32, L12708,
https://doi.org/10.1029/2005gl022960, 2005.
Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K.: Sulfur dioxide
emissions in Asia in the period 1985–1997, Atmos. Environ., 34, 4413–4424,
https://doi.org/10.1016/s1352-2310(00)00187-4, 2000.
Sun, Y. L., Jiang, Q., Wang, Z. F., Fu, P. Q., Li, J., Yang, T., and Yin,
Y.: Investigation of the sources and evolution processes of severe haze
pollution in Beijing in January 2013, J. Geophys. Res.-Atmos., 119,
4380–4398, https://doi.org/10.1002/2014jd021641, 2014.
Sun, Y. L., Chen, C., Zhang, Y. J., Xu, W. Q., Zhou, L. B., Cheng, X. L.,
Zheng, H. T., Ji, D. S., Li, J., Tang, X., Fu, P. Q., and Wang, Z. F.: Rapid
formation and evolution of an extreme haze episode in Northern China during
winter 2015, Sci. Rep.-UK, 6, 27151, https://doi.org/10.1038/srep27151, 2016.
Thornton, J. A., Jaegle, L., and McNeill, V. F.: Assessing known pathways
for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on
tropospheric oxidants, J. Geophys. Res.-Atmos., 113, D05303,
https://doi.org/10.1029/2007jd009236, 2008.
Tie, X., Huang, R.-J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D.,
Pöschl, U., Hoffmann, T., Dusek, U., Li, G., Worsnop, D. R., and O'Dowd,
C. D.: Severe Pollution in China Amplified by Atmospheric Moisture, Sci. Rep.-UK,
7, 15760, https://doi.org/10.1038/s41598-017-15909-1, 2017.
US embassy: PM2.5 observations, available at: http://www.stateair.net/web/post/1/1.html, last access: 15 August 2019.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Wang, H., Xu, J. Y., Zhang, M., Yang, Y. Q., Shen, X. J., Wang, Y. Q., Chen,
D., and Guo, J. P.: A study of the meteorological causes of a prolonged and
severe haze episode in January 2013 over central-eastern China, Atmos.
Environ., 98, 146–157, https://doi.org/10.1016/j.atmosenv.2014.08.053, 2014a.
Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, 2014b.
Wang, X. Q., Wei, W., Cheng, S. Y., Li, J. B., Zhang, H. Y., and Lv, Z.:
Characteristics and classification of PM2.5 pollution episodes in Beijing
from 2013 to 2015, Sci. Total Environ., 612, 170–179,
https://doi.org/10.1016/j.scitotenv.2017.08.206, 2018.
Wang, Y., Zhang, Q. Q., He, K., Zhang, Q., and Chai, L.: Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia, Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, 2013.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of
tropospheric O3-NOx-hydrocarbon chemistry 1. Model formulation, J. Geophys.
Res.-Atmos., 103, 10713–10725, https://doi.org/10.1029/98jd00158, 1998.
Wang, Y. H., Liu, Z. R., Zhang, J. K., Hu, B., Ji, D. S., Yu, Y. C., and Wang, Y. S.: Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing, Atmos. Chem. Phys., 15, 3205–3215, https://doi.org/10.5194/acp-15-3205-2015, 2015.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Wu, P., Ding, Y., and Liu, Y.: Atmospheric circulation and dynamic mechanism
for persistent haze events in the Beijing–Tianjin–Hebei region, Adv.
Atmos. Sci., 34, 429–440, https://doi.org/10.1007/s00376-016-6158-z, 2017.
Xiao, Y. P., Logan, J. A., Jacob, D. J., Hudman, R. C., Yantosca, R., and
Blake, D. R.: Global budget of ethane and regional constraints on US
sources, J. Geophys. Res.-Atmos., 113, D21306, https://doi.org/10.1029/2007jd009415, 2008.
Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China
in recent decades: Roles of variations in meteorological parameters and
anthropogenic emissions, J. Geophys. Res.-Atmos., 121, 13050–13065,
https://doi.org/10.1002/2016jd025136, 2016.
Yang, Y., Wang, H. L., Smith, S. J., Zhang, R. D., Lou, S. J., Qian, Y., Ma,
P. L., and Rasch, P. J.: Recent intensification of winter haze in China
linked to foreign emissions and meteorology, Sci. Rep.-UK, 8, 2107,
https://doi.org/10.1038/s41598-018-20437-7, 2018.
Zhang, B., Wang, Y., and Hao, J.: Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter, Atmos. Chem. Phys., 15, 2387–2404, https://doi.org/10.5194/acp-15-2387-2015, 2015.
Zhang, L., Wang, T., Lv, M. Y., and Zhang, Q.: On the severe haze in Beijing
during January 2013: Unraveling the effects of meteorological anomalies with
WRF-Chem, Atmos. Environ., 104, 11–21, https://doi.org/10.1016/j.atmosenv.2015.01.001,
2015.
Zhang, Q., Jiang, X. J., Tong, D., Davis, S. J., Zhao, H. Y., Geng, G. N.,
Feng, T., Zheng, B., Lu, Z. F., Streets, D. G., Ni, R. J., Brauer, M., van
Donkelaar, A., Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H. D., Yan, Y.
Y., Lin, J. T., He, K. B., and Guan, D. B.: Transboundary health impacts of
transported global air pollution and international trade, Nature, 543, 705–709, https://doi.org/10.1038/nature21712, 2017.
Zhang, R. H., Li, Q., and Zhang, R. N.: Meteorological conditions for the
persistent severe fog and haze event over eastern China in January 2013,
Sci. China Earth Sci., 57, 26–35, https://doi.org/10.1007/s11430-013-4774-3, 2014.
Zhang, Y., Vijayaraghavan, K., Wen, X. Y., Snell, H. E., and Jacobson, M.
Z.: Probing into regional ozone and particulate matter pollution in the
United States: 1. A 1 year CMAQ simulation and evaluation using surface and
satellite data, J. Geophys. Res.-Atmos., 114, D22304, https://doi.org/10.1029/2009jd011898,
2009.
Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, H. Y.: Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13, 4631–4644, https://doi.org/10.5194/acp-13-4631-2013, 2013a.
Zhao, X. J., Zhao, P. S., Xu, J., Meng,, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. Chem. Phys., 13, 5685–5696, https://doi.org/10.5194/acp-13-5685-2013, 2013b.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Zhu, W. H., Xu, X. D., Zheng, J., Yan, P., Wang, Y. J., and Cai, W. Y.: The
characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji
region and its relationships with meteorological factors, Sci. Total
Environ., 626, 887–898, https://doi.org/10.1016/j.scitotenv.2018.01.083, 2018.
Short summary
We used a global chemical transport model to examine the historical changes in severe winter haze days (SWHDs) in Beijing–Tianjin–Hebei (BTH) in China. Simulated frequency of SWHDs in BTH showed an increasing trend over 1985–2017 with obvious fluctuations. We found that meteorology has dominated the frequency decrease in 1992–2001, and both anthropogenic emissions and meteorology contributed to the increase in 2003–2012. These results have important implications for the control of SWHDs in BTH.
We used a global chemical transport model to examine the historical changes in severe winter...
Altmetrics
Final-revised paper
Preprint