Articles | Volume 18, issue 8
Atmos. Chem. Phys., 18, 6001–6021, 2018
Atmos. Chem. Phys., 18, 6001–6021, 2018

Research article 27 Apr 2018

Research article | 27 Apr 2018

The effects of sea spray and atmosphere–wave coupling on air–sea exchange during a tropical cyclone

Nikhil Garg et al.

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611,,, 2021
Short summary
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906,,, 2020
Short summary
The “urban meteorology island”: a multi-model ensemble analysis
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077,,, 2020
Short summary
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768,,, 2020
Short summary
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770,,, 2020
Short summary

Cited articles

Andreas, E.: Thermal and size evolution of sea spray droplets, U.S. Army Cold Regions Research and Engineering Laboratory, Tech. Rep. 89-11, 48 pp., 1989. a, b, c
Andreas, E.: Time constants for the evolution of sea spray droplets, Tellus B, 42, 481–497,, 1990. a, b
Andreas, E.: Sea spray and the turbulent air-sea heat fluxes, J. Geophys. Res.-Oceans, 97, 11429–11441, 1992. a, b
Andreas, E.: The Temperature of Evaporating Sea Spray Droplets, J. Atmos. Sci., 52, 852–862, 1995. a
Andreas, E.: Reply, J. Atmos. Sci., 53, 1642–1645, 1996. a
Short summary
This study investigated the effects of air–sea interaction on the life cycle of Hurricane Arthur (2014) that traversed through the North Atlantic Ocean. The study explored the role of ocean surface waves and sea-spray-mediated heat and momentum fluxes on the structure and intensity of the tropical cyclone. The sea spray fluxes were modelled using wave energy dissipation from a wave model, which reduced the amount of spray fluxes as compared to the empirical spray source generation function.
Final-revised paper