Articles | Volume 19, issue 16
Atmos. Chem. Phys., 19, 10801–10816, 2019
https://doi.org/10.5194/acp-19-10801-2019

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 19, 10801–10816, 2019
https://doi.org/10.5194/acp-19-10801-2019
Research article
27 Aug 2019
Research article | 27 Aug 2019

Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology

Ruijun Dang and Hong Liao

Related authors

Why is ozone in South Korea and the Seoul Metropolitan Area so high and increasing?
Nadia Kathryn Colombi, Daniel J. Jacob, Laura Hyesung Yang, Shixian Zhai, Viral Shah, Stuart K. Grange, Robert M. Yantosca, Soontae Kim, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2022-1366,https://doi.org/10.5194/egusphere-2022-1366, 2022
Short summary
Source attribution of near-surface ozone trends in the United States during 1995–2019
Pengwei Li, Yang Yang, Hailong Wang, Su Li, Ke Li, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-678,https://doi.org/10.5194/acp-2022-678, 2022
Preprint under review for ACP
Short summary
Dust pollution in China affected by different spatial and temporal types of El Niño
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022,https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China
Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, and Hong Liao
Geosci. Model Dev., 15, 7791–7807, https://doi.org/10.5194/gmd-15-7791-2022,https://doi.org/10.5194/gmd-15-7791-2022, 2022
Short summary
Potential underestimation of ambient brown carbon absorption based on the methanol extraction method and its impacts on source analysis
Zhenqi Xu, Wei Feng, Yicheng Wang, Haoran Ye, Yuhang Wang, Hong Liao, and Mingjie Xie
Atmos. Chem. Phys., 22, 13739–13752, https://doi.org/10.5194/acp-22-13739-2022,https://doi.org/10.5194/acp-22-13739-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Where does the dust deposited over the Sierra Nevada snow come from?
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022,https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022,https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022,https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022,https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022,https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary

Cited articles

Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004jd005659, 2005. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001. 
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, Gb2018, https://doi.org/10.1029/2006gb002840, 2007. 
Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nat. Clim. Change, 7, 257–262, https://doi.org/10.1038/nclimate3249, 2017. 
Chang, D., Song, Y., and Liu, B.: Visibility trends in six megacities in China 1973–2007, Atmos. Res., 94, 161–167, https://doi.org/10.1016/j.atmosres.2009.05.006, 2009. 
Download
Short summary
We used a global chemical transport model to examine the historical changes in severe winter haze days (SWHDs) in Beijing–Tianjin–Hebei (BTH) in China. Simulated frequency of SWHDs in BTH showed an increasing trend over 1985–2017 with obvious fluctuations. We found that meteorology has dominated the frequency decrease in 1992–2001, and both anthropogenic emissions and meteorology contributed to the increase in 2003–2012. These results have important implications for the control of SWHDs in BTH.
Altmetrics
Final-revised paper
Preprint